N

N

FrameKit, an Ada Framework for a Fast Implementation
of CASE Environments

Fabrice Kordon, Jean-Luc Mounier

» To cite this version:

Fabrice Kordon, Jean-Luc Mounier. FrameKit, an Ada Framework for a Fast Implementation of CASE
Environments. [Research Report] 1ip6.1998.034, LIP6. 1998. hal-02547779

HAL Id: hal-02547779
https://hal.science/hal-02547779
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02547779
https://hal.archives-ouvertes.fr

FrameKit, an Ada Framework for a Fast Implementation of CASE Environments

Fabrice Kordon & Jean-Luc Mounier,
LIP6-SRC
Université P.&M. Curie
4 place Jussieu, 75252 Paris Cedex 05, France
E-mail: Fabrice.Kordon@lip6.fr, Jean-Luc.Mounier@Iip6.fr

Abstract : Software engineering methodologies rely on (usually data, control and presentation).

various and complex graphicakpresentations and ar Experimentation over large projects have outlined the
more useful when associated to CASE (Compaided difficulty to maintain such environment, especially when
Softwae Engineering) tools designed to take care of cons- tools come from various origin. In a project like Ptolemy
traints that have to be respected. Now, CASE tools gave[16], the software basis for the project have largely changed
way to CASE emronments (a set of tools that have a in order to ease maintenance as well as new development.
strong coherence in their us). This concemvies enhan- Such work (in particular, the Tycho interface sys{@

ced solutions for software reusability while theviean- take into account the definition of evolutionary interfaces
ment may be adapted to a specific understanding of abetween major components.

design methodology. This paper describes FrameKli0, 11], a framework de-
This paper describesr&meKit, an Ada basedamework dicated to the quick implementation of CASE environ-
dedicated to the quick implementation of CAStren- ments. FrameKit is parameterized in order to provide a

ments.\\e summarize 1t the concepts implemented in framework for the customization of CASE environments
FrameKit and illustrate them using a detailed example of dedicated to a given method (Figje FrameKit is mostly

a simple tool implementation and integration. integrated in Ada (a small amount of C is used for the inter-
Key word: Generic CASE, Software platforiimol integra- face with Unix) and provides enhanced Ada Application
tion, Software Engineering, quick implementation Program Interfaces (API) to operate a light but efficient

1. Introduction

Software engineering methodologies rely on various and (~ customizing

customization procedure.
complex graphical representations such as SA-RT, OMT, DDDD
UML etc. They are more useful when associated to CASE —
(Computer Aided Software Engineering) tools designed to + Dedicated CASE
take care of constraints that have to be respected. Such tools .
help engineers and facilitate the promotion of such metho- | GeResieCASE

dologies.) Figure 1: From a Generic CASE to a dedicated one.

Now, CASE tools gave way to CASE environments We present first the main lines of the FrameKit architec-
which may be adapted to a specific understanding of a deture (Sectior2.). Then, we present principles of tool design
sign methodology. A CASE environment can be defined as and implementation and illustrate with a detailed example
follows[17] : it is a set of tools that have a strong coherence how the Ada APl implement these principles.
in their use. This concept provides enhanced solutions for
software reusability. CASE environment are built on a plat- 2. Overview of the FrameKit Architecture
form that allows tool plugging. Communication and coope-
ration between tools must subsequently be investigated. 2.1. Structure of a CASE environment

The implementation of CASE environments is a com- . . .
plex task because they need various functions like a graphi- A CASE environment is composed of several cooperati-
cal user interface, database facilities and, of course, the/€ components : o
operations that are related to the methodology they imple- * @ platform having communication and data storage
ment (compilation of specifications, animation/simulation capabilities; _ _
of specifications, code generation from specification, etc.). ¢ a set oftools driven by the platformEach one is an

Even early platforms offer solutions for tool reuse and independent software which can run out of the environ-
cooperation. One of the first one, APEH is mostly data ment and offers functions that may enrich it
oriented and dedicated to Ada development. [Erand ~ To achieve this enrichment, a procedure caliéegra-
HP-Softbench8] suggest a communication oriented archi- tion has been defined. We distinguish two types of tool
tecture. ISTAR4] proposes a strong “process orientation” integration : griori anda posteriori
based on a contract concept defining inputs, outputs and ¢ thea posterioriintegration : inolved tools are already
constraints. Then, some standards like EC[gfand then designed; source files may not be available.

CORBA [15] provide a complete architecture model that The a priori integration concern tools that especially
identifies required services and considers discrete dimen-designed to run in a CASE environmentddes not raise
sions of cooperation between tools and a hosting platformany major problem while the selected implementation tech-

nigues and standards are considered at the implementatioonly, semantical ones are a convention between the user
stage. Platform functionalities are usually used the bestand the tool.
way, especially when APIs (Application Program Interfa- In FrameKit, description of formalisms is object-orien-
ce) are available. ted. This allows an easy management and updating of for-
The a posteriori integratioconcerns already designed malisms. Each class in the formalism is either a node or an
tools (some times, source files may not t&ilable) to be edge (interconnecting nodes) and contains a set of labels
integrated in a CASE environmentréquires an adaptation (string values, digits...) that characterizes instances of the
of the imported software. The complexity of such an opera- object. Additional information (how it looks, is it a link to
tion depends on several criteria regarding modularity anda «sub-level» when the formalism is hierarchic, etc.) must
portability of the tool : these aspects concern both its func- also be provided to fully describe the formalism.
tionalities and its relation with the execution environment to0| palette
(file system, operating system...).
According to[18], the integration procedure must take

selected object

Huclear Power Plant

into consideration five integration axis : R[A] [= EREREEEEN =
« Platform: tools must run on a platform giving a trans- motor driven pump
parent access to heterogeneous machines and to the opgs rontl —=08
rating system. = xpwitoott T 0]
« Presentation the user interface must be homogeneous A= =
for any tool.Window managers and look and feel style Attribute: Walue for attribute "1d "
guides are useful. CHPE S R EE]
e Data: tools have to exchange and share data. 43 Fower
e Control : tools hae to cooperate, notifyingvents to
others toolsThey may also need services provided by It
others ones. A
* Process the main goal of an environment is to support It
dewelopment processes. Thus, it is of interest to define a o | ||]
technique to describe such processes. gntfjecet K} D
However, the definition of these five axis are quite theo- .\ window b Btk to see the note
retical. It is difficult to manage them all properly. In Frame- ((cancer | [[__ok |
Kit, we have chosen to reduce them to three : A Z
 Presentation axis and basic aspects of process functions . L_label window]
are grouped in bser Interface axis Figure 2 : Link between formalisms and model in Macao.
« Some of the Data axis defined 18] are coered bythe Figure2 illustrates the relation between a formalism
Data managemersxis , description and related models. Classes declared in the for-
« Platform axis and basic control functions are grouped Mmalism are described in the tool palette (top of Figjre
together in aiEnvironment axis del (2 motel objech i & window that containg & model Ges. -
As a guide to both types of integration, we introduce the -~ X i . : i
foIIowing hotions :Forr’r)qglism modglandServiceA For- cription (bottom left in Figur®). It is then possible to edit

malism describes representation rules of a knowledge do- 1abels related to this objects and declared in the correspon-
main. A model is the description of aven knaviedge ding class description.

using a formalism; it is a «document» composed with ob-
jects defined in the formalism. A service is a tool function
that correspond to operations in a design methodology. Ser == '} Upper page
vices are related to a set of formalisms (i.e. the operation
has a signification for these formalisms) and thus, can be
applied on models issued form these formalisms.

The formalism notion is more related to the User Inter-

Hierarchical model

face axis. Model notion is associated to both User Interface ;' P> nner page
and data management axis. The service notion is strongly -a
connected to the environment axis. graph of the full description
2.2. User Interface representation of

e the upper page

In FrameKit, presentation and display of services are > tion of the b

strongly constrained. Both types of functions are supported representatq ot the box
by Macao[13], a polymorphic editor able to manipulate representationf of
models after the corresponding formalism description. It the inner page ‘

provides a unified look and feel for both the manipulation
of models and access to the services integrated in FrameKit.

The construction of a new formalism does not imply any : . :
recompilation of Macao. All the required information is de- c aIF(I)r:Tr?allltscr:];Ss énas%r%ee %%rgggf,frg \évgseoncitgt%)(lj ?{)eamgtrr?g;r;lo_r-
fined in an external file that expresses possibilities of the < '

; : : malism. These nodes (called «boxes») can be «opened» to
formalism. Of course, Macao deals with syntactical aspectdisplay its content in a new page. Models are thus com-

2.b
Figure 3: Structure of a hierarchical formalism.

posed of pages; each page is a part of the model. cell is destroyed when the model is updated;

Figure3 shows how it works. In Figurga, an node in a « user-associated data concern all the information related
page is associated to another page. The description of the to a user (preferences, information potentially shared by
model structure (Figurg.b) is an oriented graph in which, models...). This information remains reachable until the
nodes represent pages and, edges links between a box and auser is deleted;
page. So, hierarchical graphical descriptions are described « global data concern all the information related to a
using a set of (flat) formalisms. CASE environment. It is stored in cells that may be
associated to a tool, a formalism or to the platform itself
(administration data only). Data last as long as the entity

The data management axis deals with both data storage ({00!, formalism or platform). . .
in a repository and data representation. To cooperate, tools 10 implement these discrete behavior, a proper use of di-
use intermediate files to exchange data. However, they ardctories is sufficient. Global data is stored in a directory
usually not designed for data exchange with foreign softwa- Potentially shared by all users and tools. user associated
re. Data translations must be performed : some integrationdat@ is stored in a user associated directory. Finally, model-
techniques rely on the addition of a software layer called associated data is located in a directory that last as long as
driver[1] or capsuld7, 17]. For communication, the use of ~the model does not change.
an internal Data Definition Language (DDL) makes this 3 2 Fine grained data
translation process easier and supports heterogeneity
between tools (for example, the use of discrete program- > f I
ming language). ease both their storage and handling, FrameKit implements

A common DDL, implemented at the platform level, @ message based approach. Each element in the model (no-
provides an indirect but standardized communication des, edges, their relations and their labels) are stored using
between tools allowing an easy maintenance of the tool setelementary messages _ _

Adding or modifying a tool needs only to update one inter- ~ Messages describe elementary actions like «create a new
face between the tool and the platform. Tool maintenancenode numbered,maving class N», «associate nodgsn

is performed apart from the host platform. The tool evolu- N, by means of a connectoy ftom class C», «associate a
tion is hidden by the communication driver. textual label named A and having value X to nogeetc.

Tools need to store persistent data which may be sharedThis description technique is generic because it works re-
The environment has to provide a set of functions to mana-gardless any knowledge of the corresponding formalism.
ge such data. When the number of shared files grows, thehe name of classes are defined using strings and instances
use of a shared object database is the most interesting solf classes are named using integers.

2.3. Data management

Fine grained data are fine information components. To

tion [12]. However, this solution is heavy to implement and
we propose a simplified model that is suitable for building
a simple platform like FrameKit.

FrameKit provides a model for both large grained and 2 (O—p() b

fine grained data :
» Large grained data are information components lik
models, results or any other information managed by

tools (libraries, preferences etc.). FrameKit proposes
discrete types of large grained data and store them using

sample repository functions;
« Fine grained data are fine information componenés lik

element in the model (nodes, edges, their relations and
their labels). Fined grained elements dare stored using

elementary messages.
2.3.1. Large grained data

Large grained data are information components like mo-
dels, results or any other information managed by tools (li-
braries, preferences etc.)

FrameKit types large grained data using tool-defined

keys and behaviors. Tool-defined keys are keywords used

to find out an information in the FrameKit repository. The
platform uses this information but does not have any

FO(13:OrientedGraph)
VM(2,6,12)
CN(4:node,4)
CT(4:name,4,1:b)
CN(4:node,3)
CT(4:name,3,1:c)
CN(4:node,2)
CT(4:name,2,1:a)
CA(3:arc,5,2,4)
CA(3:arc,6,2,3)
CA(3:arc,7,3,4)
CT(9:valuation,7,1:2)

Figure 4 : OrientedGraph model and its corresponding
internal description.

O—2

Example 1: Let us consider a small model defined using the ele-

mentary formalism OrientedGraph (Figure 4).

Its definition is transported using simple megsathat carry

out syntactic aspects only. Instruction CN create a new ins-
tance of theefelenced class. CA instanciates a hew connec-
tor of the efeenced class. CT affects a value to labels on
arcs or nodes. Please note that object instances are named
using a unique object identifier guided by Macao (her
node labeled a has id 2Jool have to use this identifier to
access objects.

FO is used to identify the formalism and VM the version of

knowledge of the corresponding semantics. Three types of
this formalism. This information is used fdnedk by tools

data behavior correspond to three persistency approaches :
» model-associated data concern all the information asso- only. : . . .
ciated to a model. It is useful to properly hanctesion This mechanisms relies on ASCII information only,
management : whenraodel changes, associated results Which is a way to solve most portability problems as well
become obsolete and should be deleted and recompute@S exploitation of data by programs running on discrete tar-

if needed Such data are stored with the model descrip- g€t architectures without having to use XDR mechanisms.
tion in a cell Stamped by its last modification ddtee In faCt, n FrameK|t, all data are stored in ASCII format.

2.4. Environment « Tool kits contain information to install new tool and its
]]]) associated set of servicexdeutable files, initial data
The environment axis supports the following points : etc.);
« association of an Operating System «command line» to « Custom kits for local upgrade of any element (platform
a service (i.e. a yen compiler is associated to the-ser executable, toolxecutable etc.); it enable the construc-

vice compile and is invoked a given way); o tion of patches that fixes bugs of a previous distribution.
+ encapsulation of the Operating System functions lik Example 2: Figure5 proposes an instanciation of thefdifion
program iwvocation, program communication, unga- model we popose Let us imagine that a software enginee-
tion through the repository system etc.; ring ervironment is being developed in discrete placesh Suc
« definition of a diffusion model to facilitate installation a diffusion strategy enables : .
and evolution of the environment. - ?h g;fglrgurtgsdpgﬁgir&geo%f kits (delopes only upgrade kits
The first point is strongly related to the management of - 5'¢/isiom installation by clients (each client picks up what
services. It is the set of low-level mechanisms required to he needs).
support services as they appear to the user.
The second point is important to support tool integration 3. Implementing Tools to Customize
as well as tool implementation. It should be properly imple- FrameKit

mented in the APIs used to program in such an environ-

ment. Of course, a level of abstraction is necessary inorder3 1. Structure of a tool designed for FrameKit
to enforce portability. This is important for multi-platform

implementation and diffusion. To hide target architecture related mechanisms (and
For example, in FrameKit, we have implemented the fol- meet platform integration), all presentation, data, control
lowing functions : axis should be implemented and available for applications
* A high level communication model has been defined by means of Application Program Interfaces (API).
seweral implementation are proposed (some mayeha Thus, tool designed to run in the target environment take

restrictions). Then, any software component able to sup-benefits from these APIs. To meet this requirement, three

port one of these implementations should be easily inte-API corresponding to the three axis presented in
grated in FrameKit; Section2.1. The algorithmic part of the program should be

« A high level transmission of information by means of disconnected from the environment and relate with it only
messages is built on top of the communication model, by means of the APIs (Figure 6).

like the Macao widget-like mechanisms to manage inte-
raction with users;

« A repository offers storage services. This repository
hides)FiIe system related mechanisms (file naming sys-
tem...).

Development site Development site 2 Developme

Platforn& ormalism \ - Tool 1 _.
T wzy/
gl Se/ s

site

I Data managemen|

Figure 6 : Architecture of a tool designed to run in the software

archi 1 I':D'il archi_1 archi_2 . environme_nt (a priori iptegration)._
P ol Tool 2 All implementation in FrameKit follow this strategy and
Ia|| all_archi 00 even then «main» program of applications is a part of the
IV ~ I FrameKit libraries. This enable to always correctly initiali-
archi_2 \ J P ze all required resources to operate the three API’s and call
| - archi_1 the «tool main program» without having to change initiali-
< 4 _ zation directives over the FrameKit versions. Only a new
_ - binding with APIs libraries is required. This strategy is also
- used for administration tools (that uses standard API but are

FrameKit client .
Figure5: Example of the diffusion model. considered as a part of the platform) as well as platform

The third point is also important because it proposes aPrograms.
framework for the evolution of the environment. The diffu- i i P ;
sion approach we propose rely kifs. A kit is an elemen- 3.2. A posteriori integration in FrameKit
tary installation component that contains elements to be Tools to be a posteriori integrated in the type of environ-
installed by a specific administration tool. There should be ment should be disconnectable from their user interface.
four types of kits : _ Discrete techniques could be considered according to the
* Platform kits containecutable and data of thevén set of available information developers provide on their
ronment (administration tools, communication libraries software.
etc),)) o If source code isvailable, it is possible to adapt it to fi
+ Formalism kits contain all the definition of a new-for the API described in the previous section. Then, the result
malism in an installed environment; is similar to an a priori integration. Mever it should be

awided for tools for which implementation is not control- provide him with a more convivial answer). There are two
led by the integration team : the integration work has to be ways to invoke it :

done when a new version is released. platform mode]]
- - tool_example <framekit_config_param> [-verbose]
| The Generic environment | standalone mode
v A v A tool_example -s [-verbose] obj_id1 obj_id2
driver tool ph :
. e Graph’s tool palette
process that d%‘lver part (SP?ClﬁC @ E
drives the tool implementation) celoot ample.root.] —= 0 &
tool @ F Eordon ASEET project
(only an executables tool libraries example v1.0 —
files are provided) this iz am exemyple
a b
, . . . a dp—— b
Figure 7 : Possible architectures of a posteriori
integrated tools. | S
If only executable file is available (plus information M da
about exchange formats) is possible to dve the tool by model ' ™
means of a specifically implemented process (Figlag window T }'
The environment only knows about this process which ar- £ ed d —
chitecture is the one definedhigure6. The driver and the
tool communicates by means of any mechanism encapsula- Lo] | L7 i[>~
ted in the environment (see environment axis). Figure 8 : The graph formalism and a model.

If tool libraries are provided (plus description of data Two additional parameters are required in standalone
structure), they can be directly linked to a driver to make a mode because the tool runs without user interface. These
unique executable fil@Figure 7.b) parameters supply the application with Macao object iden-

In both cases, the driver translate information in the re- tifiers.

(rqnu;gandsf&[rtr;]aet Sggrtmg;fgggéate back results for display by3_3_2_ The generic main provided by FrameKit
. As mentioned in SectioB.1. applications’ main pro-
3.3. Application on a toy example gram is a part of the FrameKit libraries. It is a generic Ada

So, for both tool construction or tool integration, the im- Procedure for which the following generic parameters have

plementation work is reduced to write an application using © P€ provided: _
the standard FrameKit API. We propose to detail the Ada * TRACE_FILE NAMEs a string used to generate the trace
based way to implement a new tool in FrameKit. file name (if traces are displayed in the application),
We first describe the tool to be implemented and then *!S_STANDALONE_SUPPORTHB a boolean that indicates
describe its implementation. Source code fully provided, if the tool can be executed in standalone mode,
separated by explanation and comments. Some execution * MAIN_ALGORITHMs a reference to the main procedure
screen shots are provided to illustrate how the FrameKit en- of the application, _ o
vironment behaves according to the corresponding stimula- ¢ TOOL_NAMEs the tool name in the FrameKit environ-

tions. ment,
. » TOOL_VERSIONS the tool version in the FrameKit envi-
3.3.1. Presentation of the example ronment,
Let us consider the Graph formalism. This formalism * TOOL_COPYRIGHTS a tool copyright automatically dis-

describe graphs and is composed with : played at launch,

* a "node" class, KIT_NAMEIs the name of the kit in which the tool will be

- a "edge" connector, integrated (used in the distribution procedure),

e a "arc" connector. * ON_LINE_HELPis a one line help displayed when the

both connectors can relate nodes between them. Two la- {00! crashes (i.e. a non FrameKit exception is raised),
bels are associated to these formalism objects (nodes, edges’, FK_INTERRUPTION_FROM_IU_INIT_HANDLER SYSTEM
and arcs): "name" and "value". Five global labels is a reference to the procedure that initialize the inter-
("author(s)", "version", "information", "project” and "title") ruption handler manager, _
provide information about the modé&ligure8 shows ha * FK_INTERRUPTION_FROM_IU_HANDLER a reference to
Graphs are managed by the Macao User Interface : nodes the procedure to invoke when an interruption is provo-
are represented by a circle, edges appear as a line and arcsked from Macao.
look like an arrev. The formalism description takes about A default value is associated to the three last parameters.
fifteen minutes, which is definitely shorter than designing a They are respectively : the "no help available" string and
new graphical interface. two procedures that do nothing (it is then assumed that the
The tool we want to build has to check if there is a con- service will be declared as non-interruptible).
nector between two nodes designated by the user. The tool
has a verbose option that ask for the user name (in order to

3.3.3. Implementation of interruption handlers VERBOSE_MODE : BOOLEAN := FALSE;
CRT_ARG : POSITIVE := 1, -- counting args

Let us now define a package for managing execution in- SELECTED_NODE_1: FK_OBJECT_IDENTIFIER;

; At ; SELECTED_NODE_2: FK_OBJECT_IDENTIFIER;
terruptions. The package specification is provided herafter NAME - VSTRING = TO. VSTRING (user’):

with FK_STRINGS, FK_API_DATA_MANAGEMENT; MODEL : FK MODEL DESCRIPTION:

use FK_STRINGS, FK_API_DATA_ _MANAGEMENT; PAGE : FK_PAGE_DESCRIPTION; '

Pac"a%i TooﬁﬁEthA'\f/.'PLE—HA’l\"PLEtF?S red b th An automatic trace system can be enabled and disabled
- intgr%%et handlar. o possibie actions supporied by the automatically using respectivelyk ENABLE _TRACEand
type HANDLER_OPERATIONSS FK_DISABLE._TRACEpI’OCGdUI’eS. There are numerous trace
(DEFAULT, --nothing classes defined for the platform and a set of trace classes
DISPLAY._IV!E‘SSAhGE)il --dis éay,of amessage available for tool design (in this examp&K_TRACE_MAIN
- New primitive that allows a tool designer to change the is used). TheFK_PUT_IN_TRACEprocedure is the one that
-- action to perform at interrupt. ispl F . | .
procedure = SET_HANDLER_TREATMENT dlSp ay.traces_ or a given trace class. T!’aces are strings
(WHAT_TO_DO: in HANDLER_OPERATIONS); written into a file automatically created at first need, accor-
- Prugltwes rSeI‘E]'ll'nrl—elCAl ﬁfﬁrﬁtégumons are supported ding to the information provided in tH&ACE_FILE_NAME
procedure | ; ; ; ;
procedure INTERRUPT HANDLER generic main parameter (see Section 3.3.2.). .
(TOOL_NAME : in STRING); Two procedures allow to access command line argument

end TOOL_EXAMPLE_HANDLER; transparently (e.g. without having to consider that platform

The typeHANDLER_OPERATIONS useful when discrete parameters may be inserted before tool parameters)
interruption treatments should be handled by the tool accor-FK_ARG_COUN@&nd FK_ARG_VALURhat behaves like well
ding to the current execution phase (for example, when theknown Unixargc andargy .
same program provides several services). The begin - for TOOL_EXAMPLE_BODY
SET_HANDLERprocedure set treatment to default and FK_ENABLE_TRACE (KFK_TRACE_MAIN);

i for | in 0. FK_ ARG_COUNT-1 loop
SET_HANDLER_TREATMENMmot required) allows to change FK_PUT IN_ TRACE (KFK_TRACE.MAIN.

the current treatment. We provide below the body associa- S => “argument number” &
ted toINTERRUPT_HANDLER INTEGER'IMAGE (I) & ASCIILHT &
procedure INTERRUPT_HANDLER "="" & FK_ARG_VALUE (I) &""");
(TOOL_NAME : in STRING) is end loop ;) _
begin -- The environment is now correctly set and the exception
case REMIND TREATMENT TO DG -- handler is operational with a default action. Let us check
when DEFAULT => - —~ parameters

if FK_ARG_COUNT > CRT_ARGthen
if FK_ARG_VALUE (CRT_ARG) = "-verbose" then
VERBOSE_MODE := TRUE;

null ; -- we do nothing;
when DISPLAY_MESSAGE =>
FK_PUT_MSG (MESSAGE => "Canceled",

= . CRT_ARG :=CRT_ARG +1;

end Cas'e'”.STOR'C =>TRUE); elsif FK_IS_IN_FRAME_KIT then

end INTERRUPT HANDLER: -- in FrameKit, "-verbose" is the only parameter
— ' . FK_PUT_ERROR (MESSAGE => """

In that procedureREMIND_TREATMENT_TO_DiS a glo- F—KBAF;G_VELU(E (C%ST_ﬁRG; & &
bal variable of packageOOL_EXAMPLE_HANDLHERat select :'bad parameter (FrameKit mode)",
the current treatment to process INJERRUPT_HANDLER EMPHtASI_S =T FAL%IIE);
The primitive FK_PUT_MSGs a part of the FrameKit API - fosignala probem .
and displays a message either on the current terminal (stan- end r,?'se FK_PROCESSED_WITH_PROBLEM:
dalone mode) or in the Macao historic window. endif ;

- The tool we design requires to work on designated ob-
3.3.4. Programming the taol jects. These objects are provided by the Macao user Inter-
We now illustrate, using the implementation of the tool, face, we have thus to consider two discrete ways to extract
the use of the API primitives to manipulate the FrameKit them : using the standard API when the tool runs under Fra-
environment. Basically, any tool has to use the three majormeKit and via the command line when the tool runs in stan-
standard API :FK_AP|_DATA_MANAGEMENhandles the = dalone mode (this function cannot be emulated).
Data Management axissK_API_USER_INTERFACE that The FK_IS MODE_STANDALONHKunction allows us to
handles supports the User Interface axis and know in which mode we are running. Then, objects identi-
FK_API_ENVIRONMENT_COMMUNICATIGNpports the Envi- fiers are converted from the values extracted in the com-
ronment axis (as they are both presented in Se2tioh mand-line. If less than two parameters are provided, then an
There are also numerous available standard tools availableerror is displayed using ti&_PUT_ERROR_MESSABHEMI-
(multi-language message management, lists, tree, etc.). tive and the exceptioFK_PROCESSED_WITH_PROBLEM

with FK_API_DATA_MANAGEMENT, raised. This exception is a communication standard in Fra-
FK_API_ENVIRONMENT_COMMUNICATION, meKit to provokes a premature exit. This exception is cau-
R e A ERANTERE ACE, ght at the main level and information is provided to the
CHAINES VARIABLES: ’ environment to signal that execution was aborted.

use FK_API_DATA MANAGEMENT, -- Get designated objects (on the command line in standalone,
FK_API_ENVIRONMENT_COMMUNICATION, -- using FrameKit otherwise)
FK_API_USER_INTERFACE, if FK_IS_MODE_STANDALONEthen
TOOL_EXAMPLE_HANDLER, -- we run in standalone mode
CHAINES_VARIABLES; if FK_ARG_COUNT >= CRT_ARG +1 then

procedure TOOL_EXAMPLE_BODYs begin

-- Local variables to be used in the example SIE:IREg;E?,\Tg O-l-DoE—Ol EijECT D

(FK_ARG_VALUE (CRT_ARG));
SELECTED_NODE_2 :=
FK_STRING_TO_ OBJECT_ID
(FK_ARG_VALUE (CRT_ARG + 1));
exception
when CONSTRAINT_ERROR =>
FK_PUT_ERROR (MESSAGE =>
"Big argument problem",
EMPHASIS => FALSE);
raise FK_PROCESSED_WITH_PROBLEM;
end;
else
-- two nodes should be identified
FK_PUT_ERROR (MESSAGE =>
"Two objects required”,
EMPHASIS => FALSE);
raise FK_PROCESSED_ WITH_PROBLEM;
endif ;
else

In FrameKit mode, it is simpler because designated ob-
the
FK_GET_A DESIGNATED_OBJECPrimitive. Tests are also
simpler because Macao forbid the service execution as lon

ject identifiers are directly provided using

as no object is designated. We thus only have to check tha
at least two objects have been transmitted (information pro-
vided byFK_GET_NUMBER_OF DESIGNATED_OBJELTS

- runmng in standalone mode, Macao does not invoke
-- the service if no object is selected
if FK_GET_NUMBER_OF_DESIGNATED_OBJECTS <2
then
FK_PUT_ERROR (MESSAGE =>
"Two objects requires”,
EMPHASIS => FALSE);
raise FK_PROCESSED_WITH_PROBLEM;
elsif FK_GET_NUMBER_OF_DESIGNATED_OBJECTS
>2 then
FK_PUT_WARNING (MESSAGE =>
"extra objets are discarded",
EMPHASIS => FALSE);

end if
SELECTED_NODE_1 :=
FK_GET_A DESIGNATED OBJECT (1);

SELECTED_NODE_2 :=
Fé(TGET_A_DESIGNATED_OBJECT @);

endif ;

At that stage, the we can work on the model. Let us no-
tice that interruption is checked periodically to reduce the
hypothesises on the compiler implementation (it causes an
I/0O in the FrameKit software bus). It is also a way to set
when interruptions can be supported by the tool. Here, we
consider that the tool enter in a phase for which the
display_message treatment is associated to interruptions.

-- check for interruption signal

FK_CHECK_FOR_USER_INTERRUPTION;
-- let us consider that we provide a message when execution
-- is canceled

SET_HANDLER_TREATMENT

(WHAT_TO_DO => DISPLAY_MESSAGE);

The verbose mode introduced in our example provides a
good illustration of wuser interaction. The primitive
FK_GET_A_LINE ask for a one line text via the User Interfa-
ce (a specific dialog window is created to input the line).
Other primitives allow to handle multi-line texts, item se-
lection within a list and standard dialog boxes. All I/O in
FrameKit are handled by the User interface. Tools activate
these functions using vidget like messages. In standalone
mode, an ASCII emulation is provided.

-- preparation of verbose mode
if VERBOSE_MODEhen
declare
CONTINUE : BOOLEAN;
begin
-- Get the user name

FK_GET_A_LINE (MSG =>
"Please give me your name",
RESULT => NAME,
NO_CANCEL => CONTINUE,
TITLE => "Demand");
ifnot CONTINUE then
-- user has clicked on CANCEL. We retaure the default
-- value
NAME := NAME;
endif ;
end;

endif ;

Models are stored in FrameKit by means of elementary
messages, as described in SecBidh2. These messages
are handled via an API in order to avoid a direct manipula-
tion of these messages. Acquisition of the description is
performed via théK_ACQUIRE_MODEL_FROM_DIgKimiti- .
ve. Then , the user may access separately to pages (in this
example, there is only one root page because the formalism
is flat). When a page description is loaded, access to objects
is performed either one by one (via their position) or using

heir internal identifier.

When an object description is extracted, three primitives

allow to get information :

* FK_GET_ENTITY_INFORMATIONprovides all information
on the object : its class, its type (is it a node or a connec-
tor) and its identifier,

e FK_GET_ARC END$ dedicated to connectors descrip-
tion and provides the Macao identifier for the two con-
nected arcs,

e FK_GET_ATTRIBUTE_VALUHNot invoked in our &am-
ple) provides the value associated to a label as a string
list.

In the source code below, we check if designated object

are of the appropriate class (the user has to select nodes).

-- acquire model (flat = one page only)
FK_ACQUIRE_MODEL_FROM_DISK (MODEL);
FK_GET_ROOT_PAGE (MODEL, PAGE);

-- acquire object description and check objects validity
declare

DSC_OBJ :FK_LST _CAMI_MSG,;

NODE_ CLASS : VSTRING;

ENT_TYP :FK_OBJECT_CLASSIFICATION;
ENT_ID FK OBJECT_IDENTIFIER;
begin

DSC_OBJ := FK_GET_OBJ_DESC
(PAGE_DESC => PAGE,
ID_OBJ => SELECTED_NODE_1);
FK_GET_ENTITY_INFORMATION
(FULL_DSC =>DSC_O0OBJ,
ENTITY_CLASS => NODE CLASS,
ENTITY_TYP =>ENT_TYP,
ENTITY_ID => ENT_ID);
if ENT_TYP /= KFK_NODE and then
TO_STRING (NODE_CLASS) /= "node"
FK_PUT_ERROR (MESSAGE =>
"First object is not a node",
EMPHASIS => FALSE);
raise FK_PROCESSED_WITH_PROBLEM;
endif ;
DSC_OBJ := FK_GET_OBJ_DESC
(PAGE_DESC => PAGE,
ID_OBJ => SELECTED_NODE_2);
FK_GET_ENTITY_INFORMATION
‘(FULL_DSC => DSC_OBJ,
ENTITY_CLASS => NODE_CLASS,
ENTITY_TYP => ENT_TYP,
ENTITY_ID => ENT_ID);
if ENT_TYP /= KFK_NODE and then
TO_STRING (NODE_CLASS) /= "node"
FK_PUT_ERROR (MESSAGE =>
"Second object is not a node",
EMPHASIS => FALSE);

then

then

raise FK_PROCESSED_ WITH_PROBLEM,;
endif ;
end;

In the source code below, we parse all connectors in the

description and check their ends. Function
FK_GET_NB_CONNECTORsgurns the number of connectors
located in a page (there is a similar function for nodes). Pri-
mitive FK_GET_CONNECTOR_N_Ds8gtract the N connec-
tor description.

Note that primitiveFK_PUT_MSQused when connector

TOOL_NAME => "tool_example",
TOOL_VERSION =>"1.0",
TOOL_COPYRIGHT => "F.Kordon & J-L.Mounier",
KIT_NAME =>"EX",
ON_LINE_HELP => "tool_example...[-verbose]",
FK_INTERRUPTION_FROM_IU_INIT_HANDLER_SYSTEM
=> SET_HANDLER,
FK_INTERRUPTION_FROM_IU_HANDLER
=> INTERRUPT_HANDLER);

3.3.6. Declaration of the new service

search has been sucessful displays a message associated toThe portion of service menu related to this example is

the object. In fact, objects will be designated in the User In-
terface when the message appear.

-- Searching for the arc that relates these two nodes

declare

ARCS : NATURAL :=
FK_GET_NB_CONNECTORS (PAGE);

DSC_ARC :FK_LST_CAMI_MSG;

STARTN, ENDN : FK_OBJECT_IDENTIFIER;

ARC_CLASS :VSTRING;

ENT_TYP :FK_OBJECT_CLASSIFICATION;

ARC_ID :FK_OBJECT_IDENTIFIER;
FOUND : BOOLEAN := FALSE;
begin

while ARCS >0 loop
DSC_ARC := FK_GET_CONNECTOR_N_DSC
(PAGE_DESC => PAGE, POS => ARCS);
FK_GET ARC_ENDS (DSC_ARC, STARTN, ENDN);
if (STARTN = SELECTED_NODE_1 and
ENDN = SELECTED_NODE_2) or
(ENDN = SELECTED_NODE_1 and
STARTN = SELECTED_NODE_2) then
-- We found it, display of results
FK_GET_ENTITY_INFORMATION
(FULL_DSC => DSC_ARC,
ENTITY_CLASS =>ARC_CLASS,
ENTITY_TYP => ENT_TYP,
ENTITY_ID => ARC_ID);
FK_PUT_MSG (MESSAGE => "Message for "&
TO_STRING (NAME) &
": this arc (type " &
TO_STRING (ARC_CLASS) &)
relates designated objects",
NUM_OBJ => ARC_ID);
FOUND := TRUE;
exit -- useless to visit other nodes
endif ;
ARCS := ARCS - 1;
FK_CHECK_FOR_USER_INTERRUPTION;
end loop ;
ifnot FOUND then
-- No arc have been found
FK_PUT_MSG (MESSAGE =>
"Message for "& TO_STRING (NAME) &
": sorry, no arc between objects",
EMPHASIS => FALSE,
RESULT => TRUE,
HISTORIC => FALSE);
end if
end;
FK_DISPOSE_MODEL (MODEL);
end TOOL_EXAMPLE_BODY;

i

3.3.5. Configuration of the generic main

We thus instanciate the FrameKit generic main in order
to get an executable program :

with TOOL_EXAMPLE_BODY,
FRAME_KIT_GENERIC_MAIN,
TOOL_EXAMPLE HANDLER;

use TOOL_EXAMPLE_HANDLER;

procedure TOOL_EXAMPLE s new
FRAME_KIT_GENERIC_MAIN
(TRACE_FILE_NAME => "Tool_example",
IS_STANDALONE_SUPPORTED => TRUE,
MAIN_ALGORITHM => TOOL_EXAMPLE_BODY,

shown inFigure9. It is composed with a terminal tovivke

the tool («... Recution») and a submenu for optioAdl.
items in an option list are check marks that can be set (or re-
set)

Exécution leaf

e ke AL

Check mark (marked)

I ers

ToolExample »

..Execution
(LT v Yerbose mode |

Option submenu
Figure 9 : Appearance of the service submenu.

The Service is declared as ToolExample. ToolExample
is a hierarchical entry composed of one terminal item and
an option list. The terminal entry associates the executable
file, its parameter, its external name (language dependent)
and its internal name (unique identifier for the menu).

To enable multi-architecture management as well as an
easy installation procedure, service environment variables
are introduced and represent absolute paths dynamically
computed at invocation time. HerEK_TOOLS_ROOTs
computed using : 1) the FrameKit repository root (set du-
ring the installation procedure), 2) the related formalism
(tools are sorted by formalisms), 3) the execution architec-
ture. The path indicated after this variable reference is a re-
lative path.

In the description below, access permission are set to the
useme the group lisprivilege Apparently, the tool is only
compiled on Sun/Solaris and PC/Linux architectures (no
other architecture are set). Access permission can be inclu-
sive (authorized users/groups/architectures are listed) or
exclusive (unauthorized users/groups/architectures are lis-
ted).

Sometimes, users have to respect a procedure. For exam-
ple, they have to compile first and then, if no error is repor-
ted, link can be performed. Such a sequence is handled in
FrameKit by means of service preconditions. Three tags are
associated to each internal service identification :

* LAUCHED_Ofhat returngRUEIf the associated program
has run correctly,

e LAUNCHED PRhat returnsTRUEIf the associated pro-
gram has outlined a problem,

* NEVER_LAUNCHHDat returngRUEIf the tool was neer
launched.

Service preconditions can also be set according to values
of session variables. Session variables are strings set or re-
set by tools. They allow a more refined mechanism in the
management of available and unavailable menu entries
(service as well as options). In our example, the ToolExam-
ple service menu is unreachable until a service internally
namedGRAPH_CHECKER launched correctly (i.e. the tool
signal that its execution is correct).

The check mark «verbose mode» is associated to an
identifier (VERBOSEIn the item description. This idenéfi

Service submenu

represents a variable that is either valued by "-verbose" (acthe eecution information sent by the tool. Results are dis-
cording to the definition) or empty. This variable can be re- played in a specific window (bottom front) associated to a
ferenced in the command line associated to a service in theset of objects (here, the arc relating the two designated no-
EXECUTABLEEOommand. The default value of the parameter des) that contain a message. This window allows to go from

(on or off) is provided in the execution (here, it is on). result component to result component.
SERVICES_FILE i Execution
BEGIN [0 =graph . e -
SERVICE (NON_TERMINAL, 'ToolExample') — Launching service " Execution ”.
ACCESS INCLUSIVE F Eorlon A8
USER ('me’)
GROUP (‘privilege’) e;';m_rle“'n
ARCHITECTURE ('SUN_SOLARIS") this I£ an exc

ARCHITECTURE ('PC_LINUX) -
END_ACCESS * "]’ -
BEGIN_PRECONDITION

LAUNCHED_OK (GRAPH_CHECKER)

Updating menu firom service conditions,

3.3.7. An idea about service execution

END_PRECONDITION .
SERVICE (TERMINAL, "Execution’) Please ghve me your name
ACCESS INCLUSIVE c [|
ALL_USERS
END_ACCESS .)
BEGIN_PRECONDITION —
TRUE
END_PRECONDITION
EXECUTABLE ($(FK_TOOLS_ROOT)'EX/tool_example', (_Cancel | [ok |
'$VERBOSE', L)
PROTO%OO"S"("S—/’\\'FAEX'ED—P'PEY TOOLEX) Figure 10 : Execution, dialog. .
QUESTION_INFO (STOP_ALLOWED, HISTORIC, From the programmer’s side, a result component is ge-
< INF%_OBJECT, NO_FORMALISM) nerated by primities like FK_PUT_MSQ®r FK_PUT_ERROR
END_SERVICE . When result components are related to objects (or objects
ASCE(?EVS'(S:E”\%SLL—SCIUSCK—MARKS' Options’) label) the corresponding element is automatically outlined
ALL_USERS and presented to the user. When no object is associated, the
END_ACCESS text is displayed in the historic window.
BF%%E_PRECOND'T'ON It is also possible for a tool to generate new models or to
END_PRECONDITION modify the input model.
SERVICE (CHECK_MARK, 'Verbose mode') pr—
ACCESS INCLUSIVE [0 =graph_example.root.] = HE B
é&‘é—xggggs @ F.Korion ASEET project E
T mnlaard 0
I@I%%IE_PRECONDITION =——— graph_example.historic == FI B
END_PRECONDITION , , a Launching service "Execution ™. ||
CHECK_MARK (ON, VERBOSE '-verbose) tonl_exarmple (1.0) by F Kordon, LIPS (1998) (Framekit AF
E[ESI %_Sg\ﬁ\élgE Mezzage for Me: thiz are (type edge) relates designated ob,
Lrizk zpace consumed for this model @ 27 Blocks
END SERVICE ar Execution duration for service @ 9z
END - Mo problern has been autlined by the tool,
L
v | ed

Let us assume that, after all the required stuff (connec-
tion, execution of serviceGRAPH_CHECKERLtC.), service HIE]
TOOLEXhas been aatéted in verbose mode. Figut8 pro-
vides a partial screen shot when the query associated t0 thig 1ezzage for e this sre chupe sdge) retates
option Is executed. designated objects

The trace window (top right) displays state messages —
provided by FrameKit and by the tool (is any). The service,
as declared in the previous section supports interruption andiK -
thus, it contains a STOP button. At least one object is selec- Figure 11 : Execution, display of results.
ted (node «a» is apparently one of them) in the model win-)
dow (middle back) that is a necessary condition tovatti 4. Conclusion
the service (its declaration mentions that complementary o o
objects are required). The input windows (bottom right) is _ We have presented in this paper the principles of Frame-
the one created whefk GET A LINE is executed We as- Kit, a software platform dedicated to the rapid prototyping
sume that the user typed «Me» in the dialog box. He canof CASE environments. FrameKit is implemented in Ada
then either click on cancel (a default value is assumed byand provides API for an easy implementation of new tools.
the tool as programmed) or OK («Me» is then supplied to We have illustrates the principle of tool implementation
the tool). and declaration in FrameKit by detailing a small example.

Figurellis a partial screen shot when the service-is fi ~ The work presented in this paper is currently implemen-
nished We display the historic window (left) that contains ted and available on the Internet athttp:/iww-

Message

src.lip6.fr/framekit> . It has been used to quickly pro-

totype numerous CASE environment (about 25 tools distri-
buted over 6 formalisms). The most important one is CPN-

AMI, a Petri net based environment dedicated to formal

specification and validation of parallel systems also availa-

ble on the Internet athttp:/Amww-src.lip6.fricpn-
ami>. It is a collection of tools associated to three forma-

evaluate the interest of the tool. Extra work may be required
to exploit enhanced functions. All imported tools (PROD,
ERVunfold, GreatSPN and dot) where integrated using the
technique illustrated iRigure 7.a.

For most tools, we only had to perform a small adapta-
tion (by means of a shell script that centralize the emulation
of inline invocations) and the declaration to FrameKit (des-

lisms (Petri Nets and two high level description : OF-Class cription of the Macao menu associated to the tool).

and H-COSTAM[3]).
We have experimented FrameKit for more than two

~We use FrameKit to build demonstrators in indus-
trial contracts. lis also used for two years in a master pro-

years. The fastest tool integration is about ten minutes (it isgram to illustrate concepts of middleware components. It is
reduced to a tool declaration) and one the longest took 11Qused in a student project to practice their design and imple-

hours. Average tool integration time is about fifteen hours
for imported tools and less than half an hour for tools im-
plemented using FrameKit API.

Integration
% 58_ time (hours)
= Tool S| € S
g name % ,% .% Remarks
S °ela |
g 5]
s | 8
GreatSPN || |6 0.2 |Intgration from e&ecutable feg
(v1.6) only, performed using Unix shell
. language.

CPNsimulatof B [110 [1.5 |Highly interactie tool. Major rei-
sion due to changes in the manage-
ment of interaction in FrameKit.

BooleanCon-D” [0.5 [0.2 |[Intgrated using Unix shell lan-

dition guage.

CPNuverifier D |1 0.2 |Combination of three tools «glued»
in a Unix shell script.

CPNunfolder| D [0.5 | 0.2 | Ingrated using Unix shell lan-

2 . guage.

Z |CPNinvariant| D |2 0.2 |Intgrated after a recompilatipn
'g using C APIs.

a [PROD I 24 0.5 |Povefull but complex toolAdap

(v3.2) ted using a specific diér imple
mented using Ada APlIs.

EVRunfold |I |4 0.2 |Intgration from e&ecutable fes
only, performed using Unix shell
language.

PetriBDD D4 0.2 |Intgrated using Unix shell lan-
guage.

PrettyGraph |[I |3 0.2 |Adapted using a specific de

(dot) implemented using Ada APls.

LinearCha- |[D |/ 0.2 |Intgrated as is (it was implemen-

racterization ted using C APIs)

OFC-verifier |[D |/ 0.2 | Intgrated as is (it was implemen-

) ted using C APIs)

8 PN-loader D |/ 0.2 | Intgrated as is (it was implemen-

o . ted using Ada APIs)

O |[PROD-ofc o 0.2 [Small adaptation of the irgeation
for Petri nets.

=S |HCM-verifier |D |/ 0.2 |Intgrated as is (it was implemen-

Z ted using Ada APIs)

8 HCM2PN D |/ 0.2 |Intgrated as is (it was implemen-

O |(prototype) ted using Ada APIs)

T

Table 1: Summary of tool integration to build CPN-AMI 2

| for integrated toold) for Developped tools.

Adapted from AMI, our previous platform.

Reuslt of a cooperation with two other universities and thus not designed to
run in FrameKit.

d This integration inheritates from the one done for Petri nets.

Tablel summarizes the amount of time spent in the in-
tegration process to build CPN-AMI 2 (a full description of
these tools may be found [b4]). This corresponds to the
time required to get a first operational version, in order to

oo

mentation.
5.

[1] J.M. Bernard & J.L. Mounier, "Conception et Mise en Oeuvre d'un
environnement systéeme pour la modélisation, I'analyse et la réalisation de
systemes informatiques”, Thése de doctorat de Jddsité Pierre &
Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, Décembre 1990

[2] J.Buxton, "DoD requirements for Ada programming supporiren
ments, STONEMAN", Dod High Order Languad®&orking Group,
February 1980

[3] A.Diagne & EKordon, "A Multi Formalisms Prototypingpproach

from Formal Description to Implementation of Distributed Systems", in
proceedings of the 7th "Internationgbrkshop on Rapid System Prototy-
ping", N.Kanopoulos Ed, IEEE comp Soc Press, Greece, June 1996

[4] M.Dowson, "Integrated project support with ISTAR", IEEE
software, November 1987

[5] ECMA, "A Reference Model for Framerks of Stoftware Enginee-
rings Environments", ECMA report number TR/55 (version 3), NIST
Report, April 1993

[6] C.Fernstrom & L.Ohlsson, “The EShsion of a Software &ctory”,
Proceedings of the International Conference on SoftwaxelBment
Environments & Factories, Berlin, May 1989

[7]1 B.D.Fromme, "HP Encapsulator : bridging the generation gap", HP
Journal, June 1990

[8] C.Gerety "HP softbench : a new generation of softwareetispe-
ment tools", HP Journal, June 1990

[9] C. Hylands, E. Lee & H. Reekie, "TH&cho User Interface Sys-
tem", The 5th Annual Tcl/TkVorkshop '97, Boston, Massachusetts, pp
149-157, July 14-17, 1997

[10] F. Kordon & J-L. Mounier, "FrameKit and the prototyping of CASE
ervironments”, in proceedings 8th Internatiowérkshop on Rapid Sys-
tem Prototyping, N.Kanopoulos Ed, pp 91-97, IEEE comp Soc Press,
USA, June 1997

[11] F.Kordon & J-L. Mounier, "Implementation of Genericity for custo-
mizable CASE environments", to appear in proceedings of CARI'98,
Dakar, Senegal, October 1998

[12] J.Lonchamp, K.Benali, J.C.Derniame & C.GodarpWards assis-

ted software engineering environments”, Information and Softhech-
nology, vol 33, n° 8, October 1991

[13] MARS-Team, "Macao Home page",
macao>

[14] MARS-Team, "The CPN-AMI environment (version 2.2.1)", <http:/
ww-src.lip6.fr/cpn-ami>

[15] T. Mowbray & R. Zahavu, "The Essential CORBA: Systems Inte-
gration Using Distributed Objects", John Wiley & Sons, 1995

[16] PtolemyTeam, "The Ptolemy Kernel-- Supporting Heterogeneous
Design”, RASSP Digest Nesletter vol. 2, no. 1, pp. 14-17, 1st Quarter
April, 1995

[17] D.Schefstrém, "System Delopment Environments : Contemporary
Concepts", inTool Integration : environment and framerk, Edited by
D.Schefstrom & G. van den Broek, John Wiley & Sons, 1993

[18] A.Wasserman, “Tool Integration in Software Engineeringifen-
ments”, LNCS 467 : "Software Engineerings Environemnts", pp 138-150,
1990

References

<http://www-src.lip6.fr/

