
HAL Id: hal-02547777
https://hal.science/hal-02547777v1

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building Telecommunications Services as Qualitative
Multi-Agent Systems: the ODAC Project

Alioune Diagne, Marie-Pierre Gervais

To cite this version:
Alioune Diagne, Marie-Pierre Gervais. Building Telecommunications Services as Qualitative Multi-
Agent Systems: the ODAC Project. [Research Report] lip6.1998.033, LIP6. 1998. �hal-02547777�

https://hal.science/hal-02547777v1
https://hal.archives-ouvertes.fr

This work is supported in part by grant # TL97169 from CNRS (French National Center for Scientific Research)

This paper will be published in the proceedings of Globecom’98 - November 1998

B

UILDING

TELECOMMUNICATIONS

 S

ERVICES

AS

Q

UALITATIVE

 M

ULTI

-A

GENT

 S

YSTEMS

:

THE

 ODAC P

ROJECT

Alioune DIAGNE(*) and Marie-Pierre GERVAIS(**)
Laboratoire d’Informatique de Paris 6 (LIP6)

Université Paris 6(*) - IUT Paris 5(**)
4, place Jussieu - F75252 Paris Cedex 05

{Alioune.Diagne, Marie-Pierre.Gervais}@lip6.fr

Abstract

The ODAC project aims to define methods and tools
based on a formal approach so that a designer of
telecommunications services can specify and implement
a new service in the form of a Multi-Agent System
(MAS). Our goal is to supplement the current approaches
of the telecommunications industry by the use of the
agent paradigm enhanced with formal methods.
In this paper, we focus on the works currently achieved in
the project. These are related firstly to a service-based
architecture of an agent-based system and secondly to our
proposal for an Agent-Oriented Computational language
(AOC language). Both are based on the concepts of the
Reference Model of Open Distributed Processing
standard (RM-ODP).

1. Introduction

The market of the telecommunications services is in
full expansion and requires from the stakeholders an
increased competitiveness, in particular due to the
deregulation. The telecommunications services
providers must thus be able to react rapidly to offer
services corresponding to the demand of the various
consumers. This requirement can be reached only
by the control of efficient tools that help the
introduction of new services.
This problem of the telecommunications services
creation, or Service Engineering, is the subject of
many projects in the telecommunications
community (e.g., ITU-T, ETSI, TINA-C, RACE,
ACTS or EURESCOM). The common approach
adopted is first the definition of an architecture and
secondly the definition of a methodological
framework with its support [TRI 95]. Thus,
Intelligent Network and TINA architectures were
defined, respectively by ITU-T and TINA-C. The
methodological aspect is described by the Service
Creation Evironment (SCE) concept [SCORE].
This enables unifying the process of service creation

by defining a role model, a service lifecycle model
and a set of methods and tools that support the
activities of all the roles.
Concurrent with these studies, the development of
applications in the Internet shows a new way for the
distributed applications design based on the agent
paradigm. This presents adaptation and interaction
capabilities that provide the flexibility required for
the service creation process. The electronic trade,
the search for information, the network
management or co-operative work are well-known
examples of applications developed with the agent
technology. The design step of such applications
remains however very empirical. Thus many
research works relate to the aspects of methodology,
modeling and formalization [WOO 95]. An
integration of the key concepts of agent technology
appeared essential that aims to produce
specifications intended for industry. Therefore the

FIPA

1

 (Foundation for Intelligent Physical Agents)
objective is to promote the development and the
specification of agent technology. In the same way,

the OMG

2

 (Object Management Group) extended
the scope of its work initially based on the object
paradigm to integrate mobile agent technology in
order to produce specifications.
Today, the search for a convergence between the
works of the telecommunications and agent
communities begins to become apparent. The
difficulty is first to integrate approaches and
concepts from distinct areas such as software
engineering for modeling and formal proof aspects,
artificial intelligence for the agent aspects and
distributed object computing for the architectural

1. FIPA specifications are available at www.cselt.it/fipa
2. OMG specifications are available at www.omg.org

aspects. Secondly, results of this integration must be
applied to the telecommunications area by taking
into account its constraints.
LIP6 works on this integration of concepts through
its involvement in several national projects such as
CARISMA with CNET (France Telecom Research

Center) [GER 97a] and ODAC

1

 with CNRS
(French National Center for Scientific Research).
This paper presents the ODAC project. In Section 2,
we draw the scope of this project. Section 3 and 4
focus on the works currently achieved in the project,
namely the definition of a service-based
architecture of an agent-based system and the
proposal for an Agent-Oriented Computational
language (AOC language). The architecture is
defined according to an adaptation of the ODP
viewpoints to the agent paradigm. The language is a
formalism compliant to the ODP computational
language concepts. It enables a designer to describe
the specification of a telecommunications service
during the design stage and it supports the formal
validation of this specification. Section 5 provides
some concluding remarks.

2. The ODAC Project

The objective of the ODAC project is to define
methods and tools based on a formal approach so
that a designer of telecommunications services can
specify and implement a new service in the form of
a Multi-Agent System (MAS). Our goal is to
supplement the current approaches of the
telecommunications industry by the use of the agent
paradigm enhanced with formal methods. This
brings various assets for the development of new
telecommunications services such flexibility, high-
level interactions or mobility. This approach makes
it possible to consider the development of a
telecommunications service as a MAS what offers a
better support for the control and management
distribution in telecommunications systems.
However, it misses formal support to be fully
efficient. Therefore we use the formal methods
which bring the tools necessary to support the proof
that guarantees the robustness and the quality of the
applications.
To carry out this objective, we take into account the
following elements:

1. ODAC stands for Open Distributed Application Construction

• the agent metaphor as the computer-oriented
view of an everyday life agent. Thus an agent is
a software entity with characteristics of custo-
mization, delegation, contract monitoring and
services combination;

• the Open Distributed Processing (ODP) stan-
dard, developed jointly by the ISO and the ITU-
T, provides a reference model which defines an
architectural framework for the construction of
distributed systems and applications [ISO 96]. It
defines the viewpoint concept as a subdivision
of a complex system specification. Five view-
points are identified: the enterprise, information,
computational, engineering and technology
viewpoints. The RM-ODP prescribes for each
viewpoint a set of concepts and rules, called

viewpoint language

, each complying system
must obey.

We provide an ODP-like structuration to agent-
based services within open distributed systems in
order to separate the concerns in a way which
enables formal engineering methods.
Our approach aims at defining formalisms (i.e.
language in the ODP terminology) which allow to
specify a telecommunications service according to
various levels of abstraction reflecting ODP
viewpoints. The languages are mapped to a formal
model (namely Petri nets) to enable at least
simulation (e.g. the enterprise language) and
verification of properties when it is possible (e.g.
the computational language).
The awaited result of the project is the proposal for
a model of specification in conformity with the
ODP architecture which will include interaction
patterns and which will support the formal
verification. The model will be supported by an
operational environment of formal design of MAS.
This environment will provide design tools which
will make it possible to a designer to specify a
service by identification and instanciation of the
interaction patterns and by their composition. It will
also offer tools of proof making it possible to the
designer to validate and verify his/her specification.
In this paper, we focus on the works currently
achieved in the project. These are related firstly to a
service-based architecture of an agent-based system
and secondly to our proposal for an Agent-Oriented
Computational language (AOC language).

3. Service-based Architectur e of an Agent-
based System

Agent and Service are two valuable concepts to
structure open distributed systems. They offer two
levels of structuration which can be mixed to have a
federative basis for such systems. Services can
stand for structuration unit for which agents are
used to represent their many concerns with a clear
separation between them.
In order to issue an architectural proposal for
structuring open distributed systems according to
these concepts, we first propose to adapt the ODP
viewpoints to the agent paradigm [DIA 97].

3.1. Adapting ODP viewpoints for construc-
tion of MAS

Agent paradigm is expected to emphasize in
emerging open distributed systems the concept of
service. This must take into account many aspects
that can be divided into three parts:
• the

collaborative/cooperative aspects

 like nego-
tiating and making contracts with users or other
services. These contracts can be commitments
on quality of service and/or access rights, conse-
quent billing, etc.

• the

cognitive aspects

 like making inference on
the contextual knowledge attached to a service
or to its execution. This contextual knowledge
can determine the way the service is offered. It
can also be associated to the profile of the ser-
vice user,

• the

reactive

 or

computational aspects

 like modi-
fying the resources and running some specific
processing necessary to exhibit the right func-
tionalities under the contractual constraints. Ser-
vices are namely reactive because they must
maintain a continuous interaction with their
environment (users or other services).

These previous aspects are not independent from
each other. We can notice that the contextual
knowledge used in cognitive activities may depend
on the previous collaborative/cooperative activities
and may influence the reactive ones. These
interdependencies must be considered while using
formal methods in order to support verification and
validation. It appears therefore necessary to
separate and manage the many concerns in order to
avoid undesirable influences from each other
[HUR 95].

As agent-based systems need more architectural
guidelines to achieve a first level of integration as
well as a good separation of concerns, we propose to
proceed like in the RM-ODP with some adaptations
[MKA 96]. The ODP viewpoints are well-suited to
separate the many concerns in object-based open
distributed systems. Nevertheless, we would not
propose viewpoints for agent-based systems to be a
progressive structuration like in ODP. We try,
through our adaptation of viewpoints, to separate
and organize the many concerns (collaborative/
cooperative, cognitive and reactive) of such systems
and to make their mutual dependencies more
manageable (Figure 1)

.

Adapting the enterprise viewpoint, a Service
Manager Agent is an entity managing the policies
and rules attached to the availability and utilization
of a collection of services. A Service Manager must
be able to negotiate the offer of its services with
consumers. It must also be able to cooperate with
other Service Managers to use their services when
needed or to share the load of the service offer.
Concerning the collaborative aspects, Service
Managers must be able to establish contracts and to
fullfil the subsequent obligations [PIT 95]. Service
Managers must be able to accept or deny results of
negotiation but once accepted, the subsequent
contract must be carried out in a satisfactory way for
the counterpart.
Adapting the information viewpoint, a Resource
Manager Agent is an entity responsible to manage
one or many resources on behalf of a Service
Manager. It offers capabilities for access and
modification of the managed resources. It defines
the allowed access to the managed resources as well
as integrity constraints that will be enforced.
Resource Managers are under control of a given
Service Manager which can give - by authentication
means - an access/modification permission to other
entities (any other kind of agent) [THI 95].
Exception processing must be enforced at this level
to send some events back to the Service Managers
because they might need some cognitive or
collaborative actions. This allows to offer adaptable
services. Exceptions allow one to have some kind of
fault tolerance on Resource Managers.
Adapting the computational viewpoint, an Activity
Manager Agent

is an entity able to perform a set of
actions in order to fullfil a given goal. An Activity
Manager is under control of a Service Manager and
receives from it access permissions on its attached

Resource Managers. It can also - according to its
fixed goal - receive collaborative/cooperative and
cognitive capabilities to address others Service
Managers. Another possibility which seems best is
that the responsible Service Manager carry on the
collaborative/cooperative and cognitive activities
with other Service Managers, then the Activity
Manager only receives delegation on permission
granted to its responsible Service Managers to
access remote resources. Activity Managers may
divide their goals into sub-goals. Therefore, they
clone themselves into others Activity Managers to
handle these sub-goals. The global coherence must
then be managed by the agent which initiates the
goal splitting. Transaction-oriented facilities must
be supported to manage this coherence. Activity
Managers can have collaborative, cognitive and
reactive aspects according to their assigned goal.
They are anyway attached to a given Service
Manager which will delegate them part or whole of
its collaborative/cooperative and cognitive
capabilities.
The two last viewpoints in the RM-ODP deal
mostly with implementation aspects. In the agent
paradigm also, we will consider such kind of agents
as relevant to realize the three previous classes we
have defined. Depending on an underlining
technology, one must consider how the previous
levels of abstraction can be realized. What can be
called

engineering

 and

technological agents

 must
therefore be defined to establish some
correspondence between the needs in the previous
levels with the concepts available in the underlining
technology. We remain deliberately unprescriptive
and refer to the RM-ODP for adaptation.

Figure 1 - Adapting Viewpoints to MAS

Enterprise
Viewpoint

Information
Viewpoint

Service
Manager
Agent

Activity
Manager
Agent

Resource
Manager
Agent

Computational
Viewpoint

Processing
Entites

3.2. Overall Architecture

Given the set of agent classes we define above, we
are going to issue an architectural proposal for
structuring open distributed systems according to
service and agent concepts. We will consider here
the key idea of service as a main guideline in
structuration of systems. We consider henceforth
that a system is characterized by the set of services
it can provide to its environment.
A service can be structured as follows:
• one or many Service Manager Agents responsi-

ble of the

policy of the service

 encompassing its

use

 by the environment and its eventual

colla-
boration

 and

cooperation

 with other services.
They have the same lifetime than the service,

• one or many Resource Manager Agents respon-
sible of the

local

resources

 necessary to the ser-
vice and which it owns and manages. Their
lifetime is up to the needs of the responsible
Service Manager Agents,

• one or many Activity Manager Agents whose

goals

 are determined by some Service Manager
Agent. Then, they receive from that Service
Manager eventual collaborative/cooperative and
cognitive capabilities necessary to fulfill that
goal. Their lifetime can end with the definitive
success or failure for the assigned goal.

The relevancy of the service notion here is its
reflexivity. In complex services, one can undertake
decomposition and each Service Manager can be
considered - with its attached Resource Managers
and Activity Managers - as an elementary service.
This decomposition allows to consider services at a
granularity level which does not carry too much
complexity. So test validation and verification can
be achieved in a satisfactory way on elementary
services before combining them into more elaborate
ones.
The delegation of reactive tasks to Activity
Managers by Service Managers can be done one the
fly and when needed. The Activity Managers do not
need in that case any more collaborative or
cognitive aspects. They are only created to perform
a given task on behalf on an Service Manager. The
Activity Managers can then be validated using
formal methods in their reactive aspects. This
possibility is left up to system designer and must be
evaluated in front of the level of validation one can
need in a given application domain.

An obvious advantage of this proposal is the fact
that one can isolate the information managed
(resources) in the Resource Manager Agents which
can be validated formally. We therefore make sure
that whatever the collaborative/cooperative and
cognitive activities are, the resources will not be
corrupted. Resources are critical for a service
because their states determine the correctness,
safeness and reliability of its behavior. For these
reasons, it is important to verify and validate
thoroughly their concerns.

4. The AOC language

The AOC language is used to specify the reactive
aspects of Resource and Activity Managers Agents.
It enables to describe a specification model and a
verification model [GER 97a] [GER 97b]. The
specification model enables to specify the software
architecture of a service in terms of interacting
agents. Once this computational specification
established, then it can be validated through the
verification model.

4.1. The Specification Model

An agent is first of all an entity that manages
resources and has goals to fulfil. These goals can be
induced by its own needs or derived from the
contracts the agent commits itself to fulfil. For their
own goals, agents have triggers that allow them to
run autonomous behavior along with their
interactions. Triggers are very important for the
achievement of agent-oriented behaviors because
they extend the request/reply based interactions
between agents. To control the interactions and
avoid fault propagation, an agent can have
exceptions. Exceptions are executed whenever the
agent considers information coming from its
environment (mainly results of operations) to not
match specified requirements. Then the agent runs
the exceptions which allow it to protect itself from
what is considered to be erroneous behavior or
results.
As we deal with the validation of the organization of
interacting agents, we focus on the formalization of
the interactions between the agents and on the
reactive capabilities supporting them. So we
identify some interaction patterns that can be
formally proved. These are based on a classification
of interactions and their structuring according to
some rules. The classification we propose
encompasses two groups of interactions built upon

the RM-ODP interactions. The

point-to-point
interactions

 take place between two agents and act
upon their current states without modifying their
goals and plans. The

multi-point interactions

 take
place between several agents. They can modify the
goals and plans of agents according to the reaction
of the others.
This classification of interactions enable the
identification of patterns of high level interactions.
For this, two levels of structuring are provided.
At the first level, operations are grouped into
services that are exported through the agent
interface [DIA 96]. Services are set of operations
with some additional semantics that allows the
agent exporting the service to enforce the other
agents to avoid violating integrity constraints on the
local resources.
At the second level of structuring, a high-level
interaction is defined as

a set of services attached to
quality of service expectations and sequencing rules
according to the achievement of that quality.

This notion of interactions enables plans to be built
that involve many agents and take into account their
dependence on their environment. Interactions
allow organizations to be built as sets of agents
assigned with goals. Agents in an organization
cooperate to achieve the goals. Goals can be
specified beyond the level of an isolated agent even
if it corresponds to the satisfaction of the desire of
that given agent. In this last case, the organization
corresponds to the agents with which the agent with
a desire must interact in order to satisfy it.
Furthermore, interactions allow new or elaborate
services to be built by combining preexisting
validated and verified services or agents. This
enhances reduced time to market when building
new services.

4.2. The Verification Model

The verification model is obtained from the
specification model by automatic transformation. It
is expressed in the colored Petri nets formalism.
One modular colored Petri net is derived from each
agent model and a reachability graph is computed
from it. This graph supports the model checking of
Linear Temporal Logic properties. Some basic
properties are always checked because they are
strong conditions of the correctness of a
specification. Other properties depending on the
application domain can be verified as long as they
are concerned with states of agents, their behavior

and they can be expressed with temporal logic

semantics. Our software environment CPN-AMI

1

provides a set of tools that automates these
verification tasks.
The verification allows a statement of the
achievement of the goal of a given organization.
Given hypotheses on the environment not included
in the model, it is possible to check if the
organization is able to achieve its goal(s) or not.
Hypotheses on the environment alleviate the
uncertainty about it, and the proof that can be given
is still valid whenever the environment of the
organization ensures these postulates. Hypotheses
for which the proof fails give characterizations for
the environment in which the organization is not
viable. This is of help when complex organizations
are built from other organizations.

5. Conclusion

The objective of the ODAC project is to define
methods and tools based on a formal approach so
that a designer of telecommunications services can
specify and implement a new service in the form of
a Multi-Agent System (MAS). Our goal is to
supplement the current approaches of the
telecommunications industry by the use of the agent
paradigm enhanced with formal methods. So we
have defined a service-based architecture of an
agent-based system by adapting the ODP
viewpoints to the agent paradigm. The benefit is to
separate and organize the many concerns of agent
systems and to make their dependencies more
manageable. We can then isolate the reactive
aspects from the collaborative/cooperative and
cognitive ones. These reactive aspects can be
specified and verified in a formal way by the use of
the AOC language we propose and that is in
conformance with the ODP computational
viewpoint concepts.

6. References

[DIA 96] A. Diagne and P. Estraillier,

Formal Specifica-
tion and Design of Distributed Systems

, in Proc.
of the 1st IFIP Workshop on Formal Methods for
Open Object-based Distributed Systems
(FMOODS'96), Chapman & Hall (Ed), Paris,
France, March 1996, pp341-356

1. available at www-src.lip6.fr/cpn-ami

[DIA 97] A. Diagne,

Architectural Concepts for Agent Pa-
radigm: A Way to Separate Concerns in Open
Distributed Systems

, in Proc. of the 2ndIFIP
Workshop on Formal Methods for Open Object-
based Distributed Systems (FMOODS'97), Chap-
man & Hall (Ed), Canterbury, UK, July 1997,
pp387-398

[GER 97a] M.P. Gervais and N. Ruffel,

Design of telecom-
munications Services Based on Software Agent
Technology and Formal Methods

, in Proc. of the
IEEE Globecom'97, Phoenix, USA, November
1997, vol. III, pp1724-1728

[GER 97b] M.P. Gervais and A. Diagne,

 Enhancing tele-
communications Service Engineering with Mobi-
le Agent Technology and Formal Methods,

IEEE
Communications Magazine, July 1998

[HUR 95] W.L. Hursch and C.V. Lopes,

Separation of
Concerns

, Tech. Rep. NU-CCS-95-03, College
of Computer Science, Northeastern University,
Boston, USA, Feb. 1995

[ISO 96] ISO/IEC IS 10746-1 — ITU-T Rec. X901,

ODP
Reference Model Part 1, Overview and Guide to
Use

, 1996

[MKA 96] D.P. McKay, J. Pastor, R. McEntire and T. Finin,

An Architecture for Information Agents

, In Ad-
vanced Planning Technology, AAAI Press, Men-
lo Park, CA, USA, May 1996

[PIT 95] J. Pitt, M. Anderton and J. Cunningham,

Norma-
lized Interactions Between Autonomous Agents :
A Case Study in Inter-Organizational Project
Management

, In Proc. of COOP'95, Antibes-
Juan-Les-Pins, France, Jan. 1995

[SCORE] RACE Project n

°

2017,

The SCORE Service
Creation Model

, Deliv. D105-I, Dec. 1994

[THI 95] C. Thirunavukkarasu, T. Finin and J. Mayfield,

Secret Agents - A Security Architecture for
KQML

, In Proc. of ACM/CKIM'95, Agent
Workshop, Baltimore USA, Dec. 1995

[TRI 95] S. Trigila et al.,

Service architectures and service
creation for integrated broadband communica-
tions

, Computer Communications, 18(11):838-
848, 1995

[WOO 95] M. Wooldridge, J. Muller and M. Tambe,

Agent
Theories, Architectures and Languages : A Bi-
bliography

, in Proc. of the Intelligent Agents II,
IJCAI-95 Workshop on Agent Theories, Archi-
tectures and Languages (ATAL'95), LNAI
n

°

1037, Springer Verlag (Ed), Montreal, Canada,
August 1995

