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COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULARREWRITING SYSTEMSCyril ChabaudLaboratoire d'Informatique de Paris 6F-75252 PARISAbstract. Regular tree rewriting systems identify with a representation matrixfrom which we make an algebraic analysis in order to evaluate the average com-plexity of all the system operators. Then, a joint analysis of the dominating eigen-value and the directed graph of the representation matrix gives a classi�cationof the system operators using the results of singularity analysis as mathematicalbackground.
CLASSIFICATION DES OP�ERATEURS PAR COMPLEXIT�EDANS UN SYST�EME DE R�E�ECRITURE R�EGULIERR�esum�e. Un syst�eme de r�e�ecriture r�egulier est caract�eris�e par une matrice derepr�esentation dont l'analyse alg�ebrique permet d'�evaluer la complexit�e moyennedes op�erateurs du syst�eme. L'analyse de la valeur propre dominante de la matricede repr�esentation et de son graphe orient�e d�egage une classi�cation des op�erateursdu syst�eme en s'appuyant sur des r�esultats d'analyse de singularit�e.





COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULARREWRITING SYSTEMSCYRIL CHABAUDAbstract. Regular tree rewriting systems identify with a representation matrix from whichwe make an algebraic analysis in order to evaluate the average complexity of all the systemoperators. Then, a joint analysis of the dominating eigenvalue and the directed graph of therepresentationmatrix gives a classi�cationof the systemoperators using the results of singularityanalysis as mathematical background.1. IntroductionThis paper studies regular tree rewriting systems according to the work of C. Choppy, S. Kaplanand M. Soria [2].An algebraic speci�cation can be expressed as a term tree constructed with basic constructorsand operators de�ned by rewriting rules. The cost of an operator is the number of steps necessaryto reduce a term tree to its normal form (we know from [2] that this reduction is conuent andthe cost is independent from the rewriting strategy). Such rewriting systems are typically madeof expanding rules that recursively create tree duplications and contracting rules that stop theprocess. We are interested in the global behavior of rewriting systems and will analyze the averagecost of the rewriting operators.Here are two examples to give an idea of what is going to be discussed:Example 1. This is a formal expansion of operators cos and sin computing over binary term treesbuilt out of binary constructor + and constant a.pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp
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The average complexity | expressed in terms of the average size of the resulting tree | of bothoperators sin and cos is equivalent to 3=32p2�(4=p3)nn3=2, n odd, where n is the number ofnodes of the initial tree. � 1



2 CYRIL CHABAUDExample 2. We are treating a formal di�erentiation with term copy that computes over binarytrees whose nodes are multiplication � and constant a. The rewriting rules form the followingsystem: d(a) �! ad(�(u; v)) �! +(�(d(u); cp(v)); �(d(v); cp(u)))cp(a) �! acp(�(u; v)) �! �(cp(u); cp(v))The average complexity of the derivative operator is of order n3=2 while the copy operator islinear. �The cost of an operator is evaluated through its generating function. We shall see that theoperator cost generating functions of a rewriting system are linearly dependent. Thus, all theinformation about the rewriting system is contained in a representation matrix from which arisenice properties. Indeed, to analyze the dominant singularity of cost generating functions, we usethe nonnegativity property of representation matrices through Perron-Frobenius theory.Since the cost generating function of an operator is a quotient of determinants, we manage toget the representation matrix into an irreducible block triangular form whenever it is possible.Then we study each block dominating eigenvalue and deduce the asymptotic behavior (constant,polynomial, exponential) of the average cost of that operator.Sections 2 and 3 are devoted to recapitulate essential results of [2]. Section 4 will discuss thestructure of representation matrices and state equivalences to determine the singularity of smallestmodule using the dominating eigenvalue of irreducible matrices. Section 5 extends these resultsfrom diagonalmatrices to irreducible block diagonalmatrices in the polynomial case. An importantpart of this section is devoted to showing the close relation between the graph associated to therepresentation matrix and the polynomial growth of the order of the average complexity of itsoperators. As immediate application, we shall detail formal di�erentiation analyzing the averagecomplexities of derivative operators of order k. The purpose of section 6 is to treat applicationsusing the techniques of this paper. They are based on two recurrent principles: �nding thedominant singularity of operator cost series and applying the polynomial growth rule to computeaverage complexities orders.2. Operator cost generating functionHere we �rst de�ne regular rewriting systems and the cost generating function of an operator.Then, we give the most important results concerning the representation matrix of regular rewritingsystems.2.1. Regular rewriting systems. Given a set F of operator symbols with arity and a set X ofvariable symbols, we denote by TF[X the set of terms built from F [X. Let Var(t) be the set ofvariables in term t.A rewriting rule R is a production g �! d where g and d are terms and Var(g) �Var(d). Arewriting system is a set of rewriting rules.Rewriting rules de�ne rewriting relations between terms: given two terms t and u, t rewritesinto u (noted t �! u) according to rule R i� there exists a subterm of t rooted in m and asubstitution � : X �! TF[X such that the m rooted subterm of t is equal to g� and u resultsfrom the substitution of m for d� in t:t=m = g� and u = t[m � d�]A term is in normal form if it cannot be rewritten anymore. Let 
 be a set of constructors andT
 the family of terms built from 
.A regular rewriting system is de�ned as follows:� every term of T
 is in normal form.



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 3� the computation of an operator over T
 arguments always ends with a �nite number ofrewriting steps on a term in normal form.� the normal form is unique and the number of rewriting steps does not depend on the strategy.2.2. Operator cost. The cost of an operator f on a term t 2 T
 is the number of rewriting stepsneeded to get its normal form.Assume that operator f is of arity k. Let Cfn denote the cumulative cost of f over k-forests oftotal size n: Cfn = Xt1;::: ;tk2T
jt1j+���+jtkj=n cost(f(t1 ; : : : ; tk)):If all the k-tuples of size n have the same probability, the average cost of f over terms of sizen is: �Cfn = CfnTnwhere Tn is the number of k-tuples (t1; : : : ; tk) such that for all 1 6 i 6 k, ti 2 T
 andjt1j+ � � �+ jtkj = n.We get the evaluation of Cfn and Tn extracting coe�cients from the cost series of f : Cf (z) =PCfnzn and from the enumerative series T (z) of T
.2.3. Structure of the rewriting system rules. Term construction is formalized through 
-enumeration while rewriting rules in an 
-de�nition are submitted to particular constraints inorder to form regular systems.De�nition 2.1. [2] Let E be a set of indices.A 
-enumeration is a �nite family of n-tuples (~!e)e2E of T k
 such that:� each ~!e contains at least one constructor symbol.� for any ~t 2 T k
 there exists a unique substitution � : X �! T
 and a unique e such that~t = ~!e�.A 
-de�nition of an operator f is a �nite set of rewriting rules Rf = (Rfe )e2Ef such that:Rfe : f(!e) �! Dewhere (~!e)e2Ef is a 
-enumeration of T k
 ; and each right member De is of the form:De = K(x1; : : : ; xn; �1; : : : ; �m):The header K only contains constructor symbols; the xi's are such that:fx1; : : : ; xng � Xe = V ar(~!e)and each �j is of the form: �j = g(y1; : : : ; yrg)where g is an operator with arity k. Moreover, fy1; : : : ; yrgg � Xe and 8i 6= j; yi 6= yj2.4. Matrix representation of rewriting systems. Let us start with some notations: given aregular system rule Rie : fi(~!e) �! Dewe denote by:� �j(Rie) the number of times fj occurs in the right member De.� b(Rie) the number of constructor occurrences in ~!e.� X(Rie) the number of variable occurrences in ~!e.� rj the arity of fj .Moreover, ~C(z) = (Cf1(z); : : : ; Cfp(z))and ~Y (z) = (T r1 (z); : : : ; T rp(z))



4 CYRIL CHABAUDTheorem 2.1. [2] The cost series of a regular system can be written:~C(z) = M (z): ~C(z) + ~Y (z):where ~C(z) is the cost vector and ~Y (z) is the term enumerating vector. The square matrix M (z)gives the form of the system rules: given M (z) = (Mi;j(z))16i;j6p, we have:Mi;j(z) = XRie2Rfi �j(Rie):zb(Rie):T (z)X(Rie)�rj(1)This result can also be written:0B@Cf1(z)...Cfp(z)1CA = 0B@M1;1(z) � � � M1;p(z)... . . . ...Mp;1(z) � � � Mp;p(z)1CA0B@Cf1(z)...Cfp (z)1CA +0B@T r1 (z)...T rp (z)1CA(2)Hence, we have: Cfi(z) = det((Id �M)[i](z))det(Id �M(z))(3)where Id is the identity matrix and (Id-M)[i](z) is the (Id-M)(z) matrix where the ith columnis replaced by ~Y (z).Example 3. Let us take our �rst example with operators sin and cos. Its representation matrixis: M = sincos 0@ 2zB(z) 2zB(z)2zB(z) 2zB(z) 1Awhere B(z) stands for the binary trees enumerative series. Hence, we have:Csin(z) = Ccos(z) = B(z)(1 +B2(z))3B2(z)� 1 �Example 4. Our simple di�erentiation system of example 2 yields this representation matrix withthe same enumerative series B(z):M = dcp 0@ 2zB(z) 2zB(z)2zB(z) 1AApplying the preceding theorem gives:Ccp(z) = B(z)1� 2zB(z) and Cd(z) = B(z)(1� 2zB(z))2 �Example 5. [2] This example shows a shu�e of trees with two operators f and g. Terms are binarytrees constructed from binary symbol o and constant a.Let B(z) denote the enumerating series of binary trees.Rf1 f(a; a) �! aRf2 f(o(u; v); a) �! g(u; v)Rf3 f(a; o(u; v)) �! g(u; v)Rf4 f(o(u1; v1); o(u2; v2)) �! o(f(u1; u2); f(v1; v2))Rg1 g(a; a) �! aRg2 g(a; o(u; v)) �! g(u; v)Rg3 g(o(u; v); a) �! g(u; v)Rg4 g(o(u1; v1); o(u2; v2)) �! o(f(u1; u2); g(v1; v2))The representation matrix M (z; B(z)) is:



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 5M = fg 0@ 2z2B2(z) 2z2z2B2(z) 2z2 + z2B2(z) 1AWe easily deduce both Cf (z) and Cg(z) with formula 3:Cf (z) = Cg(z) = B2(z)1� 2z2 � 2z2B2(z) �3. Average complexityWe shall �rst give an overview of some results concerning the enumeration of trees in order tostate two key theorems about the asymptotic behavior of the average complexity of the operators.3.1. Counting trees. This section briey recalls the singularity analysis methods to estimatethe coe�cients of the enumeration series of simple families of trees. Let T (z) denote this series.T (z) =Xt2T zjtj =Xn Tnznwhere Tn is the number of trees of size1 n. As usual, [zn]T (z) denotes the coe�cient of zn in T (z).Theorem 3.1. [5, 8] Let T (z) be a series de�ned as follows:T (z) = z�(T (z))where � is an aperiodic2 polynomial function such that �(0) 6= 0 and �0(0) = 0.Then, T (z) admits the following expansion around z = �:T (z) = h(z) + g(z)r1� z�where h and g are analytic and h(�) = � and g(�) = �q 2�(�)�00(�)Moreover, Tn =s �(� )2��00(� )��nn�3=2�1 + O� 1n��(4)Sketch of proof. Let � be the dominant singularity of T (z) and � be the limit of T (z) at �.� is the point of smallest module where T (z) ceases to be analytic. Indeed, � is de�ned by thesystem: 8>><>>:��0(� )��(� ) = 0 � being the smallest real positive root� = ��(� )(5)It follows that � < 1.To get the expansion of T (z) around z = �, we expand u=�(u) around � . That gives:z = ��(� ) +Xn>2 cn(z � � )n with c2 = ���00(� )2�0(� )Then, we deduce the expansion of T (z) around z = �:T (z) = � +Xn>1 en�1� z��n=21When applied to term trees, it denotes its number of nodes2i.e. there is no polynomial 	 and no integer d > 1 such that 8y �(y) = 	(yd).



6 CYRIL CHABAUDthus: T (z) = h(z) + g(z)r1� z�with g and h analytic.Applying singularity analysis leads to formula (4).Example 6. We treat now the example of unary-binary trees, where B(z) denotes their enumerativeseries.A tree is de�ned recursively: from a node, we can attach a terminal node (a leaf); one tree ifthe node is of arity 1; two trees if the node is of arity 2.Since the size of a node is 1, we have:B(z) = z + zB(z) + zB2(z) = z(1 +B(z) +B2(z))Further computations give:B(z) = 1� z �p1� 2z � 3z22z = 1� z2z � p1 + z2z r1� z3The dominant singularity is z = 1=3: �Example 7. Take the unary-binary trees enumerated by B(z). We solve the system 5 and userelation 4. We �nd: � = 1 and � = 1=3therefore: [zn]B(z) = 12r3� �13��n n�3=2�1 +O� 1n�� �Remark 1. If T (z) have multiple singularities on its circle of convergence3 (take binary trees asan example), contributions add themselves and this does not change the asymptotic behavior of[zn]T (z). See works of Flajolet and Sedgewick [4] for details.Example 8. Let B(z) = z(1 + B2(z)) be the enumerative series of binary trees. Its singularitiesare gathered in the equation: �2 = 1. Consequently, we have:Bn = 1p2�2n+1n�3=2 �1 +O � 1n�� n evenBn = 0 n odd3.2. Average cost of operators. Since we want to estimate the average cost �Cfin of operatorfi, we have to evaluate [zn]Cfi(z) as n !1. This work has been done in [2] and it leads to thefollowing results.First notice that for any enumerative series of simple families of trees T (z), we have: z = T (z)�(T (z)) :Since 
 is a �nite set of constructor symbols with �nite arities, � is always a polynomial function.Thus, equation 3, giving the cost function of an operator fi, is of the form:Cfi(z) = Pi(T (z))Qi(T (z))where T (z) is the enumerative series of T
 and Pi; Qi are prime polynomials with integer coe�-cients.Here is the case separating theorem stating the supposed average complexities behaviors ac-cording to the position of the singularity of T (z) with respect to the zeros of Qi(T (z)). .Theorem 3.2. [2] Let fi be a regular system operator with cost generating function:Cfi(z) = Pi(T (z))Qi(T (z))where Pi and Qi are prime polynomials. Let � be T (z) dominating singularity and let �0i be thesmallest positive root of Qi(T (z)).3This occurs precisely when � is aperiodic



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 7� if � < �0i then �Cfin = c1(1 + O(1=n))� if � = �0i then �Cfin = c2nq=2(1 +O(1=pn))� if � > �0i then �Cfin = c3�nnr+1=2(1 + O(1=n))where the ci's are real constants that depend on Pi, Qi and T , and q and r are positive integers.Remark 2. With singularity analysis, we can give the order of growth of such operators in termsof the multiplicity of factor (B(z) � � ) in the denominator of operator cost series. That is, withthe same notations as in theorem 3.2, assume there exists operator fi such that Cfi(z) is of theform : Pi(B(z))Qi(B(z)) = 1(B(z) � � )s Pi(B(z))�Qi(B(z))where s is a strictly positive integer and �Qi a polynomial such that �Qi(� ) 6= 0. Expanding thepreceding equality around � we see that its leading term is in (1� z=�)�s=2. Thus, applying thetransfer lemma: Cfin = (�1)s�(s=2) Pi(� )�Qi(� ) �2�(� )�00(� )��s=2 ��nns=2�1�1 +O� 1pn��Dividing this expression by the asymptotic evaluation of [zn]T ri(z), we �nd that the order ofgrowth of �Cfin is O(n s+12 ).Example 9. Let us take the shu�e de�ned in the preceding example. We foundCf (z) = Cg(z) = B2(z)1� 2z2 � 2z2B2(z)Replace z by B(z)=�(B(z)): Cf (z) = Cg(z) = B2(z)(1 + B2(z))(1� B(z))(1 + B(z))Note that �0 = 1 = � therefore �0 = � so we are in the polynomial case.From the previous remark we deduce that �Cfn = �Cgn = O(n). �4. Structure of representation matricesStudying the representation matrix structure will precise the results of theorem 3.2. It consistsin determining the dominant singularity of any operator cost series isolating each group of oper-ator according to their mutual dependencies. This notion is translated graphically into stronglyconnected components in which each operator cost series has the same radius of convergence.4.1. Strategy. Let M (z; T (z)) be the representation matrix of some regular rewriting systemand Cfi(z) = det((Id �M)[i](z))det(Id �M(z))the cost series associated to operator fi.To evaluate [zn]Cfi(z), we have to look for the dominant singularity of Cfi(z), that is, thesmallest positive root of det(Id�M ).The idea is to turnM to a triangular block matrix { whenever it is possible { through a suitablepermutation matrix. 0BBB@A1;1 0A2;1 A2;2... . . . . . .Ak;1 : : : Ak;k�1 Ak;k1CCCA(6)Then, we study the dominating eigenvalue of each block { remember that det(Id�M ) = �(1) where� is the characteristic polynomial of M . So, we have to prove that there exists a positive domi-nating eigenvalue in each block Ai;i corresponding to the smallest positive root of det(Id�Ai;i).



8 CYRIL CHABAUDSince det(Id-M ) = Qki=1 det(Id�Ai;i), we will be able to deduce the order of the asymptoticexpansion of �Cfin for each operator fi.When matrix M is of the form above, we say that M is reducible.De�nition 4.1. Let B be a square matrix. B is reducible i� there exists a permutation matrixP such that: PBP T = �B1 0B2 B3�where B1 and B3 are square matrices.Otherwise B is said to be irreducible.Recursively applying this process to each block, we obtain matrices of the form (6) where eachdiagonal block Ai;i is irreducible.With this notion and the nonnegativity property of representation matrices, we can use thePerron-Frobenius theory to prove the existence of positive dominating eigenvalues in each diagonalblock.The results below are valid for irreducible matrices, as if we were focusing on a diagonal squareblock Ai;i.4.2. Irreducible matrices.Lemma 1. (Frobeni�us [1, 7]) An irreducible nonnegative matrix A has a real positive eigenvaluer such that: r > j�ijfor any eigenvalue �i 6= r of A. Furthermore, there is a positive eigenvector corresponding to r.Theorem 4.1. Let M (z; T (z)) denote a representation matrix. If M is irreducible then thereexists a unique function r(z; T (z)) with values in R such that:� 8z 2 [0; �] r(z; T (z)) is an eigenvalue of M (z; T (z))� 8z 2 [0; �]; 8k, r(z; T (z)) > j�k(z; T (z))jwhere the �i's are all the eigenvalues of M di�erent from r.Proof. M is a representation matrix therefore all theMi;j's are polynomials in z; T (z) with positiveinteger coe�cients. Since T (z) is positive for z 2 [0; �]; M (z; T (z)) is a nonnegative irreduciblematrix. Consequently, from lemma 1 there exists a dominating positive eigenvalue r(z; T (z)) forall z 2 [0; �].This eigenvalue is unique for all z 2 [0; �]: assume there exists I � [0; �] such that for all z 2 Ithere exists another dominating eigenvalue r2(z; T (z)). This means that for some z0, we haver(z0) = r2(z0), and contradicts with the irreducibility hypothesis of M .The next theorem gives an easier way to spot the smallest root of det(Id�M ) on the realpositive axis: instead of computing r(z; T (z)), we just look for the highest eigenvalue of matrixM (�; � ).De�nition 4.2. If C 2 Mn(C ) and A = (ai;j) is a nonnegative matrix of Mn(C ) such thatjCj 6 A (i.e. jci;jj 6 ai;j for all i; j), then A is said to dominate C.Lemma 2. (Wielandt [1, 7]) If a complex matrix C is dominated by an irreducible matrix A withmaximal eigenvalue r, then for every eigenvalue s of C:jsj 6 rLemma 3. Let M (z; T (z)) be an irreducible representation matrix and r(z; T (z)) denote the dom-inating eigenvalue of M .Then r(z; T (z)) grows strictly as z 2 [0; �] and limz!+1 r(z; T (z)) =1.Proof. Let z0 and z1 be two points of [0; �] such that z0 < z1. Since T (z) grows as z 2 [0; �], theM 0i;js are increasing functions of z. So, we have:0 < M (z0; T (z0)) < M (z1; T (z1)):



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 9Therefore: r(z0; T (z0)) < r(z1; T (z1)).The theory of nonnegative matrices gives us a lower bound for r(z; T (z)); namely we have forinstance: 0 < minj Xi Mij(z; T (z)) 6 r(z; T (z)):Since the entries of M are polynomials in z and T (z) with positive coe�cients, so is the quantityminjPiMij(z; T (z)). Hence the result.Lemma 4. Let M (z; T (z)) be an irreducible representation matrix. Let �0 denote the smallestpositive root of det(Id�M ) and �0i denote the dominant singularity of Cfi(z).Then, for each operator fi, �0 = �0i.Proof. The easiest way seems to show that �0 = �0i. It follows that �0 = �0i since u=�(u) is astrictly increasing function on the positive real axis.It is necessary to show that (T (z)�� ) does not divide det(Id�M ). Thus, since the numerator ofCfi(z) is a polynomial which turns to be in T (z), we just have to prove that det(Id�M )[i](�0; �0) 6=0. det(Id �M )[i](z; T (z)) = 0BBBBBBBBB@ 1�M1;1 �M1;2 � � � Y1 � � � �M1;n�M2;1 1�M2;2 � � � Y2 � � � �M2;n... ... ... ...�Mn;1 �Mn;2 � � � Yn � � � 1�Mn;n 1CCCCCCCCCAExpanding det(Id �M )[i](z; T (z)) by the ith column, we get:det(Id �M )[i](�0; �0) = nXj=1YiBi;j(1)(7)where B(x) is the adjoint matrix of (xId�M ): adj(xId � M ). The dominating eigenvalue ofM (�0; �0) being r(�0; �0), B(r(�0; �0)) is a positive matrix; thus all its entries are strictly positive.Since ~Y (z) is a positive vector, we have, from relation (7):det(Id �M )[i](�0; �0) 6= 0So, (T (z) � � ) does not divide det(Id �M )[i](z; T (z)).Finally, �0 = �0i.Corollary 1. Let M (z; T (z)) denote an irreducible representation matrix.Then the average complexity of every operator fi of M has the same order of growth.Proof. Since for all i, Cfi(z) has a unique dominant singularity, we just apply the results ofsingularity analysis.Theorem 4.2. Let M (z; T (z)) be an irreducible representation matrix of some regular rewritingsystem. Let �0 denote the smallest positive root of det(Id�M ) and � be the dominant singularityof T (z). Let r(z; T (z)) be the dominating eigenvalue of M .� r(�; � ) = 1 i� �0 = �.� r(�; � ) > 1 i� �0 < �.Proof. Since det(Id �M ) =Yk (1� �k)�kwhere the �k's are the eigenvalues of M and the �k's are their respective multiplicities, �ndingthe smallest root of det(Id�M ) consists in comparing r(z; T (z)) with 1.First, assume r(�; � ) = 1; � is a root of det(Id�M ). By lemma 3, r grows strictly on [0; �].Therefore, there is no other �1 < � such that r(�1; �1) = 1. Furthermore r is the dominating



10 CYRIL CHABAUDeigenvalue, so we have �0 = �. Conversely, if �0 = �, det(Id�M )(�; � ) = 0; thus for some k0, wehave �k0(�; � ) = 1. As �0 = �, we have �k0 = r for r is unique and grows strictly over [0; �].Next, assume r(�; � ) > 1. Since r strictly grows on [0; �], this implies that �0 < �. Reciprocally,if �0 < �, for the same reasons, we have: r(�0; �0) = 1. Moreover, r grows strictly thereforer(�; � ) > 1.Example 10. Take example 1 with operators sin and cos. We recall that Ccos(z) = Csin(z) =B(z)=(1 � 4zB(z)) where B(z) stands for the binary trees enumerative series. The dominatingeigenvalue function r(z; B(z)) of its representation matrix is:r(z; B(z)) = 4zB(z)We notice as expected that det(Id�M ) = 1� r(z; B(z)) corresponds to both Csin(z) and Ccos(z)denominators.Since r(�; � ) = 2, we are sure that there exists some �0 such that 0 < �0 < �. We have there asimple trick to �nd out that the average complexities of both operators have an exponential orderof growth. � 5. Polynomial caseThe polynomial case corresponds to a critical point where the dominant singularity of the costseries is equal to the singularity of the enumerative series of the T
 terms, namely: �0 = �.We shall see in the sequel that the order of growth of the average complexity of any operatorfi can be determined quite easily using the methods of the preceding section. The �rst part dealswith irreducible representation matrices and then the reducible case will be discussed using theexample of formal derivation.5.1. Order of operators in an irreducible matrix. We show that the average case complexityof any operator in a rewriting system represented by an irreducible matrix is generally linear inthe size of the term trees, with a pathological case in n3=2.Lemma 5. (Frobeni�us [7]) The maximal eigenvalue of an irreducible nonnegative matrix is asimple root of its characteristic equation.Theorem 5.1. Let M = (Mi;j(z; T (z))) be an irreducible representation matrix and r(z; T (z)) beits dominating eigenvalue. Assume r(�; � ) = 1� �Cfkn � cfkn3=2 if no entry of M depends on T (z).� �Cfkn � cfkn if there exists at least one entry of M that depends on T (z).where the cfk 's are constants depending on fk.Proof. In the �rst case of the theorem, we assume that the representation matrix M has entriesin z only. Therefore, there exists an algebraic function � that is solution of the characteristicpolynomial �(z; �) = det(�Id�M (z)) and such that � = r for z > 0. As we have seen before, thedominant singularity of det(Id�M (z)) in the polynomial case is z = �, therefore, since r(�) = 1,we expand det(Id�M (z)) around � and use the transfer lemma to get the asymptotic estimationof Cfkn .The roots of det(Id �M (z)) are the poles of Cfk(z). These roots correspond to the solutionsof the equation r(z) = 1, with z 2 (0; �]. Indeed, we have:det(Id �M (z)) = (1� r(z))Q(z)where Q(z) = dimM(z)�1Yk=1 (1� �k(z))with the �k's being the eigenvalue functions of M (z). From the Perron-Frobeni�us theorem, weknow that 8k; j�k(�)j < r(�) = 1:Consequently, Q(�) 6= 0.



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 11Since �(z) is an algebraic function around z = �, we know from the implicit function theoremthat �(z) is analytic over a neighborhood of �. But before applying the transfer lemma, we have todetermine the order of � as solution of the equation r(z) = 1. So, we need to study the successivederivatives of � at �. In that case, we prove that �0(�) 6= 0, that is, � is a solution of order 1 of theequation r(z) = 1. Though this result has already been proved in the general case as a corollaryof the implicit function theorem (see for instance [6]), our proof uses Perron-Frobenius theory toestablish this property.We shall assume �0(�) = 0 and show a contradiction. We recall that r(z) grows for z > 0. Wemake here a few remarks:� if �0(�) = 0 then the �rst non zero derivative at � has odd order. Indeed, the local behaviorof � would contradict the fact that r grows strictly.� Thus there exists integer k > 0 such that the expansion of � around z = � yields�(z) = 1 + Xj>2k+1cj(z � �)j ;where cj > 0 for all j. For convenience, we assume c3 6= 0, but the end of this proof wouldstill hold with �(k)(�) = 0 for all integer 0 < k < N , where N is an odd integer.Locally, j�(�+xei�)j is a growing function of x > 0 along the branches �1 = 2i�=3 and �2 = �2i�=3.We consider � = �+ xe 2i�3 such that j�j < �. We have:j�(�)j > �(�) = 1Moreover, M (j�j) dominates M (�). Indeed, from the triangular inequality: 8i; j jMi;j(�)j <Mi;j(j�j) since all the Mi;j 's are positive coe�ciented polynomials. We apply now Wielandt'stheorem (see lemma 2):Since �(�) is an eigenvalue of M (�) and M (j�j) dominates M (�) then we have:�(j�j) > j�(�)j > �(�) = 1;that is: r(j�j) > r(�) = 1:This contradicts: j�j < � and r grows over (0; �].Consequently, around z = � the expansion of det(Id�M (z)) is:det(Id �M (z)) = (� � z)Q(z)[r0(�) +Xk>0 ck(� � z)k]that is: det(Id �M (z)) = (1� z=�)Q(z)[�r0(�) +Xk>0 ek(1� z=�)k]As previously seen, the numerator of Cfk(z) does not vanish at z = �, therefore, applying singu-larity analysis we have: Cfkn � k��n:Then, dividing by Tn gives: �Cfkn � cfkn3=2:Now, we study the second case of the theorem. Let P (z; y) = det(Id �M (z; y)). Since matrixM (1; y) has the same structure as matrix M (z; 1) (i.e. the univariate matrix in z), for the samereasons as above, we have P 0y(�; � ) 6= 0. Substituting y by T (z) around z = � gives:P (z; T (z)) = �(1� z=�)1=2 +O((1� z=�))with � 6= 0. Applying singularity analysis, we have:Cfkn � �k��nn�1=2:Then, dividing by Tn gives: �Cfkn � cfkn:



12 CYRIL CHABAUDThe reader may report to examples 9 to see what happens in the non pathological case beforeexamining the following example:Example 11. Consider matrix: M (z; T (z)) = �2z zz 2z�where term trees are unary-binary trees enumerated by T (z) = z(1 + T (z) + T 2(z)). We recallthat: � = 1 and � = 1=3Let us compute det(Id�M ):det(Id �M ) = (1� 3z)(1 � z) = (T (z) � 1)2�2(T (z))It appears that the multiplicity of factor (T (z)�� ) is 2. Consequently all the operators representedby M will have an average complexity of order n3=2. �5.2. Graphical translation of representation matrices. This section is an introduction tothe study of systems represented by reducible matrices. Their associated graph is of precious helpsince we will be able to draw out a hierarchy between operators.Let GM be the directed graph of matrix (Mi;j). This graph is built as follows: put an arrowfrom vertex j to vertex i if Mi;j 6= 0.Theorem 5.2. M is an irreducible matrix if and only if GM is strongly connected.This theorem brings out the interest of graphs in the computation of operators average com-plexities. Since we have shown that the average complexity of all the operators represented byirreducible matrices have the same order of growth, we will just have to symbolize such blocks bya single vertex.From now on, the F symbol will denote a non identically 0 block that is irreducible on thediagonal.Example 12. Assume matrix M is of the form: fghij 0BBBB@F 0 F 0 0F F 0 0 0F F F 0 00 0 F F 0F 0 0 0 01CCCCA. Its associated graphisg h istrongly connectedcomponent f,g,h if simpli�ed graphj jWe can see the functions that have the same order of growth (here f; g and h have the same orderof growth). We de�ne there two kinds of vertices. The �rst one is a "round vertex" where theoperators that form a strongly connected component are put together in a circle. In the case of asingle operator block, this representation is valid when this operator depends on itself; otherwisethere is no circle around it. �



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 135.3. Reducible matrices. We recall that matrixM is reducible if, through a suitable permuta-tion matrix P , M is turned into a matrix of the form:0BBB@A11A21 A22 0... . . .An1 : : : : : : : : : : : : Ann1CCCAthe Ai;i's being square blocks.Note that simpli�ed graphs are DAGs with operators (or set of operators) as vertices. The ideais to �nd inductively the order of growth of the system operators from the roots of the graph tothe operators block we need to draw the common cost series dominant singularity. Let us start bythe most elementary block-triangular matrices.5.3.1. Triangular matrices. Here diagonal blocks are actually single entries, the simplest case oftriangular block matrices.We compute by induction on dim(M ) the operators average complexities turning the operatorscost series into a form that involves the operators cost series of the preceding rank.De�nition 5.1. An operator g is said to be a predecessor of operator f if Mfg(z; T (z)) is notidentically zero.This de�nition formalizes the condition that there exists a rewriting system rule where f de-pends on g.Lemma 6. Let ff1; : : : ; fng be a set of system operators such that it can be represented by atriangular matrixM . Let ffi1 ; : : : ; fikg with 1 6 i1 < : : : < ik 6 n be the set of all the predecessorsof operator fj , ik < j 6 n.Then, Cfj (z) admits the following expansion:Cfj (z) = Mfj ;fi1 (z)1�Mfj ;fj (z)Cfi1 (z) + � � �+ Mfj ;fik (z)1�Mfj ;fj (z)Cfik (z) + T rj (z)1�Mfj ;fj (z)Proof. This expression arises from the formula 2 after expanding the line corresponding to operatorfj .This expansion infers the following theorem:Theorem 5.3. Let � be the limit value of T (z) at z = �. With the same hypothesis as the previouslemma, assume for all i�, Cfi� (z) = P�(T (z))(T (z)��)��Q�(T (z)) such that for all �, P� and Q� are primepolynomials. Let � = max�f��g.� If Mfj ;fj depends on T (z) then Cfj (z) = Pj(T (z))(T (z)��)�+1Qj (T (z))� If Mfj ;fj does not depend on T (z) then Cfj (z) = Pj (T (z))(T (z)��)�+2Qj(T (z))where the Pj's and Qj 's are prime polynomials and for all j, Qj(� ) 6= 0.Proof. We are here interested in the expansion of (1�Mfj;fj ) in terms of T (z). This computationcan be lead considering Mfj ;fj as a one-entry irreducible matrix, thus we just apply the results oftheorem 5.1 to extract the right power of factor (T (z) � � ) from the expansion of (1�Mfj ;fj ).Moreover, since all the P�'s and Q�'s are prime polynomials, and clearly (T (z) � � ) does notdivide the P�'s, the Mfj;fi� 's and T rj (z) we can �nd two possible expressions for Cfj (z) arisingfrom Mfj ;fj dependency on T (z).Graphically, the average complexity of any operator f is computed recursively starting fromthe root of the graph and evaluating the order of the average complexity at each node. In purepolynomial cases, if the path to f is not unique, the path that leads to the right average complexityorder in most of the cases (depending on local pathological case) is the longest one.



14 CYRIL CHABAUDExample 13. Suppose you have �ve operators a; b; c; d; e represented by a matrix of the form:abcde 0BBBB@FF FF 0 F0 F 0 F0 0 F F F1CCCCAWe assume that we are in the polynomial case and all the diagonal entries of M depend onT (z).The corresponding graph of M is:



ac b d e

n n3=2 n2 n5=2n3=2
The average complexity of e is of order n5=2. It corresponds to the longest path from a to e. �In order to bring up formal di�erentiation, we introduce chain structured systems.De�nition 5.2. A chain structured system is a regular rewriting system with rewriting operatorsf1; : : : ; fn such that:� For all 1 6 i < n, fi+1 depends on fi.� For all i and j > i, fi does not depend on fj.� For all i, fi depends on fi.These constrained systems admit a particular representation matrix: if we consider a lowertriangular matrix, no entry on the diagonal is zero as well as the entries of the diagonal right below.Consequently from lemma 6 and starting from n at the root, each operator average complexityorder of growth is inductively multiplied by n or pn at each vertex moving down the chain.5.3.2. Formal di�erentiation. This part is devoted to the study of formal di�erentiation analyzingthe average complexity of the kth derivative operator with copy.Let dk be the kth derivative operator. Let Rke denote the rule dk(!e) �! De. The followingconditions are imposed to formal di�erentiation systems:� For each k, the arity of dk is 1.� For all e 2 Edk , there is only one occurrence of dk(xi) in De for each xi 2 X(Rke ).� There exists an occurrence of dk�1(xi) for some xi 2 X(Rke ) for any integer k > 1 amongthe right members of the Rke 's.� For all e 2 Edk there is no occurrence of di with i > k in the right member De.



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 15The two last conditions simply mean that for some � 2 
, dk(�(x1; : : : ; xr(�))) is in terms ofdk�1(xi) and not in terms of any of the dj(xi)'s for j > k. This formalizes what is encountered inthe classical mathematical di�erentiation.Besides, from the second condition, for each i: Mii(z) 6= 0. Thus, matrix M (z) is of the form:M (z) = cpd1...dk 0BBB@M11M12 M22... . . .M1n : : : : : : : : : Mnn1CCCATo prove that for all k, �Cdkn is asymptotically polynomial we have to show that for all i <dim(M ), Mii(�; � ) = 1.4Proposition 1. For all 1 6 i 6 dim(M ), Mii(�; � ) = 1.Proof. Let r(�) be the arity of the constructor symbol � 2 
. From the �rst and second condition,we use relation (1) and get: Mii(z) =P�2
 r(�)zT (z)r(�)�1= z�0(T (z))(8)Since � = 1=�0(� ), Mii(�; � ) = 1 for all i.The next theorem will state that �Cdkn = O(nk=2+1).Theorem 5.4. Let fdkgk [ fcpg be a set of derivative operators with dk standing for the kthderivative and cp for the copy operator, such that:1. For each k, the arity of dk is 1.2. For all e 2 Edk , there is only one occurrence of dk(xi) in De for each xi 2 X(Rke ).3. There exists an occurrence of dk�1(xi) for some xi 2 X(Rke ) for any integer k > 1 amongthe right members of the Rke 's.4. For all e 2 Edk there is no occurrence of di with i > k in the right member De.then �Cdkn � ckn1+k=2Proof. The formal di�erentiation system structure is a chain structured one. Since every entryimplicitly depends on T (z), we know from our discussion above that operator di's order of growthinductively raises of n1=2 on the way from di to di+1 for all i.Since operator copy has an average complexity of order n, Cdkn = O(n1+k=2).Example 14. Let us consider a formal di�erentiation system with three operators:� Derivative d1� Second derivative d2� the copy operator cp.computing over terms built from constructors a (constant), exp (unary) and � (binary).Here are the rules of this system:Rd11 d1(1) �! 1Rd12 d1(�(u; v)) �! +(�(d1(u); cp(v));�(cp(u); d1(v)))Rd13 d1(exp(u)) �! �(d1(u); exp(cp(u)))Rd21 d2(1) �! 0Rd22 d2(�(u; v)) �! +(+(�(d2(u); cp(v));�(d1(u); d1(v)));+(�(d1(u); d1(v));�(d2(v); cp(u))))Rd13 d2(exp(u)) �! +(�(d2(u); exp(cp(u)));�(d1(u);�(d1(u); exp(cp(u)))))Rcp1 cp(1) �! 1Rcp2 cp(�(u; v)) �! �(cp(u); cp(v))Rcp3 cp(exp(u)) �! exp(cp(u))4In this case,M is a lower triangular matrix, thus blocks have in fact one entry



16 CYRIL CHABAUDWe immediately deduce its representation matrix:M = cpd1d2 0BBBB@ z + 2zT (z) 0 0z + 2zT (z) z + 2zT (z) 0z + 2zT (z) 2z + 4zT (z) z + 2zT (z) 1CCCCAWe see this system obeys the conditions of theorem 5.4. Moreover, all the diagonal entries areequal to z�0(T (z)) = z+2zT (z) with �(u) = 1+u+u2. Graphically, the operators of this systemare represented like this: cpc1n �! d1c2n3=2 �! d2c3n2Actually, an e�ective computation of the ci's gives:cp � n d1 � 1=2p3�n3=2 d2 � 3n2 �5.3.3. Block-triangular matrices. As shown in section 4.2, if a regular rewriting system is repre-sented by an irreducible matrix then its operators average complexities have the same asymptoticbehavior.With an adapted de�nition of dependency between blocks of operators, the properties provedfor triangular matrices hold for block-triangular matrices.De�nition 5.3. An irreducible block B1 is said to depend on irreducible block B2 if there existsan operator f of B1 and an operator g of B2 such that f depends on g.We illustrate this de�nition treating an example, where the representation matrix has thefollowing form:
00..................... .....................
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ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp............ . . . . . . . .. . . . . . . . ........... .......... .......... .......... .......... .......... .......... .. ........................................................................................................................00 M�;�(z)f� B2B1f�

In this �gure, B1 and B2 are irreducible blocks and f� depends on f�. Then we apply Cramer'srule to block B2 and T = (T rj (z); : : : ; T r�(z) +M�;�(z)Cf�(z); : : : ; T rn(z)), where j = n + 1 �dim(B2): Cf�(z) = M�;�(z)B�2 (�; �)det(Id� B2) Cf�(z) + det[�](Id �B2)det(Id� B2) ;(9)where B�2 = adj(Id � B2). Using the same argument as in lemma 4 with z = T (z)=�(T (z)),polynomials in T (z): M�;�(z)B�2 (�; �) and det(Id � B2) are prime. Consequently, functions f�and f� behave as representant of their respective block and follow the hierarchy of the operators ofa triangular representation matrix. This characteristic is independent of the number of functionsin B2 that depend on functions in B1 as shows the previous formula.



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 17Generalized to a representation matrix of the form:0@ B1 0B2... . .. ...��� Bn1Ain which operator f� belongs to block Bn, formula 9 becomes:C�(z) = XfBijBn depends on Bigf�ijf� depends on f�ig A�;�i(z)det(Id� Bn)C�i(z) + det[�](Id �Bn)det(Id� Bn)where A�;�i(z) = M�;�i(z)B�n(�; �).Note that this expression is similar to the expansion of lemma 6 found for a one-operator block.The last term arises in both expansions: det[n;�](Id�Bn)det(Id�Bn) becomes Trn (z)1�Mf�;f� in a triangular matrix.This �nal term says that block Bn depends on itself as a connected component of operators.Besides, it is another way to see that the irreducibility property is locally preserved in thediagonal blocks. 6. General caseThis part aims at giving a systematic way to compute operators average complexities of anyrewriting system.6.1. About the exponential case. The techniques we use are globally the same as in thepolynomial case. Though the position of �0i with respect to � induces small practical di�erences,it induces strong di�erences of complexities.Theorem 6.1. Let ffig be a set of rewriting operators of a system represented by irreduciblematrix M . Assume for each i, the dominant singularity of Cfi(z) is �0i < �.For all i, �Cfin � cfi�nn3=2, where � = �=�0i .Proof. We prove that the multiplicity of �0i in det(Id�M ) is 1 using the same argument as in theproof of theorem 5.1.The only di�erence is that there is no possibility for the multiplicity of factor (T (z) � �0i) toexceed 1. It comes from the expansion of T (z) around �0i:T (z) = �0i � (1� z=�0i)� 1�0i � �0(�0i)�(�0i) ��1 + O((1� z=�0i)2)Consequently, the expansion of Mij(z) and therefore of det(Id�M ) is always of the form: g(z) +h(z)(1� z=�0i).Then, singularity analysis yields: �Cfin � cfi�nn3=2.6.2. Finding the dominant singularity. This part focuses on spotting the cost series radiiof convergence. Using the expansions of lemma 6 and its block equivalent, our intention is totranslate them graphically by going down the diagram and collecting singularities information.Once the representation matrix is turned into a triangular block matrix, you have to computethe blocks proper dominant singularities | i.e. the dominant singularities of each diagonal block,independently of the others | from the root block to the block we want to know the order ofcomplexity.Principle 1. The cost series dominant singularity of operators represented by an irreducible blockB is the smallest proper singularity of all the blocks in the paths from the root blocks to B.



18 CYRIL CHABAUDExample 15. Let a; b; c; d; e denote the diagonal irreducible blocks of the system represented by amatrix of the form: abcde 0BBBB@FF FF 0 F0 F 0 F0 0 0 F F1CCCCAIts associated graph is as follows

ac b d eSuppose you analyze an operator of block e. For each block of the path going from a to e wecompute �k using the eigenvalue method for each corresponding block in M , and the minimal �kis the dominant singularity of Cfe(z) for each operator fe of block e. �Example 16. We take again the example of the shu�e of trees. We introduce operator h and itsrules are: Rh1 h(a; a) �! aRh2 h(a; o(u; v)) �! o(h(u; v); f(u; v))Rh3 h(o(u; v); a) �! o(h(u; v); g(u; v))Rh4 h(o(u1; v1); o(u2; v2)) �! o(h(u1; u2); h(v1; v2))The representation matrix becomes:fgh 0@ 2z2T 2(z) 2z2 0z2T 2(z) 2z2 + z2T 2(z) 0z2T 2(z) + z2 z2 z2T 2(z) + 2z21AThis matrix has a two irreducible square block diagonal: A1 = (Mij) for i; j 2 f1; 2g and A2 = M33alone. We found in example 5 that the operators of A1 had a linear average complexity; we deducethat �1 = �.Compute r3(�; � ). We �nd that r3(�; � ) < 1; consequently �1 is also the dominant singularityof Ch(z). Thus, h has also a linear average complexity. �6.3. Polynomial growth of the average complexity.De�nition 6.1. Let f be an operator of irreducible block B. The average complexity of f iscomputed recursively along all the paths going from the root blocks to B. We call the mainpath(s) of block B the path(s) going from the root block(s) to B after deleting all the paths thatdo not give the right order of the average complexity of f .



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 19Assume the dominant singularity �0 is encountered k times along the main path. If �0 = �then just apply the techniques seen in the preceding section. Otherwise, �0 < �, then invariantlyall the �nal block operators average complexities are of order (�=�0)nn1+k=2Principle 2. Let �0i be operator fi's dominant singularity of block B.Dependencies between blocks with proper singularities identical to �0i induce the polynomialgrowth of the �Cfin 's asymptotic equivalent.Namely, each block taken from the main path gives its contribution to Cfi(z) provided thattheir proper singularities are all �0i . Hence the results of theorem 3.2.Example 17. Suppose we take the modi�ed shu�e of example 16. We replace rule Rh2 by:Rh2 h(a; o(u; v)) �! o(o(h(u; v); f(u; v)); h(u; v))The representation matrix becomes:fgh 0@ 2z2T 2(z) 2z2 0z2T 2(z) 2z2 + z2T 2(z) 0z2T 2(z) + z2 z2 z2T 2(z) + 3z21AEvery operator cost series in block A1 has the same dominant singularity � therefore since all theentries of M depend on T (z), the operators of block A1 have a linear average complexity whereas�Chn = O(n3=2) since r3(�; � ) = 1. �Example 18. Now, we replace rule Rh2 and Rh3 by:Rh2 h(a; o(u; v)) �! o(o(h(u; v); f(u; v)); h(u; v))Rh3 h(o(u; v); a) �! o(h(u; v); h(u; v))The representation matrix becomes:fgh 0@ 2z2T 2(z) 2z2 0z2T 2(z) 2z2 + z2T 2(z) 0z2T 2(z) + z2 0 4z21AOperators f and g still have a linear order of growth while operator h has an average complexityof order n2. Indeed, the dominant singularity of operator h cost series is still � but its diagonalentry in M does not depend on T (z). �Example 19. We change now rules Rh2 and Rh3 like this:Rh2 h(a; o(u; v)) �! o(o(h(u; v); h(u; v)); h(u; v))Rh3 h(o(u; v); a) �! o(h(u; v); h(u; v))The representation matrix becomes:fgh 0@2z2T 2(z) 2z2 0z2T 2(z) 2z2 + z2T 2(z) 0z2T 2(z) 0 5z21AOperators f and g have the same linear order of growth and this time operator h has an exponentialorder of growth.Since r3(�; � ) = 5=4 > 1, we have �0 = 1=p5 < � (we recall that � = 1=2). Consequently:�Chn � c p52 !n n3=2 �



20 CYRIL CHABAUD6.4. Synthesis: algorithmic approach. We give here the main steps of a graphical determina-tion of the order of growth of a given irreducible block B extracted from a general representationmatrix. Basically, we start from the root blocks and we compute block proper singularities whilestoring the multiplicity of the current dominant singularity for each path to block B. More pre-cisely:� Identify the root blocks� Make a traversal collecting information useful to establish the order of growth of an operator(single operator block) or a set of operator (irreducible diagonal block), that is:{ Proper block dominant singularity.{ If this block dominant singularity equals T (z) dominant singularity then check depen-dency on T (z).� If the arity of a node is greater than 1 then apply the "strongest wins" rule to its children.The next example will simulate the action of this algorithm on a system with a node of arity 2.Example 20. Let 0 < �1 < �0 < �2 < � where � is the term enumerative series T (z) singularity.We suppose here that all polynomial blocks have entries that depend on T (z). We put blockproper singularities in the graph rather than operators to see the evolution of block operatorsorders of growth.
...................................... At this point, the smallest radius of convergence winsand obeys the polynomial growth rule................................................................................................................... .................................................................................................................. ....................................................................................................................................................................................................................................

.................................................................................................................. ..................................................................................................................
..................................................................................................................

.................................................................................................................................................................................................................................................................................................................................................. ...................................... .............................................................. Since this radius of convergence is smallerthan the one of the preceding block, the order ofgrowth is invariant.
(�0=�)nn3=2(�0=�)nn2(�0=�)nn5=2(�1=�)nn3=2(�1=�)nn3=2 �2�1�0

�0�0 n�n3=2�
7. Conclusion: simulating rewriting systemsVarious enumerative problems in combinatorics can be simulated with rewriting systems. Wetake the example of path lengths in binary trees .Example 21. We can simulate the computation of binary trees path length evaluating the costseries of a regular rewriting system operator.Let B = o(B1;B2) be a binary tree. The path length of tree B, L(B), is recursively de�ned asfollows: L(B) = L(B1) + L(B2) + jB1j+ jB2jWe simulate it by the action of operator h over term trees built out of constructors a and o. cpdenotes the copy operator. We obtain the following system:



COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR REWRITING SYSTEMS 21AAA --��� vu a hho
AAA��� vu o

���� TTTT@@@@����
-- AAA���
h(u) h(v) cp(u) cp(v)a�a cpcp aocp(u) cp(v)Its related representation matrix is:cph �2zT (z)2zT (z) 2zT (z)�This triangular matrix behaves like the formal di�erentiation one (see example (14)) since itsdiagonal entries are equal to 1 in �; � .As expected, the copy operator has a linear order of growth and the average complexity ofoperator h is of order n3=2. Combinatorially, �Chn corresponds to the mean path length of a binarytree of size n. �The question is how far we can express such enumerative problems in terms of rewriting systems.We actually imagine there exists a class of combinatorial objects translated into a "rewriting systemlanguage" making their enumeration systematical.AcknowledgementsThe author thanks Mich�ele Soria and Philippe Flajolet for their constructiveremarks and suggestions. References[1] A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences. Academic Press. Com-puter Science and Applied Mathematics. 1979.[2] C. Choppy, S. Kaplan and M. Soria. Complexity analysis of term-rewriting systems. Theoretical ComputerScience, 67: 261-282, 1989.[3] P. Flajolet and A.M. Odlyzko. Singularity analysis of generating functions. SIAM Journ. on Discr. Math..3(2): 216-240, 1990.[4] P. Flajolet and R. Sedgewick. An introduction to the analysis of algorithms.Addison-Wesley. Reading. 1996.[5] P. Flajolet and J.M. Steyaert. Patterns and pattern-matching in trees. Inform. & Control. 58: 19-58, 1983.[6] A.I. Markushevich. Theory of functions of a complex variable. Chelsea Publishing. New York. 1977.[7] H. Minc. Nonnegative matrices.Wiley. New York. 1988.[8] J.W. Moon and A. Meir. On the altitude of nodes in random trees. Canad. J. Math.. 30: 997-1015, 1978.LIP6, Universit�e Paris 6, 4 place Jussieu, F-75252 PARIS CEDEX 05E-mail address : Cyril.Chabaud@lip6.fr


