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COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR
REWRITING SYSTEMS

Cyril Chabaud
Laboratoire d’Informatique de Paris 6

F-75252 PARIS

ABSTRACT. Regular tree rewriting systems identify with a representation matrix
from which we make an algebraic analysis in order to evaluate the average com-
plexity of all the system operators. Then, a joint analysis of the dominating eigen-
value and the directed graph of the representation matrix gives a classification
of the system operators using the results of singularity analysis as mathematical
background.

CLASSIFICATION DES OPERATEURS PAR COMPLEXITE
DANS UN SYSTEME DE REECRITURE REGULIER

RESUME. Un systeme de réécriture régulier est caractérisé par une matrice de
représentation dont ’analyse algébrique permet d’évaluer la complexité moyenne
des opérateurs du systeme. L’analyse de la valeur propre dominante de la matrice
de représentation et de son graphe orienté dégage une classification des opérateurs
du systéme en s’appuyant sur des résultats d’analyse de singularité.






COMPLEXITY CLASSIFICATION OF OPERATORS IN REGULAR
REWRITING SYSTEMS

CYRIL CHABAUD

ABSTRACT. Regular tree rewriting systems identify with a representation matrix from which
we make an algebraic analysis in order to evaluate the average complexity of all the system
operators. Then, a joint analysis of the dominating eigenvalue and the directed graph of the
representation matrix gives a classification of the system operators using the results of singularity
analysis as mathematical background.

1. INTRODUCTION

This paper studies regular tree rewriting systems according to the work of C. Choppy, S. Kaplan
and M. Soria [2].

An algebraic specification can be expressed as a term tree constructed with basic constructors
and operators defined by rewriting rules. The cost of an operator is the number of steps necessary
to reduce a term tree to its normal form (we know from [2] that this reduction is confluent and
the cost is independent from the rewriting strategy). Such rewriting systems are typically made
of expanding rules that recursively create tree duplications and contracting rules that stop the
process. We are interested in the global behavior of rewriting systems and will analyze the average
cost of the rewriting operators.

Here are two examples to give an idea of what i1s going to be discussed:

Ezxample 1. This is a formal expansion of operators cos and sin computing over binary term trees
built out of binary constructor + and constant a.

sin

a % a
_l_
+ Sin / \
ANWA
sin(x)  cos(y) sin(y) cos(x)

COs

a % a
_|_

CcOos / \
E VANV
cos(x) cos(y) sin(x)  sin(y)
The average complexity — expressed in terms of the average size of the resulting tree — of both

operators sin and cos is equivalent to 3/32v/27m(4/v/3)*n%/? n odd, where n is the number of
nodes of the initial tree. ¢
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Ezample 2. We are treating a formal differentiation with term copy that computes over binary
trees whose nodes are multiplication * and constant a. The rewriting rules form the following
system:

dla) — a

d(x(u,v)) —>  +(x(d(u), ep(v)), *(d(v), cp(u)))
epla) — a

ep(x(u,v)) —  «(ep(u), ep(v))

The average complexity of the derivative operator is of order n®/? while the copy operator is
linear. ¢

The cost of an operator is evaluated through its generating function. We shall see that the
operator cost generating functions of a rewriting system are linearly dependent. Thus, all the
information about the rewriting system is contained in a representation matriz from which arise
nice properties. Indeed, to analyze the dominant singularity of cost generating functions, we use
the nonnegativity property of representation matrices through Perron-Frobenius theory.

Since the cost generating function of an operator is a quotient of determinants, we manage to
get the representation matrix into an irreducible block triangular form whenever it is possible.
Then we study each block dominating eigenvalue and deduce the asymptotic behavior (constant,
polynomial, exponential) of the average cost of that operator.

Sections 2 and 3 are devoted to recapitulate essential results of [2]. Section 4 will discuss the
structure of representation matrices and state equivalences to determine the singularity of smallest
module using the dominating eigenvalue of irreducible matrices. Section 5 extends these results
from diagonal matrices to irreducible block diagonal matrices in the polynomial case. An important
part of this section is devoted to showing the close relation between the graph associated to the
representation matrix and the polynomial growth of the order of the average complexity of its
operators. As immediate application, we shall detail formal differentiation analyzing the average
complexities of derivative operators of order k. The purpose of section 6 is to treat applications
using the techniques of this paper. They are based on two recurrent principles: finding the
dominant singularity of operator cost series and applying the polynomial growth rule to compute
average complexities orders.

2. OPERATOR COST GENERATING FUNCTION

Here we first define regular rewriting systems and the cost generating function of an operator.
Then, we give the most important results concerning the representation matrix of regular rewriting
systems.

2.1. Regular rewriting systems. Given a set [ of operator symbols with arity and a set X of
variable symbols, we denote by Trux the set of terms built from F U X. Let Var(t) be the set of
variables in term .

A rewriting rule R is a production ¢ — d where ¢ and d are terms and Var(g) CVar(d). A
rewriting system 1s a set of rewriting rules.

Rewriting rules define rewriting relations between terms: given two terms ¢ and u, ¢ rewrites
into u (noted t — u) according to rule R iff there exists a subterm of ¢ rooted in m and a
substitution ¢ : X — Tpyx such that the m rooted subterm of ¢ is equal to go and u results
from the substitution of m for do in ¢:

t/m=go and u = t[m +— do]

A term 1s in normal form if it cannot be rewritten anymore. Let €2 be a set of constructors and
Ta the family of terms built from .
A regular rewriting system 1s defined as follows:

e every term of Tgq is in normal form.
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e the computation of an operator over 7T arguments always ends with a finite number of
rewriting steps on a term in normal form.
e the normal form is unique and the number of rewriting steps does not depend on the strategy.

2.2. Operator cost. The cost of an operator f on a term ¢ € T is the number of rewriting steps
needed to get its normal form.

Assume that operator f is of arity k. Let CJ denote the cumulative cost of f over k-forests of
total size n:

Ch= " > cost(f(tr,... . t)).

t1,... ,tkETQ
leal £ Flexl=n

If all the k-tuples of size n have the same probability, the average cost of f over terms of size
n is:
cf
Ty
where T, is the number of k-tuples (¢1,...,%;) such that for all 1 < i < k, ¢; € Tq and
[ti] + -+ |te] = n.

We get the evaluation of C{ and T,, extracting coefficients from the cost series of f: C¢(z) =
S Cf 2" and from the enumerative series T'(z) of Tq.

il

2.3. Structure of the rewriting system rules. Term construction is formalized through Q-
enumeration while rewriting rules in an €-definition are submitted to particular constraints in
order to form regular systems.

Definition 2.1. [2] Let E be a set of indices.
A Q-enumeration is a finite family of n-tuples (J.)cep of 7}’{ such that:

e each &, contains at least one constructor symbol.
o for any t € 74 there exists a unique substitution o : X — 7q and a unique e such that
i=d.o.

A Q-definition of an operator f is a finite set of rewriting rules Ry = (R{;)eeEf such that:
R : f(we) — De
where (Je)eeEf 1s a 2-enumeration of Tg; and each right member D, is of the form:
De=K(x1,...,&n,¢1,. .., bm).
The header K only contains constructor symbols; the x;’s are such that:
{e1,..., 20}t C Xe = Var(d,)
and each ¢; is of the form:

¢] :g(yla e ayTg)
where g is an operator with arity k. Moreover, {y1,...,¥y-,} C X and Vi # j, y; # y;

2.4. Matrix representation of rewriting systems. Let us start with some notations: given a
regular system rule
Ré : fl((;}’e) — D

we denote by:

e ¢;(R!) the number of times f; occurs in the right member D..

e b(R!) the number of constructor occurrences in ..

e X(R.) the number of variable occurrences in oe.

e r; the arity of f;.

Moreover,

C(z) = (Cp (2), -, Cp, (2))

—

V()= (T (2),..., T (2))

and
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Theorem 2.1. [2] The cost series of a regular system can be written:
C(z) = M(2).C(z) + Y (2).
where C_"(z) is the cost vector and Y(z) is the term enumerating vector. The square matriz M (z)
gives the form of the system rules: given M(z) = (M; ;(2))1<i j<p, we have:
) Migl)= Y (R T()X
RLERy,
This result can also be written:

Cr(2) Mia(z) - Mip(2)\ [(Cr(2) T (z)
2) = N R

Cr,(2) Mpi(z) - Mpyp(2)) \Cf,(2) Tre(z)

Hence, we have:
det((Td — M)l (2))
3 C =
3) 13 = eaa =)
where Id is the identity matrix and (Id-M)(z) is the (Id-M)(z) matrix where the i** column
is replaced by Y(z)

Ezrample 3. Let us take our first example with operators sin and cos. Its representation matrix
is:

sin 22B(z) 2z2B(z)
M =

cos 22B(z) 2z2B(z)
where B(z) stands for the binary trees enumerative series. Hence, we have:
B(z)(1 + B*(2))

3B%(z)—1

Ezample 4. Our simple differentiation system of example 2 yields this representation matrix with
the same enumerative series B(z):

Csin(z) = Ccos(z) = ‘

d 22B(z) 2zB(z)

M =
ep 22B(z)
Applying the preceding theorem gives:
B(z) B(z)
e = d =
Col?) =155 4 Gl =507 *

Ezample 5. [2] This example shows a shuffle of trees with two operators f and g. Terms are binary
trees constructed from binary symbol o and constant a.
Let B(z) denote the enumerating series of binary trees.

R{ fla,a)

— a
RJ; flo(u,v),a) — g(u,v)
Rf; fla, o(u,v)) — g(u,v)
R f(o(ur,v1),0(uz,va)) — o(f(u1, uz), f(v1,v2))
RY g(a,a) — a
RS g(a, o(u,v)) — g(u,v)
RS g(o(u,v),a) — g(u,v)
—

Ry glo(ui,v1), 0(uz, va)) o(f(ur, uz), g(v1, v2))

The representation matrix M (z, B(z)) is:
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7 222 B%(z) 222
g 22B%(z) 22+ 22B%(2)
We easily deduce both Cf(z) and Cy(#) with formula 3:

B(2)

1o o)

Cr(2) = Cy(2)

3. AVERAGE COMPLEXITY

We shall first give an overview of some results concerning the enumeration of trees in order to
state two key theorems about the asymptotic behavior of the average complexity of the operators.

3.1. Counting trees. This section briefly recalls the singularity analysis methods to estimate
the coefficients of the enumeration series of simple families of trees. Let T'(z) denote this series.

T(z) = Z At = ZTnz"
teT n
where T, is the number of trees of size! n. As usual, [¢"]T'(z) denotes the coefficient of 2 in T'(z).
Theorem 3.1. [5, 8] Let T'(z) be a series defined as follows:
T(z) = 2®(T (7))

where ® is an aperiodic? polynomial function such that ®(0) # 0 and ®'(0) = 0.
Then, T(z) admits the following expansion around z = p:

T(:) = hie) + (=) 1~

where h and g are analytic and h(p) = 7 and g(p) = — ‘%(%
Moreover,

(4) T = ﬁ%%v””w<“0<3)

Sketch of proof. Let p be the dominant singularity of 7'(z) and 7 be the limit of T'(z) at p.
p is the point of smallest module where T'(z) ceases to be analytic. Indeed, p is defined by the
system:

T® (1) —®(r) =0 T being the smallest real positive root

(5)

"= 3

It follows that p < 1.
To get the expansion of T'(z) around z = p, we expand u/®(u) around 7. That gives:
T n . T®" (1)
z:@—l—ch(z—r) with CZ:_2<I>/(7-)

nx2

Then, we deduce the expansion of T'(z) around z = p:

T(z)=7+Y en (1— %)m

nxl

1When applied to term trees, it denotes its number of nodes
2j.e. there is no polynomial ¥ and no integer d > 1 such that Yy ®(y) = ¥(y).
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thus:
T(z) = h(z) +g(2), /1 = P

with ¢ and A analytic.
Applying singularity analysis leads to formula (4). O

Ezample 6. We treat now the example of unary-binary trees, where B(z) denotes their enumerative
series.

A tree is defined recursively: from a node, we can attach a terminal node (a leaf); one tree if
the node is of arity 1; two trees if the node 1s of arity 2.

Since the size of a node is 1, we have:

B(z) = 2z + 2B(2) + 2B%(2) = 2(1 + B(2) + B*(2))
Further computations give:

12— V1-2:-322 1—-2z 1+z ] z
B a V' 3

B(z) =

() 2z 2z 2z

The dominant singularity is z = 1/3. ¢

Ezample 7. Take the unary-binary trees enumerated by B(z). We solve the system 5 and use

relation 4. We find:
r=1andp=1/3

6= 517 (5) 0 (1v0 (7)) ¢

Remark 1. If T(z) have multiple singularities on its circle of convergence® (take binary trees as
an example), contributions add themselves and this does not change the asymptotic behavior of
[2"]T'(%). See works of Flajolet and Sedgewick [4] for details.

therefore:

Erample 8. Let B(z) = 2(1 + B%(z)) be the enumerative series of binary trees. Its singularities
are gathered in the equation: 72 = 1. Consequently, we have:

B, = \/%Qan—S/? (1 10 (%)) n even
B, =0 n odd

3.2. Average cost of operators. Since we want to estimate the average cost Ci of operator
fi, we have to evaluate [2"]C},(z) as n — oco. This work has been done in [2] and it leads to the

following results.

T(z)
. : . : o . eI
Since €2 1s a finite set of constructor symbols with finite arities, ® is always a polynomial function.

Thus, equation 3, giving the cost function of an operator f;, is of the form:

Cf,(z) — PZ(T(Z))
Qi(T())
where T'(z) is the enumerative series of T and P;, @; are prime polynomials with integer coeffi-
cients.

Here is the case separating theorem stating the supposed average complexities behaviors ac-
cording to the position of the singularity of T'(z) with respect to the zeros of Q;(T(2)). .

First notice that for any enumerative series of simple families of trees T'(z), we have: z =

Theorem 3.2. [2] Let f; be a regular system operator with cost generating function:
Pi(T(z))
Cr(2) = 577
Qi(T())
where P; and Q; are prime polynomials. Let p be T(z) dominating singularity and let py; be the
smallest positive root of Q;(T(z)).

3This occurs precisely when ® is aperiodic
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o if p < py; then C:'TJ:’ =ca(l1+0(1/n))
o if p=po; then Cfi = con®?/?(1 + O(1//n))
e if p> po; then Cfi = cza”n™H/2(1 4 O(1/n))

where the ¢;’s are real constants that depend on P;, Q; and T, and q and r are positive integers.

Remark 2. With singularity analysis, we can give the order of growth of such operators in terms
of the multiplicity of factor (B(z) — 7) in the denominator of operator cost series. That is, with
the same notations as in theorem 3.2, assume there exists operator f; such that C¥,(2) is of the
form :

bi(B(2) _ 1 Pi(B(2))

Qi(B(2))  (B(z) = 7)° Qi(B(2))
where s is a strictly positive integer and ); a polynomial such that Q;(r) # 0. Expanding the
preceding equality around 7 we see that its leading term is in (1 — z/p)_s/z. Thus, applying the

transfer lemma:
t = tara (#3) e (v0(37))

Dividing this expression by the asymptotic evaluation of [z7]T"(z), we find that the order of

1

growth of Ci is O(n%;)

Ezrample 9. Let us take the shuffle defined in the preceding example. We found
B?(2)

Cr(s) =Cyla) = 53— 2:2B2(z)

Replace z by B(z)/®(B(z)):
B:)(1+ B(2)
(1=B(2))(1+ B(z))

Note that 7o = 1 = 7 therefore pg = p so we are in the polynomial case.
From the previous remark we deduce that C/ = C9 = O(n). ¢

Cr(z) = Cy(2) =

4. STRUCTURE OF REPRESENTATION MATRICES

Studying the representation matrix structure will precise the results of theorem 3.2. It consists
in determining the dominant singularity of any operator cost series isolating each group of oper-
ator according to their mutual dependencies. This notion is translated graphically into strongly
connected components in which each operator cost series has the same radius of convergence.

4.1. Strategy. Let M(z,7T(z)) be the representation matrix of some regular rewriting system
and -
e

the cost series associated to operator f;.

To evaluate [27]C},(%), we have to look for the dominant singularity of Cy,(z), that is, the
smallest positive root of det(Id—M).

The idea 1s to turn M to a triangular block matrix — whenever it is possible — through a suitable
permutation matrix.

Ais 0
Asy As s

(6) - .
Ara o0 App—1 Arg

Then, we study the dominatingeigenvalue of each block — remember that det(Id—M) = A(1) where
A is the characteristic polynomial of M. So, we have to prove that there exists a positive domi-
nating eigenvalue in each block A;; corresponding to the smallest positive root of det(Id—A4; ;).
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Since det(Id-M) = Hle det(Id—A4; ;), we will be able to deduce the order of the asymptotic
expansion of Cfi for each operator f;.
When matrix M is of the form above, we say that M is reducible.

Definition 4.1. Let B be a square matrix. B is reducible iff there exists a permutation matrix

P such that:
T (B1 0
PBP” = <32 Bs

where B; and Bjs are square matrices.
Otherwise B 1s sald to be ¢rreducible.

Recursively applying this process to each block, we obtain matrices of the form (6) where each
diagonal block A; ; is irreducible.

With this notion and the nonnegativity property of representation matrices, we can use the
Perron-Frobenius theory to prove the existence of positive dominating eigenvalues in each diagonal
block.

The results below are valid for irreducible matrices, as if we were focusing on a diagonal square

block Az,z
4.2. Irreducible matrices.

Lemma 1. (Frobeniiis [1, 7]) An irreducible nonnegative matriz A has a real positive eigenvalue
r such that:
r > |/\Z|

for any eigenvalue A\; # r of A. Furthermore, there is a positive eigenvector corresponding to r.

Theorem 4.1. Let M(z,T(z)) denote a representation matriz. If M is irreducible then there
erists a unique function r(z,T(z)) with values in R such that:

o Yz €1[0,p] r(z,T(2)) is an eigenvalue of M (z,T(z))

o Yz €10,p], Yk, r(2,T(2)) > |Ai(z, T(2))]

where the X\;’s are all the eigenvalues of M different from r.

Proof. M is a representation matrix therefore all the M; ;’s are polynomialsin z, T'(z) with positive
integer coefficients. Since T'(z) is positive for z € [0, p], M(z,T(z)) is a nonnegative irreducible
matrix. Consequently, from lemma 1 there exists a dominating positive eigenvalue r(z, T(z)) for
all z € [0, p].

This eigenvalue is unique for all z € [0, p]: assume there exists I C [0, p] such that for all z € T
there exists another dominating eigenvalue r3(z,7(2)). This means that for some zy, we have
7(z0) = r2(z0), and contradicts with the irreducibility hypothesis of M. O

The next theorem gives an easier way to spot the smallest root of det(Id—M) on the real
positive axis: instead of computing r(z,T(z)), we just look for the highest eigenvalue of matrix
M(p, ).

Definition 4.2. If C € M, (C) and A = (a;;) is a nonnegative matrix of M, (C) such that
|C] < A (ie. |eij] < aij for all 4, ), then A is said to dominate C'.
Lemma 2. (Wielandt [1, 7]) If a complex matriz C' is dominated by an irreducible matriz A with
mazimal eigenvalue v, then for every eigenvalue s of C':

sl <r
Lemma 3. Let M(z,T(z)) be an irreducible representation matriz and r(z,T(z)) denote the dom-

wmating etgenvalue of M.
Then r(z,T(z)) grows strictly as z € [0, p] and lim,_, 100 7(2,T(2)) = 0.

Proof. Let zy and z; be two points of [0, p] such that zp < z1. Since T'(z) grows as z € [0, p], the
MZ»/J»S are increasing functions of z. So, we have:

0< M(z0,T(20)) < M(21,T(21)).
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Therefore: r(zg, T(20)) < r(z1,T(21)).
The theory of nonnegative matrices gives us a lower bound for r(z,T(z)); namely we have for
instance:
0 <minY  M;;(z,T(2)) < r(z,T(2)).
T

Since the entries of M are polynomials in z and T'(z) with positive coefficients, so is the quantity
min; >, M;;(%,7(z)). Hence the result. O

Lemma 4. Let M(z,T(z)) be an irreducible representation matriz. Let py denote the smallest
positive root of det(Id—M) and py; denote the dominant singularity of Cy,(z).
Then, for each operator f;, po = po;.

Proof. The easiest way seems to show that rp = ;. It follows that pg = po; since u/®(u) is a
strictly increasing function on the positive real axis.

Tt is necessary to show that (T'(z)— ) does not divide det(Id—Af). Thus, since the numerator of
C',(z) is a polynomial which turns to be in T'(z), we just have to prove that det(TId— M) (po, 7o) #
0.

1-Myy My, - Y1 - =M,

M3y 1-=Mys -+ Yo -0 =My,
det(1d — M) (2, T(2)) =

—dVn 1 —iVin 2 Yn 1_Mnn

Expanding det(Id — M)F1(z, T(z)) by the ith column, we get:
(7 det(1d — M) (py, ) = > ¥iB; 5(1)
j=1

where B(z) is the adjoint matrix of (zId—M): adj(#ld — M). The dominating eigenvalue of
M (po, m0) being r(po, 70), B(r(po, 70)) is a positive matrix; thus all its entries are strictly positive.
Since Y (z) is a positive vector, we have, from relation (7):

det(Id — M) (pg, m0) # 0

So, (T(z) — 7) does not divide det(Id — M)Fl(z, T'(2)).
Finally, po = po;. O

Corollary 1. Let M(z,T(z)) denote an irreducible representation matriz.
Then the average complexity of every operator f; of M has the same order of growth.

Proof. Since for all ¢, Cy,(7) has a unique dominant singularity, we just apply the results of
singularity analysis. O

Theorem 4.2. Let M(z,T(z)) be an irreducible representation matriz of some regular rewriting
system. Let py denote the smallest positive root of det(Id—M) and p be the dominant singularity
of T(z). Let r(z,T(z)) be the dominating eigenvalue of M.

o r(p,7)=11f po=p.
o r(p,7)>1iff po < p.
Proof. Since
det(Id — M) = T (1 = )™
k
where the A;’s are the eigenvalues of M and the ay’s are their respective multiplicities, finding
the smallest root of det(Id—M) consists in comparing r(z, T(z)) with 1.

First, assume r(p,7) = 1; p is a root of det(Id—M). By lemma 3, r grows strictly on [0, p].
Therefore, there is no other p; < p such that r(p;, ) = 1. Furthermore r is the dominating
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eigenvalue, so we have py = p. Conversely, if pg = p, det(Id—M)(p, 7) = 0; thus for some kg, we
have Ag,(p, 7) = 1. As py = p, we have Ay, = r for r is unique and grows strictly over [0, p].
Next, assume r(p, 7) > 1. Since r strictly grows on [0, p], this implies that py < p. Reciprocally,
if po < p, for the same reasons, we have: r(pg,7) = 1. Moreover, r grows strictly therefore
r(p,7) > 1. O

Ezample 10. Take example 1 with operators sin and cos. We recall that Cees(z) = Ciin(z) =
B(z)/(1 — 42B(z)) where B(z) stands for the binary trees enumerative series. The dominating
eigenvalue function r(z, B(z)) of its representation matrix is:

r(z, B(z)) = 42B(z)

We notice as expected that det(Id—M) = 1 — r(z, B(z)) corresponds to both Csin(2) and Cees(2)
denominators.

Since r(p, T) = 2, we are sure that there exists some py such that 0 < pg < p. We have there a
simple trick to find out that the average complexities of both operators have an exponential order

of growth. ¢

5. POLYNOMIAL CASE

The polynomial case corresponds to a critical point where the dominant singularity of the cost
series is equal to the singularity of the enumerative series of the Tq terms, namely: pg = p.

We shall see in the sequel that the order of growth of the average complexity of any operator
fi can be determined quite easily using the methods of the preceding section. The first part deals
with irreducible representation matrices and then the reducible case will be discussed using the
example of formal derivation.

5.1. Order of operators in an irreducible matrix. We show that the average case complexity
of any operator in a rewriting system represented by an irreducible matrix is generally linear in
the size of the term trees, with a pathological case in n3/2.

Lemma 5. (Frobeniiis [7]) The marimal eigenvalue of an irreducible nonnegative matriz is a
simple root of its characteristic equation.

Theorem 5.1. Let M = (M; ;(2,T(%))) be an irreducible representation matriz and v(z,T(z)) be
its dominating eigenvalue. Assume r(p,7) =1

° C:’T{k ~ ¢y, n3/2 if no entry of M depends on T|(z).

o Ok~ cr. v if there exists at least one entry of M that depends on T'(z).

where the c;, ’s are constants depending on fi.

Proof. In the first case of the theorem, we assume that the representation matrix M has entries
in z only. Therefore, there exists an algebraic function A that i1s solution of the characteristic
polynomial x(z, u) = det(uld — M (z)) and such that A = r for z > 0. As we have seen before, the
dominant singularity of det(Id — M (z)) in the polynomial case is z = p, therefore, since r(p) = 1,
we expand det(Id — M(z)) around p and use the transfer lemma to get the asymptotic estimation
of Cf*.

The roots of det(Id — M (z)) are the poles of Cf,(z). These roots correspond to the solutions
of the equation r(z) = 1, with z € (0, p]. Indeed, we have:

det(Id — M(z)) = (1 — r(2))Q(2)

where
dim M (z)—1

0= [ (-Mm)
k=1
with the Ag’s being the eigenvalue functions of M (z). From the Perron-Frobeniiis theorem, we
know that
Yk, [Ak(p)l <r(p) = 1.

Consequently, @(p) # 0.
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Since A(z) is an algebraic function around z = p, we know from the implicit function theorem
that A(z) is analytic over a neighborhood of p. But before applying the transfer lemma, we have to
determine the order of p as solution of the equation r(z) = 1. So, we need to study the successive
derivatives of A at p. In that case, we prove that A’ (p) # 0, that is, p is a solution of order 1 of the
equation 7(z) = 1. Though this result has already been proved in the general case as a corollary
of the implicit function theorem (see for instance [6]), our proof uses Perron-Frobenius theory to
establish this property.

We shall assume A (p) = 0 and show a contradiction. We recall that r(z) grows for z > 0. We
make here a few remarks:

e if X (p) = 0 then the first non zero derivative at p has odd order. Indeed, the local behavior
of A would contradict the fact that r grows strictly.
e Thus there exists integer £ > 0 such that the expansion of A around z = p yields
M =1+ Y oz —p),
iz2k+1
where ¢; > 0 for all j. For convenience, we assume c3 # 0, but the end of this proof would
still hold with A%®)(p) = 0 for all integer 0 < k < N, where N is an odd integer.
Locally, |A(p+zei?)|is a growing function of > 0 along the branches ; = 2i7/3 and 6 = —2in/3.
We consider ¢ = p + xe™5" such that |¢| < p. We have:

A > Alp) =1
Moreover, M(|¢]) dominates M (¢). Indeed, from the triangular inequality: Vi, j |M; ()] <
M; ;([C]) since all the M; ;’s are positive coefficiented polynomials. We apply now Wielandt’s

theorem (see lemma 2):
Since A(() is an eigenvalue of M (¢) and M (|{]) dominates M ({) then we have:

A(CD > 1A > Ap) =1,
that is:
r([Ch) > r(p) = 1.
This contradicts:
|¢] < p and r grows over (0, p].
Consequently, around z = p the expansion of det(Id — M (z)) is:

det(ld — M(2)) = (p = 2)Q()[' (p) + D _ ex(p — 2)"]
k>0
that is:
det(ld — M(2)) = (1= 2/p)Q(=)[pr (p) + > _ ex(1 = 2/p)*]
k>0
As previously seen, the numerator of Cf, (z) does not vanish at z = p, therefore, applying singu-
larity analysis we have:
CiF ~ p™".
Then, dividing by 7, gives:
C’,{k ~ cfkn?’/z.
Now, we study the second case of the theorem. Let P(z,y) = det(Id — M(z,y)). Since matrix
M (1,y) has the same structure as matrix M(z, 1) (i.e. the univariate matrix in z), for the same
reasons as above, we have P)(p, 7) # 0. Substituting y by 7'(2) around z = p gives:

P(,T(2) = a(l - 2/p)/% + O((1 - 2/p)
with o £ 0. Applying singularity analysis, we have:
Clr ~ Brp~"n~ 42

Then, dividing by 7, gives: B
Clv ~ cpom.
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The reader may report to examples 9 to see what happens in the non pathological case before
examining the following example:

Ezxample 11. Consider matrix:

M(z,T(z)) = (QZ QZZ)

z

where term trees are unary-binary trees enumerated by T'(z) = z(1 + T'(z) + T%(z)). We recall
that:

r=1 and p=1/3
Let us compute det(Id—M):

det(ld — M) = (1 —32)(1 — 2) = w

It appears that the multiplicity of factor (T'(z)—7) is 2. Consequently all the operators represented
by M will have an average complexity of order n®/%. ¢

5.2. Graphical translation of representation matrices. This section is an introduction to
the study of systems represented by reducible matrices. Their associated graph is of precious help
since we will be able to draw out a hierarchy between operators.

Let Gar be the directed graph of matrix (M; ;). This graph is built as follows: put an arrow
from vertex j to vertex ¢ if M; ; # 0.

Theorem 5.2. M is an irreducible matriz if and only if Gyr is strongly connected.

This theorem brings out the interest of graphs in the computation of operators average com-
plexities. Since we have shown that the average complexity of all the operators represented by
irreducible matrices have the same order of growth, we will just have to symbolize such blocks by
a single vertex.

From now on, the Y symbol will denote a non identically 0 block that is irreducible on the
diagonal.

Ezample 12. Assume matrix M is of the form: . Its associated graph

b =D B 2
=R B, =
%% o

o ooo
cooc oo

1s:

Oz' j= ﬁ@

strongly connected simplified graph
component

0
e

We can see the functions that have the same order of growth (here f, g and k& have the same order
of growth). We define there two kinds of vertices. The first one is a "round vertex” where the
operators that form a strongly connected component are put together in a circle. In the case of a
single operator block, this representation is valid when this operator depends on itself; otherwise
there 1s no circle around it. ¢
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5.3. Reducible matrices. We recall that matrix M is reducible if, through a suitable permuta-
tion matrix P, M is turned into a matrix of the form:

Arq
Az Az 0

the A; ;’s being square blocks.

Note that simplified graphs are DAGs with operators (or set of operators) as vertices. The idea
is to find inductively the order of growth of the system operators from the roots of the graph to
the operators block we need to draw the common cost series dominant singularity. Let us start by
the most elementary block-triangular matrices.

5.3.1. Triangular matrices. Here diagonal blocks are actually single entries, the simplest case of
triangular block matrices.

We compute by induction on dim(M) the operators average complexities turning the operators
cost series into a form that involves the operators cost series of the preceding rank.

Definition 5.1. An operator g is said to be a predecessor of operator f if M;,(z,T(z)) is not
identically zero.

This definition formalizes the condition that there exists a rewriting system rule where f de-
pends on g.

Lemma 6. Let {f1,..., fa} be a set of system operators such thal it can be represented by a
triangular matriz M. Let {fi,, ..., fi, } with1 <41 < ... < ix < n be the set of all the predecessors
of operator f;, i < j < n.

Then, Cy,(z) admits the following expansion:

My ¢, (2 My, 1. (2 T (2
ij(Z) B 1 _J;&;;L ()Z) T (Z) ot 1 _J;W;:f(j ()Z) T (Z) * 1= Mff‘d‘)j(z)
Proof. This expression arises from the formula 2 after expanding the line corresponding to operator
fi- O
This expansion infers the following theorem:
Theorem 5.3. Let 1 be the limit value of T(z) at z = p. With the same hypothesis as the previous

Pr(T(2))
(T(z)=7)"2Qx(T(2))

lemma, assume for all ix, Cy, (z) = such that for all A, Py and Q) are prime

polynomials. Let o = maxy {ay}.

o If My, ;. depends on T'(z) then Cy,(2) = (T(Z)_I:Jjaji(lzggl(T(z))

o If My, ;. does not depend on T'(z) then Cy, (z) = (T(Z)_’:J)'ﬁf&(T(z))
where the P;’s and Q;’s are prime polynomials and for all j, Q;(7) # 0.

Proof. We are here interested in the expansion of (1 — My, ¢, ) in terms of T'(z). This computation
can be lead considering My, ;. as a one-entry irreducible matrix, thus we just apply the results of
theorem 5.1 to extract the right power of factor (1'(z) — 7) from the expansion of (1 — My, ;.).
Moreover, since all the Py’s and Qy’s are prime polynomials, and clearly (T'(z) — 7) does not
divide the Py’s, the My, ¢, ’s and 177 (z) we can find two possible expressions for (¢, (z) arising
from My, ¢, dependency on T'(z). O

Graphically, the average complexity of any operator f is computed recursively starting from
the root of the graph and evaluating the order of the average complexity at each node. In pure
polynomial cases, if the path to f is not unique, the path that leads to the right average complexity
order in most of the cases (depending on local pathological case) is the longest one.
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Ezxample 13. Suppose you have five operators a, b, ¢, d, e represented by a matrix of the form:

a (X

S

c | * 0 %

d 0 % 0

e \0 0 % K *
We assume that we are in the polynomial case and all the diagonal entries of M depend on

T(z).

The corresponding graph of M is:

a n

3/2
n
; ¢
n3/2

5/2

The average complexity of e is of order n%/2. Tt corresponds to the longest path from a to e. ¢
In order to bring up formal differentiation, we introduce chain structured systems.

Definition 5.2. A chain structured system is a regular rewriting system with rewriting operators

fi,..., fn such that:

e Forall 1 <7< n, fiy1 depends on f;.
e For all ¢ and j > ¢, f; does not depend on f;.
e For all 7, f; depends on f;.

These constrained systems admit a particular representation matrix: if we consider a lower
triangular matrix, no entry on the diagonal is zero as well as the entries of the diagonal right below.
Consequently from lemma 6 and starting from n at the root, each operator average complexity
order of growth is inductively multiplied by n or \/n at each vertex moving down the chain.

5.3.2. Formal differentiation. This part is devoted to the study of formal differentiation analyzing
the average complexity of the kth derivative operator with copy.

Let di be the kth derivative operator. Let R’; denote the rule di(we) — D.. The following
conditions are imposed to formal differentiation systems:

e For each k, the arity of dj 1s 1.

e For all e € Fy, , there is only one occurrence of di(z;) in D, for each z; € X(RE).

e There exists an occurrence of dj_;(x;) for some z; € X(R¥) for any integer k£ > 1 among

the right members of the R%’s.
e For all e € Fy4, there is no occurrence of d; with ¢ > k in the right member D..
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The two last conditions simply mean that for some o € Q, di(a(z1,...,%,(q))) is in terms of
dr—1(z;) and not in terms of any of the d;(z;)’s for j > k. This formalizes what is encountered in
the classical mathematical differentiation.

Besides, from the second condition, for each i: M;;(z) # 0. Thus, matrix M(z) is of the form:

cp Mll

g \ My, M

To prove that for all k, C% is asymptotically polynomial we have to show that for all i <
dim(M), M;;i(p,7) = 1.2

Proposition 1. For all 1 <i < dim(M), My(p,7) = 1.

Proof. Let r(a) be the arity of the constructor symbol & € Q. From the first and second condition,
we use relation (1) and get:

Mir() = T peq r{a)T ()0

= (1(2))
Since p = 1/®'(1), My;(p,7) = 1 for all . O

(8)

The next theorem will state that C’ffk = O(nk/z‘H).

Theorem 5.4. Let {di}r U {cp} be a set of derivative operators with dy standing for the kth
derivative and cp for the copy operator, such that:
1. For each k, the arity of di, is 1.
2. For all e € By, , there is only one occurrence of di(x;) in D for each x; € X(R’;).
3. There exists an occurrence of dx_1(z;) for some z; € X(RE) for any integer k > 1 among
the right members of the RE’s.
4. For all e € Eg, there is no occurrence of d; with ¢ > k in the right member D..

then
C'ffk ~ cpnltHh/?

Proof. The formal differentiation system structure is a chain structured one. Since every entry
implicitly depends on T'(z), we know from our discussion above that operator d;’s order of growth
12 on the way from d; to d;41 for all 1.

Since operator copy has an average complexity of order n, Cd = O(nH'k/z). O

inductively raises of n

Erample 14. Let us consider a formal differentiation system with three operators:
e Derivative d;
e Second derivative d-
e the copy operator ep.

computing over terms built from constructors a (constant), exp (unary) and # (binary).
Here are the rules of this system:

R di (1) — 1

Rgl di(*(u,v))  — +(*(da (), ep(v)), *(ep(u), d1(v)))

Ryt da(eap(u)) —— *(d1(u), ezp(ep(u)))

R¥2 da(1) — 0

R§2 da(x(u,v)) = F(+(x(d2(u), ep(v)), *(di(u), d1(v))), +(x(d1(u), d1(v)), *(d2(v), ep(u))))
Ryt da(ewp(u))  — +(x(da(u), exp(ep(u))), *(di(u), *(d1 (u), exp(ep(w)))))

R ep(l) — 1

RP ep(x(u,0)) - *(ep(u), ep(v))

R cp(emp(u)) — ewp(cp(u))

4In this case, M is a lower triangular matrix, thus blocks have in fact one entry
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We immediately deduce its representation matrix:

ep z 4+ 22T(2) 0 0
M= g4 24 2:T(2) z+2:T(2) 0

ds 24 2:T(2) 22442T(2) 24 22T7(z)

We see this system obeys the conditions of theorem 5.4. Moreover, all the diagonal entries are
equal to z®'(T'(z)) = 2+ 22T(z) with ®(u) = 1+ u+u? Graphically, the operators of this system
are represented like this:

cp dy ds
— —

cin 6277,3/2 6377,2

Actually, an effective computation of the ¢;’s gives:
ep~n dy ~1/2 3mn>/? dy ~ 3n? ¢

5.3.3. Block-triangular matrices. As shown in section 4.2, if a regular rewriting system is repre-
sented by an irreducible matrix then its operators average complexities have the same asymptotic
behavior.

With an adapted definition of dependency between blocks of operators, the properties proved
for triangular matrices hold for block-triangular matrices.

Definition 5.3. An irreducible block Bj is said to depend on irreducible block Bs if there exists
an operator f of By and an operator g of By such that f depends on g.

We illustrate this definition treating an example, where the representation matrix has the
following form:

In this figure, By and B, are irreducible blocks and f,, depends on f. Then we apply Cramer’s
rule to block By and T'= (T77(2),... ,T"#(2) + My (2)Cy, (2),...,T7(2)), where j =n+1—
dim(Bs):

_ Mua(2)Bs (g, 1) detl(1d — By)
) Ol = = By Ot Gapd—m)

where Bi = adj(Id — Bs). Using the same argument as in lemma 4 with z = T(z)/®(T(#)),
polynomials in T'(z): M, (2)B5(p, 1) and det(Id — Bs) are prime. Consequently, functions f,
and f behave as representant of their respective block and follow the hierarchy of the operators of
a triangular representation matrix. This characteristic is independent of the number of functions
in Bs that depend on functions in B; as shows the previous formula.
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Generalized to a representation matrix of the form:

B, 0
B,

.Bn

in which operator f, belongs to block B, , formula 9 becomes:

det®(1d — B,)

= Y e+ S

det(Id — By)
{B;|B, depends on B;}
{Xilfu depends on fx,}

where Ay 5 (2) = My, (2) By (1, ).
Note that this expression is similar to the expansion of lemma 6 found for a one-operator block.

detl#I(1d—Bn) | T () 0ot | i
det(Id—B.,) €ecomes 71—Mf”,f” 1 a triangular matrix.

This final term says that block B, depends on itself as a connected component of operators.
Besides, it is another way to see that the irreducibility property is locally preserved in the
diagonal blocks.

The last term arises in both expansions:

6. (GENERAL CASE

This part aims at giving a systematic way to compute operators average complexities of any
rewriting system.

6.1. About the exponential case. The techniques we use are globally the same as in the
polynomial case. Though the position of py; with respect to p induces small practical differences,
it induces strong differences of complexities.

Theorem 6.1. Let {f;} be a sel of rewriting operators of a system represented by irreductble
matriz M. Assume for each i, the dominant singularity of Cy,(%) is po, < p.
For all i, Cfi ~ cfloz”n?’/z, where o = p/po,.

Proof. We prove that the multiplicity of py; in det(Id—M) is 1 using the same argument as in the
proof of theorem 5.1.

The only difference is that there is no possibility for the multiplicity of factor (T'(z) — ;) to
exceed 1. Tt comes from the expansion of T'(z) around py;:

7101 15t (- 202

)_ L O((1— 2/p0s)?)

Consequently, the expansion of M;;(z) and therefore of det(Id—M) is always of the form: g(z) +
h(z)(1 = z/po;)- .
Then, singularity analysis yields: C/¢ ~ cfloz”n?’/z. O

6.2. Finding the dominant singularity. This part focuses on spotting the cost series radii
of convergence. Using the expansions of lemma 6 and its block equivalent, our intention is to
translate them graphically by going down the diagram and collecting singularities information.

Once the representation matrix is turned into a triangular block matrix, you have to compute
the blocks proper dominant singularities — i.e. the dominant singularities of each diagonal block,
independently of the others — from the root block to the block we want to know the order of
complexity.

Principle 1. The cost series dominant singularity of operators represented by an irreducible block
B is the smallest proper singularity of all the blocks in the paths from the root blocks to B.
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Ezxample 15. Let a,b,c,d, e denote the diagonal irreducible blocks of the system represented by a
matrix of the form:

a [k

S ¢
C*O*
a0 * 0 *
N0 0 0 * %

Its associated graph is as follows:

»
3

o
W

Suppose you analyze an operator of block e. For each block of the path going from a to e we

compute pi using the eigenvalue method for each corresponding block in M, and the minimal pg
is the dominant singularity of C, (z) for each operator f. of block e.

Ezrample 16. We take again the example of the shuffle of trees. We introduce operator h and its
rules are:

Rh h(a,a) — a

RE h(a, o(u,v)) — o(h(u,v), f(u,v))
RE h(o(u,v),a) — o(h(u,v), g(u,v))
REh(o(uy,vi),o(uz,va)) —  o(h(uy,uz), h(vi,v2))

The representation matrix becomes:

¥ 222T%(z) 222 0
g 22T2(z) 227 + 22T (2) 0
n \22T%(z) + 22 22 22T (z) + 222

I ~—

This matrix has a two irreducible square block diagonal: A; = (M;;) for4,j € {1,2} and Ay = Mas
alone. We found in example b that the operators of A; had a linear average complexity; we deduce
that p1 = p.

Compute r3(p, 7). We find that r3(p, 7) < 1; consequently p; is also the dominant singularity
of Cp(z). Thus, h has also a linear average complexity. ¢

6.3. Polynomial growth of the average complexity.

Definition 6.1. Let f be an operator of irreducible block B. The average complexity of f is
computed recursively along all the paths going from the root blocks to B. We call the main
path(s) of block B the path(s) going from the root block(s) to B after deleting all the paths that
do not give the right order of the average complexity of f.
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Assume the dominant singularity pg is encountered k times along the main path. If py = p
then just apply the techniques seen in the preceding section. Otherwise, py < p, then invariantly
all the final block operators average complexities are of order (p/po)”nl‘l'k/2

Principle 2. Let pg, be operator f;’s dominant singularity of block B.
Dependencies between blocks with proper singularities identical to po, induce the polynomial
growth of the CJi’s asymptotic equivalent.

Namely, each block taken from the main path gives its contribution to Cy,(z) provided that
their proper singularities are all pg,. Hence the results of theorem 3.2.

Erample 17. Suppose we take the modified shuffle of example 16. We replace rule RS by:
RE h(a,o(u,v)) — o(o(h(u,v), f(u,v)), h(u,v))

The representation matrix becomes:

¥ 222T%(z) 222 0
22T2(z) 227 + 22T (2) 0
22T (z) + 22 22 22T%(z) + 322

Every operator cost series in block A; has the same dominant singularity p therefore since all the
entries of M depend on T'(z), the operators of block A; have a linear average complexity whereas

Ch = O(n3/2) since r3(p,7) = 1. ¢
Erample 18. Now, we replace rule R and R% by:

RE h(a,o(u,v)) — o(o(h(u,v), f(u,v
RE h(o(u,v),a) —> o(h(u,v), h(

The representation matrix becomes:

¥ 222T%(z) 222 0
g 22T2(2) 2:24 22T%z) 0
no \22T%(z) + 22 0 47?

Operators f and ¢ still have a linear order of growth while operator kA has an average complexity
of order n?. Indeed, the dominant singularity of operator h cost series is still p but its diagonal
entry in M does not depend on T'(z). 4

Example 19. We change now rules R and R% like this:

RE h(a,o(u,v)) — o(o(h(u,v), h(u,v
R h(o(u,v),a) — o(h(u,v), h(

The representation matrix becomes:

¥ 222T%(z) 222 0
g 2THz) 2224 22T%z) 0
ho \ 22T (2) 0 522

Operators f and g have the same linear order of growth and this time operator & has an exponential
order of growth.
Since r3(p, 7) = 5/4 > 1, we have py = 1//5 < p (we recall that p = 1/2). Consequently:

C:LLNC(?) n/? ¢



20 CYRIL CHABAUD

6.4. Synthesis: algorithmic approach. We give here the main steps of a graphical determina-
tion of the order of growth of a given irreducible block B extracted from a general representation
matrix. Basically, we start from the root blocks and we compute block proper singularities while
storing the multiplicity of the current dominant singularity for each path to block B. More pre-
cisely:

e Identify the root blocks
e Make a traversal collecting information useful to establish the order of growth of an operator
(single operator block) or a set of operator (irreducible diagonal block), that is:
— Proper block dominant singularity.
— If this block dominant singularity equals T'(z) dominant singularity then check depen-
dency on T'(z).
e If the arity of a node is greater than 1 then apply the ”strongest wins” rule to its children.

The next example will simulate the action of this algorithm on a system with a node of arity 2.
Ezample 20. Let 0 < p1 < pg < pa < p where p is the term enumerative series T'(z) singularity.
We suppose here that all polynomial blocks have entries that depend on T'(z). We put block

proper singularities in the graph rather than operators to see the evolution of block operators
orders of growth.

(po/p)"n*/? (o9 n

(po/p)"n’ (o) n’/?

At this point, the smallest radius of convergence wins

n _5/2
(PO/P) n ) .
l and obeys the polynomial growth rule.
n _3/2
(p1/o)"n
Since this radius of convergence is smaller
than the one of the preceding block, the order of
(pl/p)"n3/2 @ growth is invariant.

7. CONCLUSION: SIMULATING REWRITING SYSTEMS

Various enumerative problems in combinatorics can be simulated with rewriting systems. We
take the example of path lengths in binary trees .

Ezrample 21. We can simulate the computation of binary trees path length evaluating the cost

series of a regular rewriting system operator.
Let B = o(B1, B2) be a binary tree. The path length of tree B, L(B), is recursively defined as
follows:

L(B) = L(B1) + L(B2) + |B1| + |Bo]

We simulate it by the action of operator i over term trees built out of constructors a and o. cp
denotes the copy operator. We obtain the following system:
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h

a > a

4

VAN
h v h(u cp(u) cp(v)

) h(v)

cp

o
[\ =
u \

Its related representation matrix is:

T (50 )

cp(u)  cp(v)

This triangular matrix behaves like the formal differentiation one (see example (14)) since its
diagonal entries are equal to 1 in p, 7.

As expected, the copy operator has a linear order of growth and the average complexity of
operator h is of order n®/2. Combinatorially, C”" corresponds to the mean path length of a binary
tree of size n. ¢

The question is how far we can express such enumerative problems in terms of rewriting systems.
We actually imagine there exists a class of combinatorial objects translated into a ”rewriting system
language” making their enumeration systematical.
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