
HAL Id: hal-02547757
https://hal.science/hal-02547757

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of Genericity for customizable CASE
environments

Fabrice Kordon, Jean-Luc Mounier

To cite this version:
Fabrice Kordon, Jean-Luc Mounier. Implementation of Genericity for customizable CASE environ-
ments. [Research Report] lip6.1998.026, LIP6. 1998. �hal-02547757�

https://hal.science/hal-02547757
https://hal.archives-ouvertes.fr

Implementation of Genericity for
customizable CASE environments

Fabrice Kordon & Jean-Luc Mounier,
LIP6-SRC

Université P.&M. Curie
4 place Jussieu, 75252 Paris Cedex 05, France

E-mail:

Fabrice.Kordon@lip6.fr, Jean-Luc.Mounier@lip6.fr

Résumé:

Les méthodes de Génie Logiciel actuelles, basées sur des représentations graphiques
complexes, ne sont réellement opérationnelles que si elles sont supportées par des Ateliers de
Génie Logiciel. De tels outils, hélas forts délicats à implémenter, prennent en charge le suivit de
la méthode, libérant ainsi les ingénieurs qui se concentrent sur les problèmes à résoudre.
Nous proposons dans cet article quelques principes de conception d’un Atelier de Génie Logiciel
générique. Nos principes sont dérivés du modèle ECMA-NIST et se focalisent sur certains
aspects (représentation graphique et intégration de nouvelles fonctions). Nous décrivons briève-
ment l’implémentation de ces concepts dans la plate-forme FrameKit et présentons notre expé-
rience d’utilisation de cette plate-forme pour la construction de CPN-AMI, un Atelier de Génie
Logiciel basé sur les réseaux de Petri.

Mots Clefs :

 CASE, Intégration d’application, Méthodes de Génie Logiciel.

Abstract:

Software engineering methodologies rely on various and complex graphical represen-
tations and are more useful when associated to CASE tools designed to take care of constraints
that have to be respected. However, such tools are complex to implement.
This paper proposes some principles derived from the ECMA-NIST model for the conception of a
generic CASE environment and outline how some major aspects can be implemented (graphical
representation and integration of new CASE functions). Finally, we describe the implementation
of these concepts in the FrameKit platform and present results based on our experience with the
construction of CPN-AMI, a Petri net based CASE.

Keywords :

 CASE, Application Integration, Software Engineering Methods.

1 Introduction

Software engineering methodologies rely on various and complex graphical representations as
SA-RT

[14]

, OMT

[27]

 Class-Relation

[7]

 etc. They are more useful when associated to CASE
(Computer Aided Software Engineering) tools designed to take care of constraints that have to be
respected. Such tools help engineers and facilitate the promotion of such methods.
Now, CASE tools gave way to CASE environments which may be adapted to a specific unders-
tanding of a design methodology. A CASE environment can be defined as follows

[26]

 : it is a set
of tools that have a strong coherence in their use. This concept provides enhanced solutions for
software reusability. CASE environment are built on a platform that allows tool plugging. Com-
munication and cooperation between tools must subsequently be investigated.
The implementation of CASE environments is a complex task because they need various func-
tions like a graphical user interface, database facilities and, of course, the operations that are rela-
ted to the methodology they implement (compilation of specifications, animation/simulation of
specifications, code generation from specification, etc.).
Even early platforms offer solutions for tool reuse and cooperation. One of the first one, APSE

[3]

is mostly data oriented and dedicated to Ada development. ESF

[11]

 and HP-Softbench

[13]

 sug-
gest a communication oriented architecture. ISTAR

[8]

 proposes a strong “process orientation”
based on a contract concept defining inputs, outputs and constraints. Then, some standards like

ECMA

[9]

 and then CORBA

[23]

 provide a complete architecture model that identifies required
services and considers discrete dimensions of cooperation between tools and a hosting platform
(usually data, control and presentation).
Experimentation over large projects have outlined the difficulty to maintain for such environment,
especially when tools come from various origin. In a project like Ptolemy

[25]

, the software basis
for the project have largely changed in order to ease maintenance as well as new development.
Such work (in particular, the Tycho interface system

[15]

) takes into account the definition of evo-
lutionary interfaces between major components.
This paper proposes an interpretation of the ECMA-NIST architecture in order to define a para-
meterization of a software platform dedicated to the implementation of various CASE. We try to
formalize how such a platform can be parameterized in order to define a generic CASE environ-
ment model that emphasizes low cost reuse of software components.
For example, this parameterization is sui-
table for a quick and easy prototyping of
CASE. A customized CASE is then dedu-
ced from a generic CASE plus informa-
tion («values» associated to formal
generic parameters). Figure 1 illustrates
this customization procedure.
 We briefly detail how we have imple-
mented it in FrameKit

[16]

, a software platform dedicated to the prototyping of CASE tools we
use for experimenting implementation of formal methods.
Section 2 deals with common techniques used in tool integration. Then, we detail in section 3 our
interpretation to define a model of generic CASE, how it works and the outlines of its implemen-
tation in FrameKit. Finally, Section 4 presents results computed after the use of FrameKit for one
year and an half.

2 Integration of software components

A CASE environment is composed of several cooperative components :
• a

platform

 having communication and data storage capabilities;
• a set of

tools

 driven by the platform. Each one is an independent software which can run out of
the environment and offers functions that may enrich it.

To achieve this enrichment, a procedure called

integration

 has been defined. We distinguish two
types of tool integration :
• the

a priori

 integration : involved tools are designed especially for integration in a specific
environment.

• the

a posteriori

 integration : involved tools are already designed; source files may not be
available.

The a priori integration does not raise any major problem while the selected implementation tech-
niques and standards are considered at the implementation stage. Platform functionalities are
usually used the best way, especially when APIs (Application Program Interface) are available.
The a posteriori integration requires an adaptation of the imported software. The complexity of
such an operation depends on several criteria regarding modularity and portability of the tool : the-
se aspects concern both its functionalities and its relation with the execution environment (file sys-
tem, operating system...).
Three common techniques have been defined :
•

Encapsulation

 : if executable file only are available, the tool must be encapsulated. The driver
is an intermediary process that handles both communication with the platform and translation
of exchanged data

[2]

. It may have to emulate the original execution environment of the tool

Figure 1 :

From a Generic CASE to a dedicated one.

Customizing
information

Generic CASE

Dedicated CASE+

and/or implement the graph that models dependencies between tool’s functions.
•

Rehosting

 : this technique supposes that object files are available. Then, it is possible to link
them with the execution environment libraries in order to get an executable file. Libraries that
emulates standard system calls are then provided.

•

Strong integration

 : if source files are available, they can be modified and adapted to the
CASE environment interfaces. This solution does not raise any major problem. The a priori
integration defined in section 2 is also a type of strong integration.

According to

[29]

, the integration procedure must take into consideration five integration axis :
•

Platform

: tools must be executed on a platform giving a transparent access to heterogeneous
machines and to the operating system.

•

Presentation

: the user interface must be homogeneous for any tool. Window managers and
look and feel style guides are useful.

•

Data

: tools have to exchange and share data.
•

Control

: tools have to cooperate, notifying events to others tools. They may also need services
provided by others ones.

•

Process

: the main goal of an environment is to support development processes. Thus, it is of
interest to define a technique to describe such processes.

3 Towards a generic CASE model

However, the definition of these five axis are quite theoretical. It is difficult to manage them all
properly. In FrameKit, we have chosen to reduce them to three :
• Presentation axis and basic aspects of process functions are grouped in a

User Interface axis

,
• Some of the Data axis defined in

[29]

 are covered by

the Data management

 axis ,
• Platform axis and basic control functions are grouped together in an

Environment axis

.
As a guide to both types of integration, we introduce the following notions :
•

Formalism

 : it describes representation rules of a knowledge domain,
•

Model

 : it is the description of a given knowledge using a formalism. It is a «document» com-
posed with objects defined in the formalism,

•

Service

 : it is a tool function that correspond to operations in a design methodology.
Formalism is more related to the User Interface axis. Model is related to User Interface and data
management axis. Finally, the service notion is strongly connected to the environment axis.

3.1 User Interface

In FrameKit, presentation and display services are strongly constrained. Both types of services are
supported by Macao

[21]

, a polymorphic editor able to manipulate models after the corresponding
formalism description. It provides a unified look and feel for both the manipulation of models and
access to the services integrated in FrameKit.
The construction of a new formalism does not imply any recompilation of Macao. All the required
information is defined in an external file that expresses possibilities of the formalism. Of course,
Macao deals with syntactical aspect only, semantical ones are a convention between the user and
the tool.

3.1.1 Elementary formalism

The definition of an elementary formalism corresponds to a list of basic classes C=<A,I> where :
• A is a set of elementary attributes.
• I is a set of clips that constitutes the class interface to which a name and a maximum number
of connections is associated. Clips allow typed plugging between basic classes.

Example 1 :

Let us consider the object “Macintosh computer” composed of the following components :
• A = {name};
• I = { (appletalk clip,2), (ethernet clip, *)}.
The name of the object identifies its category. Clips allow to plug an other object. The maximum of con-
nection via an “appletalk” clip is 2. There is no connection limit via the ethernet clip.

Using this definition, a textual formalism contains one basic class having one textual attribute on-
ly. However, a graphical formalism contains «nodes» related via «connectors». So, to support any
type of representation, we introduce two types of basic classes :
• Nodes being the components of the representation,
• Connectors describing relations between components of the representation.

Two nodes are linked together by means of a connector. Nodes and connectors are plugged throu-
gh clips. It is possible to define connectors linking more than two objects (to model a bus for
example).

Example 2 :

 Let us consider two classes of nodes (N1, N2) and two classes of connectors (C1, C2). It is
possible to assign a direction for each connector by means of clips. For instance, C1 will be dedicated
to relations between N1-nodes and N2-nodes only. C2 is dedicated to express relations between N1-
nodes only.

We call formalism the tuple <A,I,N,C> where :
• A is a set of global attributes. Each attribute is typed. A set of elementary types is predefined in
the environment.

• I is a set of interfaces. Interfaces are useful for hierarchy management. If I is empty, the forma-
lism is elementary (non hierarchical
representation).

• N is a set of basic node classes : they
contain attributes and clips. An attribute
describes a piece of information related
to the node. A clip defies plug compatibi-
lity with connectors (to be connected, a
connector must contain a similar clip).

• C is a set of basic connector classes : they allow to connect nodes. They contain of attributes
and clips as well.

Example 3 :

Let us consider the LOCNET formalism that describes a local network composed with Macin-
tosh computers and Sun workstations (Figure 2) :
• A = {name, local-address} where name is a string, local-address is a number.
• I =

∅

.
• N = {macintosh, sun} where :

- macintosh attribute is name (string); clips are
: (appletalk, 2) and (ethernet, *).

- sun attributes are name (string) and local
address (integer); clip is (ethernet, *).

• C = {appletalk_link , ethernet_local_link ,
mixed_link} where :
- appletalk_link has two clips appletalk
- ethernet_local_link two clips ethernet
- mixed_link has one clip ethernet and one clip

appletalk

Example 4 :

The Figure 3 gives an example of a LOC-
NET model. It is impossible to connect an apple-
talk connector to a sun node because there is no
appletalk clip

Figure 2 :

Items in the LOCNET formalism.

macintosh

sun

NODES

AA

EE

EA

linkappletalk

locallinkethernet

mixedlink

CONNECTORS

A

E

E

Figure 3 :

Example of a LOCNET model.

Mac3

Mac2

Sun5
50

Sun4 40

Sun3
30

Sun2
20

Sun1
10

Mac1

224

My net

E E

E

E

E

A

E

A

E

A

E

A

E

A

3.1.2 Operations on formalisms

Some operations are useful to establish relations between formalisms :
• Enrichment : it is an addition of nodes, connectors, global attributes or interfaces;
• Restriction : it is a subtraction of nodes, connectors, global attributes or interfaces;
• Composition : it is a combination of formalisms.

It is possible to define subsets or super sets of a formalism by means of the first two operations.
Formalisms (elementary or not) can be composed to produce a complex formalism. This is useful
to describe hierarchical graphical representations. We call recursive a formalism composed with
himself. Such a configuration is necessary to describe an hierarchical object oriented description
like OMT.
Hierarchical models derived from composed formalisms are then composed of pages. Each page
is an instanciation of one of the formalism that composes the complex formalism. Links between
pages are performed by means of boxes. A box is a node in a page, related to another page. So,
hierarchical models can be viewed like an oriented graph where nodes represent pages and arcs
boxes. Any graph has a node without predecessor corresponding to a root page that is the “top” of
the model.

Example 5 :

Let us define the NET formalism
that describes a network and its subnets
(Figure 4). We consider that I = {(ethernet,
1)} in the LOCNET formalism; where the
ethernet clip represents the entry point of the
local network. The NET description is :
• A = {name,IP-address} where name is a

string, IP-address is a number.
• I =

∅

.
• N = {sun, subnets} where

- sun attributes are name (string) and
local address (number); clip is (ethernet,
*).

- subnet is a box including a LOCNET
model. The clip is (ethernet, 1)): LOC-
NET interface.

• C = {ethernet_link} where :
- ethernet_linkhas one clip ethernet

A NET model is then composed of submodels
called pages. In Figure 5, node “Small net”
is a box that links the current page to the
page on the left.

3.1.3 Services and tool invocation

Macao is not only a graph editor, it is also the front end of FrameKit. It allows a user to connect
to FrameKit and open sessions. During a session, the user may apply services on the models. A
session may be interrupted and restarted afterwards.
Services (called tasks in ECMA), are not originally typed. However, they take in input a set of
models and produce another set of models. So, we propose to type a service S as follow :

S : F

i

→

 F

o

 where both F

i

 and F

o

 are included in F

*

, the set of all defined for-
malisms.

A service is then an operation typed using input and output formalisms. This is a signature in the
sense of programming languages.
Let us consider F

i

 = {f

i1

,..f

iN

} and F

o

 = {f

o1

..f

oM

} (f

i1

,..f

iN

,f

o1

..f

oM

∈

 F). There are two types of servi-
ces, according to conditions on F

i

 and F

o

 :
• Transformations : there is no relationship between elements of F

i

 and elements of F

o

.

Figure 4 :

Items of the NET formalism.

NODES CONNECTORS

subnet

sunE

E
EE ethernet_link

Figure 5 :

Example of a NET term.

96

BigNet

EE

E

E

Manager
1

Small net locnet#2
224 225

E E

E

E

E

A

E

A

E

A

E

A

E

A

• Derivations : F

o

 is obtained from F

i

. It means that,

∀

 f

ii

∈

 F

i

,

∃

 f

oj

∈

 F

o

 | f

oj

 is either an enrich-
ment or a restriction of f

ii

.
To ease the understanding of service by users, it is of interest to associate one service to similar
tools’ functions. Such an association corresponds to the definition of a polymorphic service. Po-
lymorphism may be of interest either from :
• the “tool side” when it corresponds to discrete tools’ operations having the same function.
This is useful when the choice of one tool respects specific criteria (access rights, complexity
according characteristics of the input model...);

• or the “formalism side” when it corresponds to semantically similar tools’ operations applica-
ble on discrete formalisms.

So, polymorphic services are useful to introduce performance criteria (“tool side”) or to enhance
transparency for related formalisms (“formalism side”). Their implementation involves mecha-
nisms that are similar to dynamic binding in object languages

[22, 27]

.

Example 6 :

Let us consider two polymorphic services where :
Connectivity evaluates if a graph is connected or not, statistic provides statistics about the formalism
(number or nodes, number of connectors etc.). Potential polymorphism is outlined below :
• The connectivity service is polymorphic on the “formalism side” because it has a signification for

any graphical (and non hierarchical) formalism. It is reasonable to suppose that one tool is able to
process any type of formalism if the model manager implements the characteristics mentioned in sec-
tion 3.3.

• The statistic service is polymorphic on the “tool side” if, for a given formalism there are more than
one tool that perform this function. Then the choice of a given tool is performed according to criteria
associated to the service.

• The statistic service is polymorphic on both tool and formalism sides if several tools perform the
function for discrete formalisms. When the service is invoked, the choice of the tool relies on the
selected formalism and then, if more than one tool perform the function for this formalism, according
to criteria associated to the service.

Typing of services is not sufficient to implement a methodology because a sequence of operations
may have to be performed according to a given order. This is why permissions are associated to
each services. There are two types of permission access :
• Static permission deduced from the user identification,
• dynamic permission computed after the session state.

We propose in FrameKit the two mechanisms. First, access permission allow to hide a set of ser-
vices. This is useful when implementing roles in a project (i.e. the project manager should have
access to project management services while a quality engineer should be able to use quality ser-
vices). Permission are evaluated once when users get connected.
Second, FrameKit manages

session variables

. A session variable contain a string and can be eva-
luated in a service precondition. Tools may affect values to these variables. Service conditions are
evaluated after any service invocation. It is a way to temporarily disable or enable services in order
to force a sequence that respects a given methodology.
It is also possible to consider the status of a service execution to build a service condition. Confi-
guration like the one proposed in the following example can then be performed.

Example 7 :

Let us consider three services : compile, link, display_errors. compile must be run first. If it
terminates OK, then, it is possible to link. Otherwise, the user must apply display_errors. In both cases,
compile cannot be run a second time.
According to the requirements, services condition should be defined as follow :
• compile : compile was never launched,
• link : compile was launched OK
• display_errors : compile was launched with problems.

3.2 Data management

The data management axis deals with both data storage in a repository and data representation. To

cooperate, tools use intermediate files to exchange data. However, they are usually not designed
for data exchange with foreign software. Data translations must be performed : some integration
techniques rely on the addition of a software layer called driver [2] or capsule [12, 26]. For com-
munication, the use of an internal Data Definition Language (DDL) makes this translation process
easier and supports heterogeneity in tools.
A common DDL, implemented at the platform level, provides an indirect but standardised com-
munication between tools allowing an easy maintenance of the tool set. Adding or modifying a
tool needs only to update one interface between the tool and the platform. Tool maintenance is
performed apart from the host platform. The tool evolution is hidden by the communication dri-
ver.
Tools need to store persistent data which may be shared. The environment has to provide a set of
functions to manage such data. When the number of shared files grows, the use of a shared object
database is the most interesting solution [18]. However, this solution is heavy to implement and
we propose a simplified model that is suitable for building a simple platform like FrameKit.

3.2.1 Large grained data

Large grained data are information components like models, results or any other information ma-
naged by tools (libraries, preferences etc.)
FrameKit types large grained data using tool-defined keys and behaviors. Tool-defined keys are
keywords used to find out an information in the FrameKit repository. The platform uses this in-
formation but does not have any knowledge of the corresponding semantics. Three types of data
behavior correspond to three persistency approaches :
• model-associated data concern all the information associated to a model. It is useful to pro-
perly handle version management : when a model changes, associated results become obsolete
and should be deleted and recomputed if needed. Such data are stored with the model descrip-
tion in a cell stamped by its last modification date. The cell is destroyed when the model is
updated;

• user-associated data concern all the information related to a user (preferences, information
potentially shared by models...). This information remains reachable until the user is deleted;

• global data concern all the information related to a CASE environment. It is stored in cells
that may be associated to a tool, a formalism or to the platform itself (administration data
only). Data last as long as the entity (tool, formalism or platform).

To implement these discrete behavior, a proper use of directories is sufficient. Global data is sto-
red in a directory potentially shared by all users and tools. user associated data is stored in a user
associated directory. Finally, model-associated data is located in a directory that last as long as the
model does not change.

3.2.2 Fine grained data

Fine grained data are fine information components. To ease both their storage and handling, Fra-
meKit implements a message based approach. Each element in the model (nodes, edges, their re-
lations and their labels) are stored using elementary messages
Messages describe elementary actions like «create a new node numbered n1 having class N», «as-
sociate nodes n1 and n2 by means of a connector c1 from class C», «associate a textual attribute
named A and having value X to node n1» etc. This description technique is generic because it
works regardless any knowledge of the corresponding formalism. the name of classes are defined
using strings and instances of classes are named using integers.
Example 8 :Let us consider a small model defined using the elementary formalism OrientedGraph

(Figure 6).
Its definition is transported using simple messages that carry out syntactic aspects only. Instruction CN
create a new instance of the referenced class (a «node» in line 3). CA instanciates a new connector of

the referenced class (an «arc» in line 9).
CT associates a textual label to connec-
tors or nodes (affectation of value «bø to
label «name» of object number 4 which is
a «node» in line 4).
FO is used to identify the formalism iden-
tification and VM the version of this for-
malism. This information is used for
check by tools only.

One last advantage of this mechanisms is
that it rely on ASCII information only.
This is a way to solve most portability
problems as well as exploitation of data
by programs running on discrete target architectures without having to use XDR mechanisms. In
fact, in FrameKit, all data are stored in ASCII format.

3.3 Environment

The environment axis supports the following points :
• association of an Operating System «command line» to a service (i.e. a given compiler is asso-
ciated to the service compile and is invoked a given way);

• encapsulation of the Operating System functions like program invocation, program communi-
cation, navigation through the repository system etc.;

• definition of a diffusion model to facilitate installation and evolution of the environment.
The first point is strongly related to the management of services mentioned in Section 3.1.3 It is
the set of low-level services required to support services as they appear to the user.
The second point is important to support tool integration as well as tool implementation. It should
be properly implemented in the APIs used to program in such an environment. Of course, a level
of abstraction is necessary in order to enforce portability. This is important for multi-platform im-
plementation and diffusion.
For example, in FrameKit, we have implemented the following functions :
• A high level communication model has been defined : several implementation are proposed
(some may have restrictions). Then, any software component able to support one of these
implementations should be easily integrated in FrameKit;

• A high level transmission of information by means of messages is built on top of the commu-
nication model, like the Macao widget-like mechanisms to manage interaction with users;

• A repository offers storage services. This repository hides File system related mechanisms
(file naming system...).

The third point is also important because it proposes a framework for the evolution of the envi-
ronment. The distribution approach we propose rely on kits. A kit is an elementary installation
component that contains elements to be installed by a specific administration tool. There should
be four types of kits :
• Platform kits contain executable and data of the environment (administration tools, communi-
cation libraries etc.),

• Formalism kits contain all the definition of a new formalism in an installed environment;
• Tool kits contain information to install new tool and its associated set of services (executable
files, initial data etc.);

• Custom kits for local upgrade of any element (platform executable, tool executable etc.); it
enable the construction of patches that fixes bugs of a previous distribution.

Figure 6 : OrientedGraph model and its
corresponding internal description.

b

c

a

2

1. FO(13:OrientedGraph)
2. VM(2,6,12)
3. CN(4:node,4)
4. CT(4:name,4,1:b)
5. CN(4:node,3)
6. CT(4:name,3,1:c)
7. CN(4:node,2)
8. CT(4:name,2,1:a)
9. CA(3:arc,5,2,4)
10. CA(3:arc,6,2,3)
11. CA(3:arc,7,3,4)
12. CT(9:valuation,7,1:2)

Example 9 :Figure 7 proposes an instanciation
of the distribution model we propose. Let us
imagine that a software engineering envi-
ronment is being developed in discrete pla-
ces. Such a distribution strategy enables :
• a distributed upgrade of kits (developers

only upgrade kits they are responsible of),
• a custom installation by clients (each

client picks up what he needs).

3.4 Evolution of the generic CASE

A CASE environment E is made of a gene-
ric platform that offers communication ser-
vices and a generic user interface (it can be
seen as a default tool). E has two generic
formal parameters : a set of formalisms and
a set of services (polymorphic or not).
Definition of new formalisms or services should be supported by dedicated administration tools.
In that case, these tools must be provided by the generic platform.
We note the generic CASE environment E (F*,S*) where F* is the set of formalisms and S* the set
of services
During its execution, the environment changes; it “moves” into several E (F,S) adapted to the cur-
rent user needs. F and S are the effective values given to F* and S* in order to obtain the appropriate
E. The process which produces E from E is called adaptation and respects the following cons-
traints :
• F is included in F* which represents all formalisms defined for E;
• S is included in S* which represents all possible services available for E;

F* and S* are potentially unbounded. If we need a formalism which is not already included in F*,
it is possible to add it. S* has the same property, however, its elements always respects the fol-
lowing constraint : ∀ s ∈ S* s : Fi → Fo where Fi and Fo ∈ F
The evolution can be dynamic (Figure 8). It is similar to inheritance in Object Oriented langua-
ges : the set of formalisms and services can be modified during its execution. Adaptation is dyna-
mic when it does not requires any compilation. The CASE environment is modified through
configuration files or any other similar mechanism.
The produced CASE is easier to maintain :
addition of new kits can be performed easily
by adding/removing kits. In Figure 8, the se-
cond dynamic adaptation can be considered
either as maintenance on tools and/or for-
malisms or the installation of a new function
in the CASE environment. Such a mecha-
nism is more difficult to implement but al-
lows more flexibility.
Such an evolutionary mechanism however
has an influence on the architecture of tools
in the environment. Let us now consider both implemented tools (a priori integration) and impor-
ted tools (a posteriori integration).

3.5 Structure of an implemented tool

To hide target architecture related mechanisms (and meet platform integration), all presentation,
data, control axis should be implemented and available for applications by means of Application

Figure 7 : Example of the distribution model.

Tool 1

Tool 2

FrameKit client

•••

archi_1

Development site 1

all_archi

archi_2

Development site 2 Development site 3

archi_1 archi_2

archi_1

Platform Formalism

Figure 8 : Dynamic adaptation mechanism.
Dynamic adaptation 1

Set #1 of tools and
formalisms

Set #2 of tools and
formalisms

Dedicated CASE
enviroment 1

Generic CASE
environment

Dedicated CASE
enviroment 2

Dynamic adaptation 2

Program Interfaces (API).
Thus, tool designed to run in the target envi-
ronment take benefits from these APIs. To
meet this requirement, three API correspon-
ding to the three axis presented in Section 3
The algorithmic part of the program should
be disconnected from the environment and
relate with it only by means of the APIs
(Figure 9).
Our implementation in FrameKit follow this
strategy. Moreover, the «main» program of
an application is a part of the FrameKit libra-
ries. This enable to always correctly initialize all required resources to operate the three API’s and
call the «tool main program» without having to change initialization directives over the FrameKit
versions. Only a new link with APIs libraries is required.

3.6 Structure of an integrated tool

Tools to be a posteriori integrated in the type of environment should be disconnectable from their
user interface. Discrete techniques could be
considered according to the set of available
information developers provide on their
software.
If source code is available, it is possible to
adapt it to fit the API described in the pre-
vious section. Then, the result is similar to
an a priori integration.
If only executable file is available (plus in-
formation about exchange formats), it is
possible to drive the tool by means of a spe-
cifically implemented process (Figure
10.a). The environment only knows about this process which architecture is the one defined in
Figure 9. The driver and the tool communicates by means of any mechanism encapsulated in the
environment (see environment axis).
If tool libraries are provided (plus description of data structure), they can be directly linked to a
driver to make a unique executable file (Figure 10.b).
In both cases, the driver translate information in the required format and then, translate back re-
sults for display by means of the user interface.

4 Results

We have implemented those principle in the FrameKit integration platform which is freely availa-
ble on the Internet since March 1997 [16, 20]. We have also used FrameKit to build CPN-AMI 2,
a Petri net based software environment for the modeling and evaluation ad prototyping of distri-
buted applications [19].
CPN-AMI 2 relies on three formalisms : Well formed Petri Nets [4], OF-Class and H-COSTAM
that are Petri net encapsulations suitable for an Object Oriented modeling approach [6]. OF-Class
focuses on the preliminary design and structuration of the system (coherence between software
component interfaces) while H-COSTAM emphasizes implementation aspects of the system
(mapping of a conceptual solution into an operational software architecture).
The production process of a customized CASE (presented in Figure 1) is instanciated in

Figure 9 : Architecture of a tool designed to run in
the software environment (a priori integration).

Data management

Tool
algorithms

E
nvironm

entU
se

r
In

te
rf

ac
e

Figure 10 : Possible architectures of a posteriori
integrated tools.

The Generic environment

process that

tool

(only an executables

driver tool

driver part (specific

tool libraries

a
files are provided)

drives the tool implementation)

b

Figure 11. CPN-AMI implementation is reduced
to the description of three formalisms and the im-
plementation or integration of sixteen tools. Once
formalisms and tools (either implemented or inte-
grated) are declared in the FrameKit structure,
they are available to the users and kit are produced
for distribution over the Internet.
Within the sixteen tools currently integrated in
FrameKit to compose CPN-AMI 2, four have
been developed in other universities (GreatSPN
[5], PROD [28], EVR-unfold [10] and dot [17]).
Table 1 summarizes the amount of time spent in the integration process to build CPN-AMI 2 (a
full description of these tools may be found in [19]). This corresponds to the time required to get
a first operational version, in order to eva-
luate the interest of the tool for our metho-
dology. Some times (essentially for PROD
and dot), some extra work was required to
access to enhanced functions. All imported
tools (PROD, ERVunfold, GreatSPN and
dot) where integrated using the technique
illustrated in Figure 10.a.
For most tools, we only had to perform a
small adaptation (by means of a shell
script that centralize the emulation of inli-
ne invocations) and the declaration to Fra-
meKit (description of the Macao menu
associated to the tool).
CPN-AMI is still being improved and ex-
tended by addition of new tools in order to
cover and fully implement our design
methodology for distributed systems. We
use it for industrial contracts and teaching.

5 Conclusion

In this paper, we have presented a parame-
terization of a CASE environment in order
to enhance a quick implementation of
CASE tools dedicated to specific develop-
ment methodologies. The proposed proce-
dure emphasizes two aspects : a standard
data definition technique that relies on for-
malisms as well as association techniques
between tool’s functions and services.
Both formalisms and services are parame-
ters of the generic CASE environment.
The result of this work is implemented in
FrameKit , a generic CASE environment
we use for the rapid prototyping of CASE
environment that implements methodolo-
gies for evaluation purpose. It has been

Figure 11 : Production process of CPN-AMI 2.

dedicated
user interface

Petri Net tools
OF-Class tools

H-COSTAM tools

FrameKit CPN-AMI 2

Petri Nets
OF-Class

H-COSTAM

fo
rm

al
is

m

Tool
name

To
ol

 t
yp

ea

a. I for integrated tools, D for Developped tools.

Integration
time (hours)

Remarks

ad
ap

ta
ti

on

de
cl

ar
at

io
n

P
et

ri
N

et
s

GreatSPN
(v 1.6)

I 6 0.2 Integration from executable files
only, performed using Unix shell
language.

CPNsimulator Db

b. Adapted from AMI, our previous platform.

110 1.5 Highly interactive tool. Major revi-
sion due to changes in the manage-
ment of interaction in FrameKit.

BooleanCon-
dition

Db 0.5 0.2 Integrated using Unix shell lan-
guage.

CPNverifier Db 1 0.2 Combination of three tools «glued»
in a Unix shell script.

CPNunfolder D 0.5 0.2 Integrated using Unix shell lan-
guage.

CPNinvariant Db 2 0.2 Integrated after a recompilation
using C APIs.

PROD
(v 3.2)

I 24 0.5 Powefull but complex tool. Adap-
ted using a specific driver imple-
mented using Ada APIs.

EVRunfold I 4 0.2 Integration from executable files
only, performed using Unix shell
language.

PetriBDD Dc

c. Reuslt of a cooperation with two other universities and thus not designed to
run in FrameKit.

4 0.2 Integrated using Unix shell lan-
guage.

PrettyGraph
(dot)

I 3 0.2 Adapted using a specific driver
implemented using Ada APIs.

LinearCha-
racterization

D / 0.2 Integrated as is (it was implemen-
ted using C APIs)

O
F

-C
la

ss

OFC-verifier D / 0.2 Integrated as is (it was implemen-
ted using C APIs)

PN-loader D / 0.2 Integrated as is (it was implemen-
ted using Ada APIs)

PROD-ofc Id

d. This integration inheritates from the one done for Petri nets.

/ 0.2 Small adaptation of the integration
for Petri nets.

H
-C

O
S

TA
M HCM-verifier D / 0.2 Integrated as is (it was implemen-

ted using Ada APIs)
HCM2PN
(prototype)

D / 0.2 Integrated as is (it was implemen-
ted using Ada APIs)

Table 1: Summary of tool integration to build CPN-AMI 2

used to build CPN-AMI 2, a multi-formalism CASE environment based on Petri Nets. Both Fra-
meKit and CPN-AMI are available on the Internet <http://www-src.lip6.fr/cpn-ami>
and <http://www-src.lip6.fr/framekit>.

6 References

[1] Ada Join Program Office, "Reference Manual for the Ada-95 Programming Language", U.S. Department of
Defense, The Pentagon, Washington, January 1995

[2] J.M. Bernard & J.L. Mounier, "Conception et Mise en Oeuvre d'un environnement système pour la modélisa-
tion, l'analyse et la réalisation de systèmes informatiques", Thèse de doctorat de l'Université Pierre & Marie
Curie, 4 place Jussieu, 75252 Paris Cedex 05, Décembre 1990

[3] J.Buxton, "DoD requirements for Ada programming support enviroments, STONEMAN", Dod High Order Lan-
guage Working Group, February 1980

[4] G. Chiola, C. Dutheillet, G. Franceschini & S. Haddad, "On Well-Formed Coloured Nets and their Symbolic
Reachability Graph", High Level Petri Nets. Theory and Application. Edited by K. Jensen G.Rozenberg, Sprin-
ger Verlag 1991

[5] G. Chiola, "GreatSPN 1.5 Software Architecture", In Proceedings of the 5th International Conference Modeling
Techniques and Tools for Computer Performance Evaluation, Torino (Italy), February 1991

[6] A.Diagne & F.Kordon, "A Multi Formalisms Prototyping Approach from Formal Description to Implementation
of Distributed Systems", in proceedings of the 7th "International Workshop on Rapid System Prototyping",
N.Kanopoulos Ed, IEEE comp Soc Press, Greece, June 1996

[7] Desfray P., "Object Engineering, the Fourth Dimension", Addison-Wesley, 1994
[8] M.Dowson, "Integrateed project support with ISTAR", IEEE software, November 1987
[9] ECMA, "A Reference Model for Frameworks of Stoftware Engineerings Environments", ECMA report number

TR/55 (version 3), NIST Report, April 1993
[10] J. Esparza, S. Römer & W. Vogler, "An Improvement of McMillan's Unfolding Algorithm", in proceedings of

Tools and Algorithms for the Construction and Analysis of Systems, LNCS 1055, pp 87-106, Springer Verlag,
March 1996

[11] C.Fernstrom & L.Ohlsson, “The ESF Vision of a Software Factory”, Proceedings of the International Confer-
ence on Software Development Environments & Factories, Berlin, May 1989

[12] B.D.Fromme, "HP Encapsulator : bridging the generation gap", HP Journal, June 1990
[13] C.Gerety, "HP softbench : a new generation of software developement tools", HP Journal, June 1990
[14] D.Hatley & I.Pirbhai, "Strategies for real-time system specification", Donset house publishing Co, 1988
[15] C. Hylands, E. Lee & H. Reekie, "The Tycho User Interface System", The 5th Annual Tcl/Tk Workshop '97,

Boston, Massachusetts, pp 149-157, July 14-17, 1997
[16] F. Kordon & J-L. Mounier, "FrameKit and the prototyping of CASE environments", 8th IEEE International

Workshop on Rapid System Prototyping, Research Triangle Park Institute, IEEE comp Soc Press N°
97TB100155, pp 91-97, June 1997

[17] E. Koutsofios & S.C. North, "Drawing graphs with dot", Technical Report 910904-59113-08TM, AT&T Bell
Laboratories, Murray Hill, NJ, September 1991

[18] J.Lonchamp, K.Benali, J.C.Derniame & C.Godart, “Towards assisted software engineering environments”,
Information and Software Technology, vol 33, n° 8, October 1991

[19] MARS-Team, "The CPN-AMI environment (version 2.2.1)", <http://www-src.lip6.fr/cpn-ami>
[20] MARS-Team, "The FrameKit home page", <http://www-src.lip6.fr/framekit>
[21] MARS-Team, "Macao Home page", <http://www-src.lip6.fr/macao>
[22] B.Meyer, “Conception et Programmation par Objets”, InterEditions, 1990
[23] T. Mowbray & R. Zahavu, "The Essential CORBA: Systems Integration Using Distributed Objects", John Wiley

& Sons, 1995
[24] J. Rumbaugh, M. Blaha, F. Eddy, W. Premerlani& W. Lorensen, "OMT : Object Oriented Design and Mode-

ling", Masson & Prentice hall, 1994
[25] Ptolemy Team, "The Ptolemy Kernel-- Supporting Heterogeneous Design", RASSP Digest Newsletter, vol. 2,

no. 1, pp. 14-17, 1st Quarter, April, 1995
[26] D.Schefström, "System Development Environments : Contemporary Concepts", in Tool Integration : environ-

ment and framework, Edited by D.Schefström & G. van den Broek, John Wiley & Sons, 1993
[27] B.Stroustrup, “The C++ programming language”, Addison-Wesley, 1991
[28] K. Varpaaniemi, J. Halme, K.Hiekkanen & T.Pyssysalo, "PROD reference manual", Technical Report B13, Hel-

sinki University of Technology, Digital Systems Laboratory, Espoo, Finland, August 1995
[29] A.Wasserman, “Tool Integration in Software Engineering Environments”, LNCS 467 : "Software Engineerings

Environemnts", pp 138-150, 1990

