N

N

Implementation of Genericity for customizable CASE
environments

Fabrice Kordon, Jean-Luc Mounier

» To cite this version:

Fabrice Kordon, Jean-Luc Mounier. Implementation of Genericity for customizable CASE environ-
ments. [Research Report] 1ip6.1998.026, LIP6. 1998. hal-02547757

HAL Id: hal-02547757
https://hal.science/hal-02547757
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02547757
https://hal.archives-ouvertes.fr

| mplementation of Genericity for
customizable CASE environments

Fabrice Kordon & Jean-Luc Mounier,
LIP6-SRC
Université P.&M. Curie
4 place Jussieu, 75252 Paris Cedex 05, France
E-mail: Fabrice.Kordon@lip6.fr, Jean-Luc.Mounier@lip6.fr

Résumé:Les méthodes de Génie Logiciel actuelles, basées sur des représentajpimigugs
complees, ne sont réellement opérationnelles que si elles sont supportées paelies de

Génie Logiciel. De tels outils, hélas forts délicats a implémenter, prennehtigge ¢e suivit de

la méthode, libérant ainsi les ingénieurs qui se concentrent sur les problémes a résoudre.

Nous proposons dans cet article quelques principes de conception d’'un Atelier de @énié Lo
générique Nos principes sont dérivés du modéle ECMA-NIST et se focalisent sur certains
aspects (représentation graphique et intégration de nouvelles fonctions). Nous décrivons briéve-
ment I'implémentation de ces concepts dans la plate-fonamdéKit et présentons notrepee-

rience d'utilisation de cette plate-forme pour la construction de CPN-AMI, un Atelier de Génie
Logiciel basé sur les réseaux de Petri.

Mots Clefs :CASE, Intégration d’application, Méthodes de Génie Logiciel.

Abstract: Softwae engineering methodologies rely on various and complex graplejoadgen-

tations and are more useful when associated to CASE tools designed to take care ahtonstr
that have to be respected. However, such tools are complex to implement.

This paper proposes some principles derived from the ECMA-NIST model for the conception of a
generic CASE erdironment and outline how some major aspects can be implemeraptifat
representation and inggation of new CASE functions)inglly, we describe the implementation

of these concepts in thedfeKit platform and present results based on our experience with the
construction of CPN-AMI, a Petri net based CASE.

Keywords :CASE, Application Integration, Software Engineering Methods.
1 Introduction

Software engineering methodologies rely on various and complex graphical representations as
SA-RT [14], OMT [27] Class-Relation7] etc. They are more useful when associated to CASE
(Computer Aided Software Engineering) tools designed to take care of constraints that have to be
respected. Such tools help engineers and facilitate the promotion of such methods.

Now, CASE tools gave way to CASE environments which may be adapted to a specific unders-
tanding of a design methodology. A CASE environment can be defined as fi2Bjwst is a set

of tools that have a strong coherence in their use. This concept provides enhanced solutions for
software reusability. CASE environment are built on a platform that allows tool plugging. Com-
munication and cooperation between tools must subsequently be investigated.

The implementation of CASE environments is a complex task because they need various func-
tions like a graphical user interface, database facilities and, of course, the operations that are rela-
ted to the methodology they implement (compilation of specifications, animation/simulation of
specifications, code generation from specification, etc.).

Even early platforms offer solutions for tool reuse and cooperation. One of the first ong,3\PSE

is mostly data oriented and dedicated to Ada development[E$fand HP-SoftbencH3] sug-

gest a communication oriented architecture. ISTBRproposes a strong “process orientation”
based on a contract concept defining inputs, outputs and constraints. Then, some standards like

ECMA [9] and then CORBAZ23] provide a complete architecture model that identifies required
services and considers discrete dimensions of cooperation between tools and a hosting platform
(usually data, control and presentation).

Experimentation over large projects have outlined the difficulty to maintain for such environment,
especially when tools come from various origin. In a project like Pto]@B}ythe software basis

for the project hae largely changed in order to ease maintenance as well as nelapteent.

Such work (in particular, thBycho interface systeifii5]) takes into account the definition ee
This paper proposes an interpretation of the ECMA-NIST architecture in order to define a para-
meterization of a software platform dedicated to the implementation of various CASE. We try to
ment model that emphasizes low cost reuse of software components.

For example, this parameterizationis

. . Customizing

CASE. A customized CASE is then de

ced from a generic CASE plus inforr B — "

generic parameters). Figuteillustrate! | goperic CASE

this customization procedure.

mented it in FrameKif16], a software platform dedicated to the prototyping of CASE tools we
use for experimenting implementation of formal methods.

interpretation to define a model of generic CASE, how it works and the outlines of its implemen-
tation in FrameKit. Finally, Section 4 presents results computed after the use of FrameKit for one

lutionary interfaces between major components.
formalize how such a platform can be parameterized in order to define a generic CASE environ-
table for a quick and easy prototyping
tion («values» associated to fori + Dedicated CASE

We briefly detail how we have imp Figure 1 :From a Generic CASE to a dedicated one.
Section 2 deals with common techniques used in tool integration. Then, we detail in section 3 our
year and an half.

2 Integration of software components

A CASE environment is composed of several cooperative components :
« aplatformhaving communication and data storage capabilities;
« a set otoolsdriven by the platformEach one is an independent software which can run out of
the environment and offers functions that may enrich it
To achieve this enrichment, a procedure cadliéegrationhas been defined. We distinguish two
types of tool integration :
* the a priori integration : inolved tools are designed especially for integration in a specifi
environment.
 the a posterioriintegration : inolved tools are already designed; source files may not be
available.
The a priori integration does not raise any major problem while the selected implementation tech-
niques and standards are considered at the implementation stage. Platform functionalities are
usually used the best way, especially when APIs (Application Program Interface) are available.
The a posteriori integration requires an adaptation of the imported software. The complexity of
such an operation depends on several criteria regarding modularity and portability of the tool : the-
se aspects concern both its functionalities and its relation with the execution environment (file sys-
tem, operating system...).
Three common techniques have been defined :
» Encapsulation if executable file only arevailable, the tool must be encapsulated. Theedri
is an intermediary process that handles both communication with the platform and translation
of exchanged dati2]. It may hae to emulate the originakecution environment of the tool

and/or implement the graph that models dependencies between tool’s functions.

* Rehosting this technique supposes that object files aadable. Then, it is possible to link
them with the recution environment libraries in order to get aacaitable file. Libraries that
emulates standard system calls are then provided.

 Strong integration if source files arevailable, they can be modified and adapted to the
CASE environment interfaces. This solution does not raise any major problem. The a priori
integration defined in section 2 is also a type of strong integration.

According to[29], the integration procedure must take into consideration five integration axis :

* Platform: tools must beacuted on a platform giving a transparent access to heterogeneous
machines and to the operating system.

 Presentatiorn the user interface must be homogeneous for anyWiobdow managers and
look and feel style guides are useful.

« Data: tools have to exchange and share data.

* Control: tools hae to cooperate, notifyingzents to others tool3hey may also need services
provided by others ones.

* Process the main goal of an environment is to suppovettsoment processes. Thus, it is of
interest to define a technique to describe such processes.

3 Towardsageneric CASE model

However, the definition of these five axis are quite theoretical. It is difficult to manage them all
properly. In FrameKit, we have chosen to reduce them to three :

* Presentation axis and basic aspects of process functions are groupkgirirderface axis

» Some of the Data axis defined #9] are covered bthe Data managemeakis ,

* Platform axis and basic control functions are grouped togetherEmaronment axis
As a guide to both types of integration, we introduce the following notions :

» Formalism: it describes representation rules of a knowledge domain,

» Model: it is the description of aygn knowledge using a formalism. It is a «document» com-

posed with objects defined in the formalism,

* Service: it is a tool function that correspond to operations in a design methodology.
Formalism is more related to the User Interface axis. Model is related to User Interface and data
management axis. Finally, the service notion is strongly connected to the environment axis.

3.1 User Interface

In FrameKit, presentation and display services are strongly constrained. Both types of services are
supported by Macg@1], a polymorphic editor able to manipulate models after the corresponding
formalism description. It provides a unified look and feel for both the manipulation of models and
access to the services integrated in FrameKit.

The construction of a new formalism does not imply any recompilation of Macao. All the required
information is defined in an external file that expresses possibilities of the formalism. Of course,
Macao deals with syntactical aspect only, semantical ones are a convention between the user and
the tool.

3.1.1 Elementary formalism

The definition of an elementary formalism corresponds to a list of basic classes C=<A,I> where
* A'is a set of elementary attributes.
* | is a set of clips that constitutes the class interface to which a name and a maximum number
of connections is associated. Clips allow typed plugging between basic classes.

Example 1 Let us consider the object “Macintosh computer” composed of the following components :
* A ={name}
« | ={ (appletalk clip,2), (ethernet clip, *)}.
The name of the object identifies its gaty. Clips allow to plug an other object. The maximum of con-
nection via an “appletalk” clip is 2. There is no connection limit via the ethernet clip.
Using this definition, a textual formalism contains one basic class having one textual attribute on-
ly. However, a graphical formalism contains «nodes» related via «connectors». So, to support any
type of representation, we introduce two types of basic classes :
» Nodes being the components of the representation,
» Connectors describing relations between components of the representation.

Two nodes are linked together by means of a connector. Nodes and connectors are plugged throu-
gh clips. It is possible to define connectors linking more than two objects (to model a bus for
example).

Example 2 :Let us consider two classes of nodes (N1, N2) and two classes of connectors (C1, C2). It is
possible to assign a direction for each connector by means of clips. For instance, C1 will be dedicated
to relations between N1-nodes and N2-nodes only. C2 is dedicatgdrégserelations between N1-
nodes only.

We call formalism the tuple <A,I,N,C> where :

* A is a set of global attributes. Each attribute is typed. A set of elementary types is predefined in
the environment.
* | is a set of interfaces. Interfaces are useful for hierarchy management. If | is empty, the forma-

lism is elementary (non hierarchical _ NopES CONNECTORS ——
representation). — A .

« N is a set of basic node classes ytH [_“___ g Macintosh A— A linkappletalk
contain attributes and clips. An atutie |* E—— E locallinkethernet
describes a piece of information relat ||T||| E sun Awsrn E mixedlink

to the node. A clip defies plug compatiy ==

lity with connectors (to be connected, a Figure 2 : Items in the LOCNET formalism.
connector must contain a similar clip).
» C is a set of basic connector classes : they allow to connect fbegxontain of attribtes
and clips as well.
Example 3 Let us consider the LOCNET formalism that describes a local network composed with Macin-

tosh computers and Sun workstations (Figure 2) :
« A ={name, local-address} where name is a string, local-address is a humber.
e =1
* N = {macintosh, sun} where :

- macintosh attribute is name (string); clipsear Mac2|[—| A A | Mact
: (appletalk, 2) and (ethernet, *).] =] My net
- sun attributes are name (string) and local A 224
address (integer); clip is (ethernet, *). A
« C = {appletalk_link , ethernet_local_link ,Macg,“—__
mixed_link} where : =
- appletalk_link has two clips appletalk A
- ethernet_local_link two clips ethernet 1
- mix?d_llil?k has one clip ethernet and one clip ¢ Sund 40
appleta Sun3]]| i Sun5
Example 4 TheFigure 3 gives an example of a LOC- 30,'1%1,',]5 E ll%l', Eﬂéﬂﬁo
NET model. It is impossible to connect an apple- E
talk connector to a sun node because there is no {5
appletalk cli = =
— —

Figure 3 : Example of a LOCNET model.

3.1.2 Oper ations on for malisms

Some operations are useful to establish relations between formalisms :

» Enrichment : it is an addition of nodes, connectors, global attributes or interfaces;

* Restriction : it is a subtraction of nodes, connectors, global attributes or interfaces;

» Composition : it is a combination of formalisms.
It is possible to define subsets or super sets of a formalism by means of the first two operations.
Formalisms (elementary or not) can be composed to produce a complex formalism. This is useful
to describe hierarchical graphical representations. We call recursive a formalism composed with
himself. Such a configuration is necessary to describe an hierarchical object oriented description
like OMT.
Hierarchical models derived from composed formalisms are then composed of pages. Each page
is an instanciation of one of the formalism that composes the complex formalism. Links between
pages are performed by means of boxes. A box is a node in a page, related to another page. So,
hierarchical models can be viewed like an oriented graph where nodes represent pages and arcs
boxes. Any graph has a node without predecessor corresponding to a root page that is the “top” of
the model.
Example 5 Let us define the NET formalism

that describes a network and its subn NODES CONNECTORS
(Figure 4). We consider that | = {(ethernef] E subnet

1)} in the LOCNET formalism; where th| EEE Em==E ethernet link
ethernet clip epresents the entry pointoftf B
local network. The NET description is : ||W|| E sun

¢ A = {namelP-address} where name is | =

string, IP-address is a number.

el=r Figure 4 : ltems of the NET formalism.
* N = {sun, subnets} where Small net locnet#2
- sun attributes are name (string) an Sa—aC 224 25
local address (number); clip is (etherng 2
- subnet is a box including a LOCNE| 2 5
model. The clip is (ethernet, 1)): LOQ fel p— il p— =
NET interface. E o T E|m| Manager
» C ={ethernet_link} where : e o] = 1

- ethernet_linkhas one clip ethernet
A NET model is then composed of submodels
called paes. InFigure 5, node “Small net”

is a box that links the current ga to the Figure 5 : Example of a NET term.
page on the left.
3.1.3 Services and tool invocation

Macao is not only a graph editor, it is also the front end of FrameKit. It allows a user to connect
to FrameKit and open sessions. During a session, the user may apply services on the models. A
session may be interrupted and restarted afterwards.
Services (called tasks in ECMA), are not originally typed. However, they take in input a set of
models and produce another set of models. So, we propose to type a service S as follow :
S:F, - F, where both F, and F, are included in F’, the set of all defined for-
malisms.
A service is then an operation typed using input and output formalisms. This is a signature in the
sense of programming languages.
Let us consider = {f,,..fy} and F, = {f o...fou} (Fir,. fin, for-fom O F). There are two types of servi-
ces, according to conditions opand F :
» Transformations : there is no relationship between elementsaontilelements of F

BigNet
9¢

» Derivations : [is obtained from FlIt means that] f; O F, Of,; O F, | f; is either an enrich-

ment or a restriction of f
To ease the understanding of service by users, it is of interest to associate one service to similar
tools’ functions. Such an association corresponds to the definition of a polymorphic service. Po-
lymorphism may be of interest either from :

« the “tool side” when it corresponds to discrete tools’ operations having the same function.
This is useful when the choice of one tool respects specific criteria (access rightsxitpmple
according characteristics of the input model...);

« or the “formalism side” when it corresponds to semantically similar tools’ operations applica-
ble on discrete formalisms.

So, polymorphic services are useful to introduce performance criteria (“tool side”) or to enhance
transparency for related formalismdafmalismside”). Their implementation involves mecha-
nisms that are similar to dynamic binding in object langug2&27].

Example 6 Let us consider two polymorphic services where :

Connectivity evaluates if a graph is connected or not, statistmiges statistics about the formalism

(number or nodes, number of connectors etc.). Potential polymorphism is outlined below :

* The connectivity service is polymorphic on the “formalism side” because it has a signification for
any graphical (and non hiarchical) formalism. It is reasonable to suppose that one tool is able to
process any type of formalism if the model ngenémplements theharacteristics mentioned in sec-
tion 3.3.

» The statistic service is polymorphic on the “tool side” if, for a given formalism there are more than
one tool that perform this function. Then the choice of a given tool is performed according to criteria
associated to the service.

» The statistic service is polymorphic on both tool and formalism sideseafasé¢ools perform the
function for discrete formalisms. When the service isked, the choice of the tool relies on the
selected formalism and then, if more than one tool perform the function for this formalisrdjragcor
to criteria associated to the service.

Typing of services is not sufficient to implement a methodology because a sequence of operations
may have to be performed according to a given order. This is why permissions are associated to
each services. There are two types of permission access :

» Static permission deduced from the user identification,

» dynamic permission computed after the session state.

We propose in FrameKit the two mechanisms. First, access permission allow to hide a set of ser-
vices. This is useful when implementing roles in a project (i.e. the project manager should have
access to project management services while a quality engineer should be able to use quality ser-
vices). Permission are evaluated once when users get connected.

Second, FrameKit managssssion variablesA session variable contain a string and can be eva-

luated in a service precondition. Tools may affect values to these variables. Service conditions are

evaluated after any service invocation. It is a way to temporarily disable or enable services in order
to force a sequence that respects a given methodology.

It is also possible to consider the status of a service execution to build a service condition. Confi-

guration like the one proposed in the following example can then be performed.

Example 7 Let us consider three services : compile, link, displayprsrrcompile must be rurrdt. If it
terminates OK, then, it is possible to link. Otherwise, the user must apply dispteig. Briboth cases,
compile cannot be run a second time.

According to the requirements, services condition should be defined as follow :
« compile : compile was never launched,

* link : compile was launched OK
« display_errors : compile was launched with problems.

3.2 Data management
The data management axis deals with both data storage in a repository and data representation. To

cooperate, tools use intermediate files to exchange data. However, they are usually not designed
for data exchange with foreign software. Data translations must be performed : some integration
techniques rely on the addition of a software layer called di2yerr capsulg12, 26]. For com-
munication, the use of an internal Data Definition Language (DDL) makes this translation process
easier and supports heterogeneity in tools.

A common DDL, implemented at the platform level, provides an indirect but standardised com-
munication between tools allowing an easy maintenance of the tool set. Adding or modifying a
tool needs only to update one interface between the tool and the platform. Tool maintenance is
performed apart from the host platform. The tool evolution is hidden by the communication dri-
ver.

Tools need to store persistent data which may be shared. The environment has to provide a set of
functions to manage such data. When the number of shared files grows, the use of a shared object
database is the most interesting solufit8]. However, this solution is heavy to implement and

we propose a simplified model that is suitable for building a simple platform like FrameKit.

3.2.1Largegrained data

Large grained data are information components like models, results or any other information ma-
naged by tools (libraries, preferences etc.)

FrameKit types large grained data using tool-defined keys and behaviors. Tool-defined keys are
keywords used to find out an information in the FrameKit repository. The platform uses this in-
formation but does not have any knowledge of the corresponding semantics. Three types of data
behavior correspond to three persistency approaches :

* model-associatedata concern all the information associated to a model. It is useful to pro-
perly handle version management : whenaalel changes, associated results become obsolete
and should be deleted and recomputed if neeBiech data are stored with the model descrip-
tion in a cell stamped by its last modification date. The cell is destroyed when the model is
updated;

* user-associatedlata concern all the information related to a user (preferences, information
potentially shared by models...). This information remains reachable until the user is deleted;

* global dataconcern all the information related to a CASE environment. It is stored in cells
that may be associated to a tool, a formalism or to the platform itself (administration data
only). Data last as long as the entity (tool, formalism or platform).

To implement these discrete behavior, a proper use of directories is sufficient. Global data is sto-
red in a directory potentially shared by all users and tools. user associated data is stored in a user

associated directory. Finally, model-associated data is located in a directory that last as long as the
model does not change.

3.2.2 Finegrained data

Fine grained data are fine information components. To ease both their storage and handling, Fra-
meKit implements a message based approach. Each element in the model (nodes, edges, their re-
lations and their labels) are stored using elementary messages
Messages describe elementary actions like «create a new node numhergdgiclass N», «as-
sociate nodes,land by means of a connectoy ftom class C», «associate a textual attribute
named A and having value X to nodg retc. This description technique is generic because it
works regardless any knowledge of the corresponding formalism. the name of classes are defined
using strings and instances of classes are named using integers.
Example 8 Let us consider a small model defined using the elementary formalism OrieappbdGr
(Figure 6).
Its definition is transported using simple maegsathat carry out syntactic aspects only. Instruction CN
create a new instance of thefelenced class (a «node» in liBg CA instanciates a new connector of

the refeenced class (an «arc» in lir. 1. FQ13: Qi ent ed@ aph)
CT associates a textual label to connec- 2. W26, 12)
tors or nodes (affectation of value «bg tn 3. ON4: node, 4)
label «<name» of object number 4 whicha (——p() p 4 CI(4:nane, 4, 1:b)
a «node» in line 4). 5. O\(4:node, 3)
FO is used to identify the formalism iden- g' &(i: zgg‘é' g) 1ic)
tification and VM the version of this for 8 CT(4: nane. 2. 1: a)
malism. This information is used fc, 9. OA(3: arc. 5. 2 '4)
2 . . 3y) 1
check by tools only. O 10. CA(3:arc, 6,2, 3)
One last advantage of this mechanisms is 11. CA(3:arc,7,3,4)
that it rely on ASCII information only. 12. Cr(9:val uation, 7, 1: 2)
This is a way to solve most portability Figure 6 : OrientedGraph model and its
problems as well as exploitation of data corresponding internal description.

by programs running on discrete target architectures without having to use XDR mechanisms. In
fact, in FrameKit, all data are stored in ASCII format.

3.3 Environment

The environment axis supports the following points :

* association of an Operating System «command line» to a service (venagmpiler is asso-
ciated to the service compile and is invoked a given way);

 encapsulation of the Operating System functions like programeation, program communi-
cation, navigation through the repository system etc.;

« definition of a diffusion model to facilitate installation and evolution of the environment.

The first point is strongly related to the management of services mentioned in Secidnis

the set of low-level services required to support services as they appear to the user.

The second point is important to support tool integration as well as tool implementation. It should
be properly implemented in the APIs used to program in such an environment. Of course, a level
of abstraction is necessary in order to enforce portability. This is important for multi-platform im-
plementation and diffusion.

For example, in FrameKit, we have implemented the following functions :

* A high level communication model has been definedves® implementation are proposed
(some may ha restrictions). Then, any software component able to support one of these
implementations should be easily integrated in FrameKit;

* A high level transmission of information by means of messages is built on top of the commu-
nication model, like the Macao widget-like mechanisms to manage interaction with users;

* A repository offers storage services. This repository hides File system related mechanisms
(file naming system...).

The third point is also important because it proposes a framework for the evolution of the envi-
ronment. The distribution approach we propose relkits A kit is an elementary installation
component that contains elements to be installed by a specific administration tool. There should
be four types of Kits :

« Platform kits containecutable and data of the environment (administration tools, communi-
cation libraries etc.),

« Formalism kits contain all the definition of a new formalism in an installed environment;

* Tool kits contain information to install new tool and its associated set of serweesii@ble
files, initial data etc.);

» Custom kits for local upgrade of any element (platformcatable, tool xeecutable etc.); it
enable the construction of patches that fixes bugs of a previous distribution.

Example 9 Figure 7 proposes an instanciation
of the distribution model we @pose Let us oo
Imagine t_hat a software engineeringven Development site Development site 2 Developme
ronment is being developed in discrete pla-
ces. Such a distribution strategy enables :

« a distributed upgrade of kits (delopers Platfor ormalism . Tooll =
only upgrade kits they are responsible of), l'a'i’ E%\h E%i’
« a custom installation by clients (dac L1’ = archi 1 archi 2
client picks up what he needs). archi_1 ﬁi' - -
. . = . Tool 2
3.4 Evolution of the generic CASE ni a"_'archl
A CASE environmenE is made of a gene- 2¢ni_2 \) larchi 1
ric platform that offers communication ser- | y, > s -
vices and a generic user interface (it can < - -

—_—

seen as a default toolt has two generi
formal parameters : a set of formalisms ;:ﬁﬁg
a set of services (polymorphic or not).
Definition of new formalisms or services should be supported by dedicated administration tools.
In that case, these tools must be provided by the generic platform.
We note the generic CASE environmenfES’) where Fis the set of formalisms and the set
of services
During its execution, the environment changes; it “moves” into seliéFal5)adapted to the cur-
rent user needb.andSare the effective values given todhd Sin order to obtain the appropriate
E. The process which producEsfrom E is called adaptation and respects the following cons-
traints :

* F is included in Fwhich represents all formalisms defined Epr

eKit cliént
gure 7 : Example of the distribution model.

* Sis included in Swhich represents all possible services availabl&for
F and S are potentially unbounded. If we need a formalism which is not already includgd in F
lowing constraint 1s0S s: F - F,where Fand E 0 F
The evolution can be dynamic (Figug It is similar to inheritance in Object Oriented langua-
mic when it does not requires any compilation. The CASE environment is modified through
configuration files or any other similar mechanism.
addition of new kits can be performed e
by adding/removing kits. In Figui& the se
either as maintenance on tools and/or * environment enviroment 1 enviroment 2
malisms or the installation of a new function
nism is more difficult to implement but al- Set#1of toolsand Set #2 of tools and
lows more flexibility. formalisms formalisms
has an influence on the architecture of toolsFigure 8 : Dynamic adaptation mechanism.
in the environment. Let us now consider both implemented tools (a priori integration) and impor-
3.5 Structure of an implemented tool
To hide target architecture related mechanisms (and meet platform integration), all presentation,

it is possible to add it."Shas the same property, however, its elements always respects the fol-
ges : the set of formalisms and services can be modified during its execution. Adaptation is dyna-
The produced CASE is easier to main

cond dynamic adaptation can be conside Generic CASE ~ Dedicated CASE ~ Dedicated CASE

in the CASE environment. Such a mecha-

Such an evolutionary mechanism however Dynamicadaptation1 Dynamic adaptation 2

ted tools (a posteriori integration).

data, control axis should be implemented and available for applications by means of Application

Program Interfaces (API).

Thus, tool designed to run in the target envi-
ronment take benefits from these APIs. To
meet this requirement, three API correspon-
ding to the three axis presented in Sec8on
The algorithmic part of the program should
be disconnected from the environment and
relate with it only by means of the APIs
(Figure 9).

Our implementation in FrameKit follow this [Data management |

strategy. Moreover, the «main» programFigure 9 : Architecture of a tool designed to run in

an application is a part of the FrameKit librathe software environment (a priori integration).

ries. This enable to always correctly initialize all required resources to operate the three API's and
call the «tool main programs» without having to change initialization directives over the FrameKit
versions. Only a new link with APIs libraries is required.

3.6 Structureof an integrated tool

Tools to be a posteriori integrated in the type of environment should be disconnectable from their
user interface. Discrete techniques coulg™
considered according to the set of availdwr

The Generic environment |

information developers provide on their v A v A
software driver tool

. . - . driver part (specific
If source code is available, it is possiblg to process that river p :

. . ',) i implementation
adapt it to fit the API described in the pre—zives the tool i)
vious section. Then, the result is similaf to tool o
an a priori integration. (only an executables tool libraries
If only executable file is available (plus in-_files are provided)
formation about exchange formats) is a _ _ b o
possible to diie the tool by means of a spe-'gure 10 Possible architectures of a posteriori
cifically implemented process (Figure integrated tools.

10.a) The environment only knows about this process which architecture is the one defined in
Figure9. The driver and the tool communicates by means of any mechanism encapsulated in the
environment (see environment axis).

If tool libraries are provided (plus description of data structure), they can be directly linked to a
driver to make a unigue executable {igure 10.b)

In both cases, the driver translate information in the required format and then, translate back re-
sults for display by means of the user interface.

4 Resaults

We have implemented those principle in the FrameKit integration platform which is freely availa-
ble on the Internet since March 1998, 20]. We have also used FrameKit to build CPN-AMI

a Petri net based software environment for the modeling and evaluation ad prototyping of distri-
buted applicationEl9].

CPN-AMI 2 relies on three formalisms : Well formed Petri Ndjs OF-Class and H-CO&M

that are Petri net encapsulations suitable for an Object Oriented modeling appyoaéhClass

focuses on the preliminary design and structuration of the system (coherence between software
component interfaces) while H-COSTAM emphasizes implementation aspects of the system
(mapping of a conceptual solution into an operational software architecture).

The production process of a customized CASE (presented in Higuseinstanciated in

Figurell CPN-AMI implementation is reduced
to the description of three formalisms and the i
plementation or integration of sixteen tools. O
formalisms and tools (either implemented or in
grated) are declared in the FrameKit structj@1 Petri Net tools

Petri Nets
OF-Class
H-COSTAM

dedicated
user interface

they are available to the users and kit are prod Lo Class ool _psy !
for distribution over the Internet.

Within the sixteen tools currently integrated i FrameKit /V CPN-AMI 2

FrameKit to compose CPN-AMI 2, four hav

been developed in other universities (GreatfSiglie 11 :Production process of CPN-AMI 2.

[5], PROD[28], EVR-unfold[10] and do{17]).

Tablel summarizes the amount of time spent in the integration process to build CPN-AMI 2 (a
full description of these tools may be found18]). This corresponds to the time required to get

a first operational version, in order to eya

luate the interest of the tool for our metho imethaurd

. . %
dology. Some times (essentially for PROB Tool S o s
and dot), some extra work was required@o name |Z 2 | = AL
access to enhanced functions. All imported Fl g %
tools (PROD, ERVunfold, GreatSPN and 8|S f -

; ; i GreatSPN - [|6 0.2 [Intgration from eecutable fes
plot) Where mf[egrated using the technlqurv 1.6) only, performed using Unix shell
illustrated inFigure 10.a. . language.

For most tOOIS, we only had to perforrn alCPNsmuIato B |110 [15 nghly interactve tOOl._ Major rei-

. sion due to changes in the manage-
small adaptation (by means of a shell . ment of interaction in FrameKit.
script that centralize the emulation of irIi—g_ctaoleanCon-D” 0.5 |02 [Intgrated using Unix shell Tap-

; ; ; r - dition . guage.
ne m.vocatlon.s) .and the declaration to Fr CPNuverifier D |1 0.2 |Combination of three tools «glued»
meKit (description of the Macao menu in a Unix shell script.
associated to the tool). ,,|CPNunfolder| D[0.5 | 0.2"| Inwated using Unix shell Tan-
. . . . 2] . guage.
CPN-AMI'is St_”! bemg Improveq and exz CPNinvariant| D |2 0.2 |Intgrated after a recompilation
tended by addition of new tools in orden D using C APIs.
cover and fully implement our desigh (F\’/RBPZD) I 24 |05 tng%glg] btg gogﬂcr;fliféx ;gcr)lifr\galg-
methodology for distributed systems. We'" ™ mented Using Ada APIs,
use it for industrial contracts and teachingEvRunfold [T |4 [0.2 |Intgration from &ecutable fes
only, performed using Unix shell

1 language.

S COﬂC'USlOﬂ PetriBDD OF |4 0.2 |Intgrated using Unix shell lan-
. guage.

In 'ghls_paper, we have pr_esented a parameretyGraph I 3 0.2 |Adapted using a specific der

terization of a CASE environment in order(dot) implemented using Ada APls.

to enhance a qu|Ck |mp|ementat|0n o1LinearCha- D |/ 0.2 Intggrated as is (it was implemen-

. . | _|racterization ted using C APIs)

CASE tools dedlc_ated to specific devel ”MTOFC-verifier [D |/ 0.2 | Intgrated as is (it was implemen-

ment methodologies. The proposed pro¢g- ted using C APIs) _

dure emphasizes two aspects : a standgF-oader | D7 |02 tég%fg%dA%Z ﬁp(l';)was implemen-

data} definition technique that[relies on f&prop-orc TF 7 0.2 |Small adaptation of the irgeatior|

malisms as well as association techniques for Petri nets.

between tool’s funct|0ns and SGI’VIC% HCM-verifier |D |/ 0.2 Integra_lted as is (it was implemen-

. . e ted using Ada APlIs)

Both formallsms_and SerV|Ces_ are para I} fHCM2PN D |/ 0.2 [Integgrated as is (it was implemen-
ters of the generic CASE environment. |O |(prototype) ted using Ada APIs)
ey

The result of this work is implemented'm
FrameKit , a generic CASE environment — oD for Develonped ool
: : or integrated toold) for Developped tools.
we use for the rapld prOtOtyplng of CA$E Adaptedgfrom AMI, our previous%’ljatform.
environment that implements methodoto- Reuslt of a cooperation with two other universities and thus not designed to

. . run in Framekit.
gies for evaluation purpose. It has b@en This integration inheritates from the one done for Petri nets.

Table 1:Summary of tool integration to build CPN-AMI 2

used to build CPN-AMI 2, a multi-formalism CASE environment based on Petri Nets. Both Fra-
meKit and CPN-AMI are available on the Interrét t p: / / wwwsrc. |i p6. fr/cpn-am >
and<http://wwesrc.lip6.fr/framekit>.

6
(1]
(2

(3]
(4

(9]
(6]
(7
(8]
(9
(10]

(11]
[12]
[13]
(14]
(19]

(16]

(17]
(18]
[19]
[20]
(21]
[22]
(23]
[24]
[29]
[26]

[27]
(28]

[29]

References

Ada Join Program @ite, "Reference Manual for the Ada-95 Programming Language", U.S. Department of
Defense, The Pentagon, Washington, January 1995

J.M. Bernard & J.L. Mounier, "Conception et Mise en Oeuvre d'un environnement systéme pour la modélisa-
tion, l'analyse et la réalisation de systemes informatiques”, Thése de doctorat\d@diténPierre & Marie
Curie, 4 place Jussieu, 75252 Paris Cedex 05, Décembre 1990

J.Buxton, "DoD requirements for Ada programming support enviroments, STONEMAN", Dod High Order Lan-
guage Working Group, February 1980

G. Chiola, C. Dutheillet, G. Franceschini & S. Haddad, \@il-Formed Coloured Nets and their Symbolic
Reachability Graph", High el Petri Nets. Theory and Application. Edited by K. Jensen G.Rozenberg, Sprin-
ger Verlag 1991

G. Chiola, "GreatSPN 1.5 Software Architecture”, In Proceedings of the 5th International Conference Modeling
Techniques and Tools for Computer Performance Evaluation, Torino (Italy), February 1991

A.Diagne & FKordon, "A Multi Formalisms Prototyping Approach from Formal Description to Implementation
of Distributed Systems"”, in proceedings of the 7th "Internativ@akshop on Rapid System Prototyping",
N.Kanopoulos Ed, IEEE comp Soc Press, Greece, June 1996

Desfray P., "Object Engineering, the Fourth Dimension”, Addison-Wesley, 1994

M.Dowson, "Integrateed project support with ISTAR", IEEE software, November 1987

ECMA, "A Reference Model for Fram®rks of Stoftware Engineerings Environments"”, ECMA report number
TR/55 (version 3), NIST Report, April 1993

J. Esparza, S. Romer W. Vogler, "An Improvement of McMillan's Unfolding Algorithm", in proceedings of
Tools and Algorithms for the Construction and Analysis of Systems, LNCS 1055, pp 87-106, Sfeiteger
March 1996

C.Fernstrom & L.Ohlsson, “The EShsion of a Software Factory”, Proceedings of the International Gonfer
ence on Software Development Environments & Factories, Berlin, May 1989

B.D.Fromme, "HP Encapsulator : bridging the generation gap", HP Journal, June 1990

C.Gerety, "HP softbench : a new generation of software developement tools", HP Journal, June 1990
D.Hatley & I.Pirbhai, "Strategies for real-time system specification", Donset house publishing Co, 1988

C. Hylands, E. Lee & H. Reekie, "THgcho User Interface System", The 5th Annual Tcl¥Va&rkshop '97,
Boston, Massachusetts, pp 149-157, July 14-17, 1997

F. Kordon & J-L. Mounier, "FrameKit and the prototyping of CASE environments”, 8th IEEE International
Workshop on Rapid System Prototyping, Reseafdangle Park Institute, IEEE comp Soc Press N°
97TB100155, pp 91-97, June 1997

E. Koutsofos & S.C. North, "Drawing graphs with doffechnical Report 910904-59113-08TKT&T Bell
Laboratories, Murray Hill, NJ, September 1991

J.Lonchamp, K.Benali, J.C.Derniame & C.GodartpWards assisted software engineeringiremments”,
Information and Software Technology, vol 33, n° 8, October 1991

MARS-Team, "The CPN-AMI environment (version 2.2.1)", <http://www-src.lip6.fr/cpn-ami>

MARS-Team, "The FrameKit home page"”, <http://www-src.lip6.fr/framekit>

MARS-Team, "Macao Home page", <http://www-src.lip6.fr/macao>

B.Meyer, “Conception et Programmation par Objets”, InterEditions, 1990

T. Mowbray & R. Zahavu, "The Essential CORBA: Systems Integration Using Distributed Objectsiilmhn

& Sons, 1995

J. Rumbaugh, M. Blaha, F. Edd¥. Premerlani&WV. Lorensen, "OMT : Object Oriented Design and Mode-
ling", Masson & Prentice hall, 1994

PtolemyTeam, "The Ptolemy Kernel-- Supporting Heterogeneous Design", RASSP Digesettey vol. 2,

no. 1, pp. 14-17, 1st Quarter, April, 1995

D.Schefstrém, "System Delopment Environments : Contemporary ConceptsTool Integration : eviron-

ment and framework, Edited by D.Schefstrom & G. van den Broek, John Wiley & Sons, 1993

B.Stroustrup, “The C++ programming language”, Addison-Wesley, 1991

K. Varpaaniemi, J. Halme, K.HiekkanenT&Pyssysalo, "PROD reference manu@&chnical Report B13, Hel-
sinki University of Technology, Digital Systems Laboratory, Espoo, Finland, August 1995

A.Wasserman, “Tool Integration in Software Engineering Environments”, LNCS 467 : "Software Engineerings
Environemnts", pp 138-150, 1990

