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Devant la complexité sans cesse croissante des applications informatiques et leur interconnexion à travers les réseaux, le paradigme de distribution devient un standard de fait. Une application informatique est souvent conçue de nos jours comme devant faire partie d'un système plus grand auquel il peut rendre des services ou en requérir de lui. L'approche par modules (ou composants) est une démarche de plus en plus fréquente en génie logiciel. Elle consiste à principalement à construire des applications à partie de composants spécifiés, vérifiés et réalisés ad-hoc ou réutilisés. Vérifier et valider la conception de même que optimiser la solution réalisée deviennent alors des besoins le long du cycle de vie d'une application. Un autre besoin très important est d'assurer qu'il n'y a aucune dérive entre le résultat de la spécification et la solution réalisée. Nous proposons une approche multi-formalismes avec deux modèles de composants. Le premier est dédié à la spécification et permet d'entreprendre des activités de vérification et de validation. Le second est dédié à la réalisation et offre des moyens pour optimiser le code généré. Les deux partagent le même fondement formel qui sont les réseaux de Petri colorés et la traçabilité entre eux est assurée de manière semi-automatique sur la base de règles formelles.

Introduction

Face to the much and much complexity in computer applications and their interconnection via networks, the distribution paradigm has become a standard. The immediate consequence of distribution is the necessity to consider the logical partitioning of an application into logical interacting entities (the components). The logical partitioning allows to define what is required from the components and how this is achieved as well as their composition to achieve the overall functionalities of the application. At this level, one needs to ensure that the partitioning match the initial requirements in a satisfactory (i.e. at least safe and reliable) way. The logical partitioning leads from specification downto implementation of the application under consideration. The implemen-tation of the application needs to be tailored according to a given infrastructure that will support the operation of the application. The infrastructure is made of physical entities, often distributed over a network. Tailoring the implementation according to this infrastructure allows to optimize the performance, to improve the availability of the functionalities and the resource sharing by choosing the most appropriate location of software pieces on physical machines.

At the specification of a software, we have strong verification and validation needs. System architects and application designers need to prove their models formally. With techniques like model-checking, they can exhaustively simulate the operating state of their applications and verify temporal dependencies between the states reached or the actions performed. Some basic properties like deadlock-freeness can be checked. Domain dependent properties can also be investigated. The conceptual model of component we propose for this stage allows to achieve the logical partitioning while managing these aspects. Quality issues at specification level are mainly domain dependent properties to prove. They should be traced downto implementation. The model allows to focus on what the components do (i.e. to model into details the architecture of an application) as well as on how they achieve this (i.e. to model their internal aspects). Properties expected from the application can be stated and verified. For that purpose, the model is transformed into a colored Petri net representation that allows simulation and model-checking. Simulation makes the specification executable and hence use cases of the target application can be validated early at specification stage.

Once the model built at specification reaches a satisfactory level, the next step is to implement it in an optimized way. The main quality issue at this level is to ensure the that no divergence is introduced between the model and its implementation. To do so, the transformation from conceptual model to operational model is formally defined [START_REF] Diagne | A Multi Formalisms Prototyping Approach from Formal Description to Implementation of Distributed Systems[END_REF] . Transformation of the operational description into Petri nets is dedicated to program optimizations; it takes into account the target infrastructure to sketch and evaluate locations strategies.

To avoid useless work and moreover to trace quality along the life cycle, there is established a formal correspondence between the component models. This correspondence allows, by giving some necessary precisions on the conceptual model, to derive an operational one. Nevertheless, the coupling between the two component models is loose and each and its associated toolset can be used separately.

The paper is organized as follows: the section 2 presents the overall approach integrating our components as well as their formal basis. The section 3 is dedicated to the conception of distributed applications while the section 4 deals with their implementation and deployment. Conclusions and future works will come in section 5.

Overall Approach

As for the Proteus approach [6] , we distinguish two sets of activities : the specification and implementation of an application.

A designer first deals with conceptual aspects of the application like the functions it has to provide or the interoperability of its software components. Once the conceptual description has reached a satisfactory maturity, he may then think about operational or implementation related details.

These two separate aspects of the design deal with different types of information. So we express them by means of separate representations. However, the second one is deduced from the first one and a simple procedure can be provided.

Both steps should also consider the properties of the application. Properties may be derived: • from the requirements, like «the application has only one terminal state»; • from conception hypothesis, like «this service must be run first to operate a subsystem»; • from operational hypothesis, like «this variable can be duplicated in order to increase efficiency».

Verification or computation of such properties cannot be done without having a formal description of the application. Petri nets are suitable for such a role but they are not uneasy to handle large specifications. Moreover their capabilities allow one to describe both conceptual and operational specifications. It is then easy to mix up both features in the same model.

The MARS Methodology

The MARS methodology relies on both Petri nets and use high level description techniques (Figure 1). Well formed Petri Nets [1] fit all the formal needs. It supports the computation of properties in the model. On top of Petri nets, we propose two High level formalisms :

• OF-Class (Object Formalism Class) [2] provides a conceptual description of the application.

It provides information about the association of components, the way they behave and how they should be used. It may be simulated and transformed into the formal description; • H-COSTAM (Hierarchical COmmunicating STAte Machine Model) [START_REF] Hack | Extended State-Machine Allocatable Nets (ESMA), an Extension of Free Choice Petri Net Results[END_REF] allows the designer to deal with operational aspects of his/her application. Such a description may be derived from the conceptual description by addition of information. It can also be transformed into the formal description and enable code generation. These formalisms correspond to a sort of Petri net encapsulation. They offer more sophisticated predefined constructions are strongly related to Petri net concepts in order to maintain traceability. Four operations between these three representations are characterized: • Two types of transformations from respectively OF-Class and H-COSTAM into Petri nets enable the link with the formal representation. These transformations are different while they do preserve different properties. The result is a Petri net that express either functional relations (to get conceptual properties of the application) or an operational description (to extract operational properties that should lead to the optimization of the prototype); • Code generation is performed from the operational description. It may compute and use operational properties to optimize code generation. In the context of distributed applications, this operation must produce both a compilable program and a location proposal. This location proposal is computed for a given hardware architecture description [4] . • Elicitation of the application is the transformation of a conceptual description into an operational one. it occurs when the Conceptual description appears to be safe and progressively introduces operational information (how communication is performed, where strictly sequential parts of the application are, etc.) that leads to the production of an equivalent H-COSTAM specification that is more likely oriented towards code generation of distributed applications. It should not be automatic like the two other ones and can be considered as a list of questions that gradually clarify all the points of the implementation Information about this operation can be found in
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Objectives and Common Features of the High-level Formalisms

In both OF-Class and H-COSTAM, a specification should be divided in two parts: • The model of the execution environment : it corresponds to already existing pieces of software for which no modification or evolution is possible. The operating system of a computer is a good example of execution environment; • The model of the application itself that is divided in two separate parts: parts that are reused from others applications (they already exist but can be modified if necessary) and specifically designed components. Both conceptual and operational descriptions are hierarchically structured. They are divided in pages. Two granularities are considered:

• the macro-level contains information that are more likely dedicated to the definition of relations between either elementary units or sub-systems, • the micro-level that describes the behavior of an elementary entity.

In both cases the corresponding Petri nets are flat. The hierarchy of the input description brings the structuration of the Petri net model. Such a structuration facilitates both the understanding and the verification of the model properties.

Specification and Verification

For specification activities, we use a dedicated component model named OF-Class. We present it hereafter with its verification and validation facilities. OF-Class is not relevant for software engineering activities like requirement engineering. We assume that such activities have been already run and an outcome which has an object-based structure has been produced (see Figure 1).

The Conceptual Formalism : OF-Class

OF-Class is a template dedicated to the conceptual description of distributed applications. In one hand, it takes into account the main features of such applications pointed out in the computational viewpoint of the Reference Model of Open Distributed Processing (RM-ODP) [START_REF] Kordon | Process decomposition for Rapid Prototyping of Parallel systems[END_REF] . It provides a constrained interfacing mechanism in order to achieve most formal interactions. In another hand, it is formally associated with a modular Colored Petri Net (CPN) model [START_REF] Diagne | Formal Specification and Design of Distributed Systems[END_REF] . This modular CPN models the internal automaton describing the behavior of an OF-Class. It allows to undertake verification of both the structure and the dynamic of specifications.

OF-Class does not claim to support object-oriented activities such as analysis and design. However, it is as generic as possible to enable transformation from any OO model to undertake its verification.

Modeling Distributed Applications with OF-Class

Specification and design of a distributed application consists of describing the components and their interactions. To evaluate the designed application, the expected properties of its components and their interaction must be expressed.

The execution environment of the application is considered to be a set of valid components accessed across bounded interfaces. The environment of a given component is made of both the execution environment of the whole application and the set of other components it is interacting with.

Properties that are expected from a distributed application are of two kinds: • local properties on components concerning the managed resources or the offered services. These properties can be expressed as invariants -like in RM-ODP -on those resources or availability constraints on services. These properties are expressed on the micro-level description in an LTL temporal logic, • global properties on the whole application such as safety of the interactions between its com-ponents (like deadlock and starvation free application), meaningful reachable states (home state and reversibility). They can be expressed as LTL assertions on the application evolution. The model of the application may include observation facilities. They are information supplied to run the application and evaluate its behavior. They model the information necessary to simulate execution of the application. The simulation is centralized. However, building incremental subsystems with an abstracted environment allows to avoid the construction of the whole system. One can stress on a given part of the system considered as a glass box while other parts are abstracted as black boxes.

A component has private resources to manage (it is the only one to manipulate them), offers to the environment services that handle those resources and an abstraction on its environment. To achieve these goals, there are two description levels.

The Micro-Level in OF-Class

The micro-level describes the local resources of a component and their possible transformations. A resource is an entity local to a component that can be accessed only through invocations of services offered by that component. Transformations of resources are done by means of elementary actions. These actions are grouped as sets called operations.

An operation is a set of actions performing a given semantic transformation on local resources. An operation can issue requests to the environment. It has input and output parameters, local variables and a return code. Two special operations handle the dynamic creation (constructor) and deletion (destructor) of instances.

A component may also trigger some sets of actions when reaching some meaningful states or when some events occur while interworking with the environment. These mechanisms are slightly different from operations because they cannot be invoked by consumers. Such actions are called triggers and have no equivalence in RM-ODP concepts. Triggers bear eventually preconditions, i.e. predicates on the resources values or input parameters specifying the state in which they are executed. Triggers can undertake interactions with the environment.

The Macro-Level in OF-Class

The macro-level describes the structural and dynamic links necessary for interaction of components in a distributed application. Structural links allow to compose discrete components in order to build a more complex one. Dynamic links are:

• the services offered by a component. An offered service is a set of operations with contractual constraints like precedence or access semantic (synchronous, rendez-vous, etc.). It is a coherent partial view on the behavior provided to the environment for access to the local resources, • the services required from the environment show a given component the way it must behave towards it. They are provided by other components of the application.

Verification and Validation with OF-Class

OF-Class is formally mapped to a modular colored Petri net model, the OF-CPN model [START_REF] Diagne | Formal Specification and Design of Distributed Systems[END_REF] . The transformation is based on the principles developed in [START_REF] Hack | Extended State-Machine Allocatable Nets (ESMA), an Extension of Free Choice Petri Net Results[END_REF] . The transformation produces one modular net per OF-Class with markings traducing the instanciation process. Once the transformation achieved, we can give for each module an abstraction of its environment and run the construction of the reachability graph. The abstraction is a black box that just issues requests and responses to the component while respecting the contractual constraints (see Section 3.1.3). This reachability graph support the model-checking of the local properties.

To verify the global properties, we reduce the reachability graphs of the components to the observable actions (consuming request tokens, producing result tokens, etc.) and we compute a synchronization of the reduced labelled transition systems [3] . The reduction is based on an observation equivalence on states. The observation equivalence is computed on isolated components before composition. Thus, we limit the combinatorial explosion that comes up with composition.

By simulating the generated Petri nets, we make the specification model executable. This allows to early validate scenarios at the specification stage.

Implementation and Deployment

In MARS, implementation and deployment are performed using the operational formalism : H-COSTAM. We first present it before exploring issues of program generation and its deployment over a set of processors.

The Operational Formalism: H-COSTAM

This section does not aim to give a full definition of H-COSTAM that can be found in [START_REF] Hack | Extended State-Machine Allocatable Nets (ESMA), an Extension of Free Choice Petri Net Results[END_REF] . We just remind here the main principles of H-COSTAM and introduce new capabilities.

H-COSTAM is a formalism dedicated to the operational description of distributed applications. Its features are the following:

• Hierarchy enables to get a readable and structured specifications. Translation into Petri nets then preserves a «good» structure that should facilitate the computation of properties; • Strongly typed communication mechanisms define a communication model in the sense of CSP [10] . However, communicating entities are sequential state machines or subsystems instead of instructions;

• genericity (in the sense of the Ada language) eases the parameterization and the reuse of components.

Structure of an H-COSTAM Specification

An H-COSTAM specification is composed of pages that belong either to the macro-level or the micro-level (see Section 2.2.). A macro-level page describes the relation between entities that are either subsystems (and then a link to another macro-level page) or a process (and then a link to a micro-level page).

Pages are tagged external if they describe the functional behavior of the execution environment. They are tagged internal if they correspond to the description of the application itself. If a macro page is tagged external, all its components should be tagged external as well.

External and internal components cannot be interpreted the same way: • external components represent pieces of software the application will be linked to. The only necessary information is an H-COSTAM translation of the usage-manual introduced for OF-Class (see Section 3.1.3), • internal components are parts of the application and must be described in detail. The code generator will use this information to produce programs that will be linked to the already existing code associated to the external components.

The Micro-Level in H-COSTAM

The micro-level describes a class of sequential state machine (called process in H-COSTAM). A process is interfaced with the outside world by means of media that define an interaction. Each medium is strongly typed by both the type of data that goes through and its behavior. There are three classes of media:

• a multi rendez-vous corresponds to a synchronization between a set of N entities. The synchronization corresponds to a Petri net transition shared by several processes, can be guarded by a condition and allows the exchange of information between the participants;

• a link corresponds to asynchronous transmissions that have some specific behavior. Three behaviors are defined: FIFO (the order of messages remains), LIFO (last message in is first out) or random (no order preserved). Links may be connected to an arbitrary number of entities. Each input entity may send a message that will be received by all the output entities. • a RPC relates a class of clients to a class of servers and corresponds to a remote procedure call. On the client side, it appears like an atomic operation (equivalent to a synchronization).

On server side, it behaves like two FIFO links, the first is an input that corresponds to the service invocation, the second is an output and represents the end of the service; • a factory represents an entry point for special messages asking for the creation of processes.

Media that interface a process are connected to an internal automaton that is expressed using a State/Transition model whose semantic is close to the one of Well Formed Petri Net. The internal automaton has to be a sequential state machine in the sense of [START_REF] Goldberg | The Proteus System for the Development of Parallel Applications[END_REF] .

The automaton describes the static behavior of the elementary process. Each of them may be instanciated statically (a set of instances are predefined at the initialization of the application) ordynamically (when a special event comes from a constructor).

Figure 2 : Example of a micro-level description.

Each instance may have its own distinct context represented by a set of private variables. A restricted set of operations is available on these variables: Identity, successor, predecessor, product and restriction. Such a limited set is necessary because we want to maintain an equivalence with Petri nets. However, if more complex and specialized capabilities are needed, they can be introduced by means of external components.

Communication media may also be local to the entity. They are then potentially shared by all instances and cannot be accessed from outside.

Figure 2 describes a elementary state machine class that has three interfaces media (bold gray). StartInstance is a factory for creation messages. init_data is a communication link for sending data to another unit and SyncOnEnd represents a synchronization with another set of components. Random link Data appear here as a data storage zone (for readability, the initial content is not provided).

each instance of this elementary state machine creates N tasks (according to the value of constant $LAST_ID imported from the upper level presented in Figure 3), send them information and then synchronize on their end.

According to the declaration part, there is only one statically created instance of this state ma- chine (it begins at state begin ).

The Macro-Level in H-COSTAM

The macro-level describes the relations between entities. So, involved objects in a macro-level page are either communication media (including constructors) or entities.

A communication medium is either the real one associated to entities interfaces or an interface with an upper level. Like in the micro-level, only interfaces media may be accessed out of the page. In the macro-level, constructors (local or interface with the upper level) cannot be defined if they are not connected to the interface of at least one contained unit.

An entity is either a process, defined in a micro-level page, or a subsystem, described in another macro-level page. In both case, media that define interfaces of contained entities are then associated to the real ones that perform the communications.

Figure 3 : Example of a macro-level description.

Figure 3 shows the macro level page that contains two subcomponents : init , the state-machine defined in Figure 2 and System , a subsystem containing several sequential processes. So, according to this page, Init creates 100 instances of System class, provide them with information and synchronize to stop when all are terminated.

Using Petri Nets for Process Partitioning in an H-COSTAM Model

The H-COSTAM specification of the application corresponds to the view of the designer. Such a view is quite easy to automatically interpret in order to generate programs while it contains all the relevant information. However, it might not be the most accurate one : some tasks may be grouped differently and lead to a better partitioning of the application.

A translation of the H-COSTAM specification into a flat and structured Petri net enables to run the partitioning algorithm presented in [START_REF] Heiner | Petri Net Based Software Validation, Prospects and Limitations[END_REF] which automatically extracts sets of concurrent state machines from a Petri net model. Its main problem of is that it can fails when applied to unstructured Petri net models. However, this cannot be the case while the transformation from H-COS-TAM toPetri nets is controlled and performed a way that avoids such cases. So, the algorithm finds at least one process partitioning (the one of the designer). Other ones (if there are any) correspond to other potential partitioning of the application.

Such a procedure enables the computation of alternatives task decomposition of an application. The appropriate one may then be selected considering characteristics of the target architecture (number of processors) or implementation choices (minimization of synchronous communications for example).

Code Generation from an H-COSTAM Model

Program produced from an H-COSTAM specification are build after the generic architecture Most of it are generic components that are customized after characteristics of the input model : • The type manager handles all types manipulation and operations; • The media manager, implemented as sets of concurrent processes, take care of synchronous (multi-rendez-vous, RPC) and asynchronous (links) communication; • The prototype manager is in charge of initialization and termination of the prototype execution. It also takes care of dynamic process creation (factories). There is one prototype manager per target CPU. H-COSTAM genericity can be supported using the corresponding feature in the target language (templates in C++, genericity in Ada95, etc.). Otherwise, a rewriting mechanism similar to macros has to be implemented in the code generator.

Tasks classes issue from H-COSTAM processes corresponding to the application (i.e. tagged internal) are the main customized elements of produced programs. Other specification components represent the execution environment and are «glued» with the prototype during code generation. It is not really a linking procedure while the implementation of such components must respect convention regarding interfaces (connection between H-COSTAM processes are done using communication media only).

Program Deployment based on the Prototype Structure

Code generation and application deployment are separately computed in the MARS methodology. Each task of the prototype derived from the generic architecture presented in the previous section is has to be associated to processors. When the prototype is produced and its final architecture completely defined, it is of interest to find out in the architecture typical configuration for which a «good» processor allocation can be performed.

Usually, having chosen a partitioning for a given specification (see Section 4.1.4.), the designer may have some feeling about «nice» configurations that facilitate task allocation over a set of processors. It is of interest to use Petri nets in order to evaluate such expectations. We will present in this paper to an example : pipe-line detection.

Our technique is divided in two phases : 1) the designer states his feelings, 2) a Petri net is synthesized and evaluated in order to check (or invalidate) the hypothesis. Pipe-lines are easy configuration for task allocation over a set of processors. Each step of the pipe-line is usually affected on a processor in order to increase parallelism.

Process

To evaluate if a pipe-line hypothesis is correct, we produce a Petri net model using the following rules :

• Each task of the prototype is represented by a transition,

• Communication between tasks is modeled by means of places. Connection between places is bidirectional if it is a synchronous communication (issued from a RPC or a multi-rendezvous), unidirectional otherwise; • A complementary place «closes» the pipe-line. If it exists it should generate an place invariant. The pipe-line existence is confirmed if there are invariants that cover the pipe-line. 

Conclusion and Future Work

This paper presents a methodological support to enable the management of quality and its traceability along the life-cycle of distributed applications. At the specification level, properties expected from the application can be stated and verified on the model built. By the elicitation operation, we ensure that the operational representation does not diverge from the conceptual one. The code generated from this operational model is optimized by computing structural invariants implicit in the model. Deployment of the generated code on specific hardware architectures can be sketched in order to evaluate it.

Currently we are working on tests selection techniques to confirm the quality and its traceability. We aim by test generation and selection to exhibit on the implementation the mechanisms that ensure the properties proved at the specification stage. 
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