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Introduction

As described by Miller (2012a): "An election inversion occurs when the candidate (or party) that wins the most votes from the nationwide electorate fails to win the most electoral votes (or parliamentary seats) and therefore loses the election". To describe this phenomenon, public commentary commonly uses such terms as 'reversal of winner', 'unpopular winner', 'divided verdict' while the academic literature on voting and social choice uses such terms as 'compound majority paradox' and 'referendum paradox' 1 . Election inversions can occur under U.S. Electoral College2 or any two-tier electoral system.

The President of the United States is elected, not by a direct national popular vote, but by an indirect Electoral College system in which (in almost universal practice since the 1830s) separate state popular votes are aggregated by adding up state electoral votes awarded, on a winner-take-all basis, to the plurality winner in each state. Each state has electoral votes equal in number to its total representation in Congress and since 1964 the District of Columbia has three electoral votes. Therefore the U.S. Electoral College is a two-tier electoral system: individual voters cast votes in the first tier to choose between rival slates of 'Presidential electors' pledged to one or other Presidential candidate, and the winning elector slates then cast blocs of electoral votes for the candidate to whom they are pledged in the second tier. At the present time, there are 538 electoral votes, so 270 are required for election and a 269-269 electoral vote tie is possible. As is well-known, the Electoral College has produced a 'wrong winner' in several elections including the 2000 and the 2016 presidential election, and it has done so three times before.

The pervasiveness of the 'Election Inversions paradox' raises the following question. Given a division of the country into a number of (possibly unequal) districts, a number of electoral seats for each of those districts and a probability distribution of the Left/Right preferences among the voters, what is the probability that this event will occur ? We can approach this question in at least two different ways. A first one, purely theoretical, consists in considering an abstract probability distribution on the set of preference profiles. A second one more empirical consists in estimating the probability distribution on the basis of a statistical model and the electoral data. This paper is a contribution to the first avenue of research.

The literature dedicated to the theoretical probabilistic evaluation of social choice events and paradoxes is dominated by two popular models known under the acronyms IC (Impartial Culture) and IAC (Impartial Anonymous Culture). Both models, as well as their extensions, are defined by a specific probability distribution over the set of profiles of voter's orderings over a finite set of alter-natives/candidates. The IC model postulates that the preferences of the voters are independent and identically distributed, the common marginal distribution being the uniform multinomial distribution over the set of feasible orderings 3 . Equivalently, IC postulates that all profiles are equally likely. In contrast, the IAC model, introduced for the first time by [START_REF] Fishburn | Borda's Rule, Positional Voting, and Condorcet's Simple Majority Principle[END_REF] and [START_REF] Kuga | Voter Antagonism and the Paradox of Voting[END_REF] postulates that all the situations (a situation is a dispatching of the total population of voters between the different possible preferences) are equally likely. It can be shown that IAC is equivalent to the assumption that the preferences of the voters are independent and identically distributed according to a multinomial distribution conditional on a prior uniform 4 draw of the vector of parameters in the unit simplex whose dimension is the number of feasible orderings. This implies that, while the marginal probabilities are still identical accross voters and uniform, voter's preferences are not independent anymore: their preferences exhibit some positive correlation often qualified as describing some homogeneity in the society (Gehrlein and Lepelley (2011)) 5 . In this paper, we focus on the case where there are two alternatives and therefore two possible preferences. In such case, the IC model is also known as the Banzhaf's model (1965,1966) and the IAC model is known as the Shapley-Shubik's model 6 . The probabilistic connection was pointed out by Straffin (1978). When the population of voters is exogenously partitioned into districts/states/regions, we may consider to combine IC and IAC in many different ways. In this paper, we denote by IAC * the probability model according to which the preferences of the voters proceed from IAC within districts and are independent across districts. This model was introduced for the first time (without name) by [START_REF] May | Probability of Certain Election Results[END_REF]. Since then, it has been rediscovered by several authors including [START_REF] Chamberlain | A Note on the Probability of Casting a Decisive Vote[END_REF], Feix, Lepelley, Merlin and Rouet (2004), [START_REF] Good | Estimating the Efficacy of a Vote[END_REF] and Le [START_REF] Le Breton | Une Analyse de la Loi Electorale du 29 Juin 1820[END_REF]. Le Breton, Lepelley and Smaoui (2016) contains a complete analysis of pivotality of popular majority voting in the context of this model.

To the best of our knowledge, the first theoretical work on election inversions was by [START_REF] May | Probability of Certain Election Results[END_REF], who calculated the theoretical frequency of election inversions in the case of IAC * . May limits his investigation to the case of an odd number of equipopulated districts (also with an odd number of voters per district) and one seat per district. He proves among other things that, in such case, the probability of election inversions increases slowly with the number of districts and the number of voters per district and tends to the limit 1 6 16.7%. Feix, Lepelley, Merlin and Rouet (2004) and Lepelley, Merlin and Rouet (2011) also consider the setting of equipopulated districts but do not limit their investigation to the odd case. They have rediscovered some of May's results and have also proceeded to an evaluation of the frequency under IC. In the IC model, they compute the asymptotic (with respect to the number of voters per district) exact probability for the case of 3, 4 and 5 districts and show through simulations that the asymptotic probability of election inversions increases with the number of districts and tend to 20.5% when the number of districts tend to infinity. This question is already addressed by Hinich, Mickelsen and Ordeshook (1975) who consider a model with equipopulated districts but instead of probabilities on the individual votes, they consider probabilities on the proportions of left voters in each district. The probability distribution of the proportion in each district is assumed to be in the beta family and the proportions are independent across districts; therefore, their model is (in some sense) a generalization of both IAC * and IC. They obtain many interesting results. In particular, in the unbiased case, they show that the probability of election inversions tends to arccos 2(2π) -1 2 π 20.595% when the number of districts and the beta parameter tend to infinity 7 . The main objective of this paper is to fill a gap in the theoretical approach 8 . Indeed, while IAC is considered as being one of the two most popular probability models in social choice and power measurement, to the best of our knowledge, the evaluation of the probability of election inversions in that case has not been performed so far. The unique contribution to the analysis of the Electoral College considering the IAC Shapley-Shubik model is [START_REF] Owen | Evaluation of a Presidential Election Game[END_REF] 9 . As already pointed out, the main difference between IAC and IAC * is the introduction of vote correlations across districts in addition to the vote correlations within districts. Intuitively increasing the positive covariance increases the homogeneity of the electorate and decreases the likelihood of an election inversion. If the correlation was perfect, then the problem of a divided verdict will disappear irrespective of the number of voters.

The main contribution of this paper is twofold. First, in section 3, we provide a numerical approach to the evaluation of this probability in the case of three equipopulated districts 10 and IAC and show that when n, the number of voters per district, tends to infinity, this probability behaves as 0.1309 √ n . Second, since we have not been able to prove that this is indeed the limit, we provide in section 4 7 Saying that the beta parameter of the distribution tends to +∞ amounts to say that the probability that the election is tied in any given district tends to 1, which is what postulates the IC model. 8 While this paper is about election inversions, the same apparatus could be used to estimate the votes/seats relationship (see e.g. [START_REF] Tufte | The Relationship between Seats and Votes in Two-Party Systems[END_REF]) and the likelihood of any event like 'The left won x% of the popular vote and y% of the seats/electoral votes' where both x and y are numbers in

[0, 1]. If you divide the unit square [0, 1] 2 into the four squares 0, 1 2 × 0, 1 2 , 0, 1 2 × 1 2 , 1 , 1 2 , 1 × 0, 1 2 and 1 2 , 1 × 1 2 ,
1 , the probability of election inversions is the probability of the union of the two anti-diagonal squares. Obviously, knowing the totality of the joint distribution on [0, 1] 2 has some intrinsic value that is discussed in the working paper version. 9 Owen computes the Shapley-Shubik and the Banzhaf powers of the U.S. citizens as a function of the state where they vote. He shows, surprisingly, that the relative powers of the citizen of any state (the denominator is the power of a citizen from the District of Columbia) are about the same for the two models. 10 Most authors in the theoretical vein have considered this toy symetric version of the Electoral College. Recent developments aiming to an evaluation of the probability of an election inversion in the general case are [START_REF] Kikuchi | The Likelihood of Majority Inversion in an Indirect Voting System[END_REF] and [START_REF] Kaniovski | The Probability of Majority Inversion in a Two-Stage Voting System with Three States[END_REF]. The plan of this paper is as follows. In section 2, we present the problem of a divided verdict in the simplest conceivable setting and the main notations used in the paper, a brief state of the art and a statement of the precise problem studied in this manuscript. Then, in section 3 we develop a numerical approach of that problem and discuss the behavior of these estimations together with two bounds as the number of voters gets very large. Finally, in section 4, we complement the numerical study by two analytic results which reinforce the numerical discoveries upon the speed of convergence. We conclude by formulating some opening questions and avenues of research.

2 The Toy Model: Notations and State of the Art

Notations and Assumptions

In this paper we explore the simplest non trivial two-tier system. A territory (for instance a country) is divided into three equipopulated 12 districts. Each district elects one representative. We can either see the outcome of these elections as describing the election of the representatives of a parliament or as describing a toy symmetric version of the US electoral college where these three representatives elect the head of the executive of the country. We denote by n the number of voters in each district; n is assumed to be odd. Then, the total number of voters is 3n. In each election, the voter can chose among two candidates: a left candidate L and a right candidate R. A profile of preferences is a vector X in {L, R} 3n : X i denotes the preference of voter i.

Ex ante uncertainty is described here by a probability model λ: λ(X) denotes the probability of the event X. The three probability models informally described in the introduction are the more popular. They are precisely defined as follows. A more pedestrian and illustrative exposition of these probability models emphasizing their differences in terms of correlation between votes is presented in appendix C. IC (Impartial Culture): λ(X) = 1 2 3n for all X ∈ {L, R} 3n . According to IC, voters vote independently of each other with an equal probability of voting left or right. The probability of the event 'k voters vote left' is then equal to 3n k 1 2 3n . IAC (Impartial Anonymous Culture). The probability λ is now defined as follows. We first draw uniformly the parameter p in the interval [0, 1]. Then, conditional on the draw of p, the variables X i are independent and identically distributed according to the Bernoulli law of parameter p. Therefore, 11 An immediate corollary of these results is that the probability of an election inversion tends to 0 when the number of voters per district tends to ∞. [START_REF] Kikuchi | A Note on Election Inversion[END_REF] proves that this convergence to 0 holds true for any number of districts and any profile of populations and electoral votes across districts. 12 So malapportionment is excluded from the scope of our analysis.

if the vector X has k coordinates X i such that X i = L (and therefore nk coordinates X i such that

X i = R), λ(X) = 1 0 p k (1 -p) 3n-k d p.
From the standard equality defining the Beta distribution:

1 0 x α-1 (1 -x) β-1 dx = Γ(α)Γ(β) Γ(α + β) , (1) 
where α and β are positive parameters and Γ is the gamma function 13 , we deduce: λ(X) = k!(3n-k)! (3n+1)! . The probability of the event that k voters vote left is now equal to 3n

k k!(3n-k)! 3n+1)! = 1
3n+1 . IAC * (District Based Impartial Anonymous Culture). We first draw uniformly and independently in the interval [0, 1] three parameters p 1 , p 2 and p 3 . Then, conditional on the draw of (p 1 , p 2 , p 3 ), the variables X i are independent and identically distributed according to the Bernoulli law of parameter p j in each district j = 1, 2, 3. Therefore, if the vector X has k j coordinates X i such that X i = L (and

n -k j coordinates X i such that X i = R) in district j = 1, 2, 3, λ(X) = 1 0 p k 1 (1 -p) n-k 1 d p 1 0 p k 2 (1 -p) n-k 2 d p 1 0 p k 3 (1 -p) n-k 3 d p .
From (1), we deduce:

λ(X) = k 1 !(n -k 1 )! (n + 1)!k 1 !(n -k 1 )! k 2 !(n -k 2 )! (n + 1)! k 3 !(n -k 2 )! (n + 1)!
The computation of the probability of the event that k voters vote left is more subtle. In contrast, the probability of the event that k 1 voters of district 1 vote left, k 2 voters of district 2 vote left and k 3 voters of district 3 vote left is equal to: 3 The analysis will focus on the following two-tier majority mechanism:

n k 1 k 1 !(n -k 1 )! (n + 1)! n k 2 k 2 !(n -k 3 )! (n + 1)! n k 3 k 3 !(n -k 3 )! (n + 1)! = 1 (n + 1)
Ma j 2 (X) = Ma j 1 Ma j 1 X 1 , Ma j 1 X 2 , Ma j 1 X 3 ,
where for any vector Y in {L, R} m (where m is an arbitrary odd integer 14 ) Ma j 1 (Y ) describes the outcome resulting from the popular vote in this population of m voters i.e. Ma j 1 (Y ) = L iff a majority of the m voters vote left; in each district j = 1, 2, 3, X j denotes the sub-profile of preferences of voters from district j. As already pointed out Ma j 2 can receive two possible interpretations. In the case of the parliamentary interpretation, Ma j 1 X 1 , Ma j 1 X 2 and Ma j 1 X 3 are the elected representatives and Ma j 2 (X) denotes the majority color of an elected chamber of representatives: the color is left iff the majority of representatives is leftist. In the electoral college interpretation, Ma j 2 is interpreted as a two-step mechanism to elect a single candidate (say the head of the executive) (either L or R): the winner is the left candidate left iff there is a majority of districts voting left. In contrast to Ma j 2 (X), Ma j 1 (X) represents the popular outcome.

Divided Verdict

The paper focuses on the probability of the event:

E ≡ X ∈ {G, D} 3n : Ma j 1 (X) = Ma j 2 (X)
For any X in E, the president elected through the electoral college does not coincide with the president elected through the popular vote. Scholars have used different names to qualify this situation: inverted elections, referendum Paradox, Divided Verdict, unpopular presidential elections,... For any i, j ∈ {1, 2, 3} , i = j denote by E i jL E i jR the event describing the profiles X for which the districts i and j vote left (right) but the majority of the 3n voters vote right (left). If the probability model λ is symmetric across districts and across candidates, then the six events E 12L , E 13L , E 23L , E 12R , E 13R and E 23R have the same mass. In such a case:

λ (E) = 6λ (E 12L )
Hereafter, we will denote simply by F the event E 12L . Let us report what is known on the calculation of λ (E) when λ = IAC * and λ = IC. In the general case we have :

λ (E) = 6 n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 λ (k, l, r)
where λ (k, l, r) denotes the probability that k voters from district 1 vote left, l voters from district 2 vote left and r voters from district 3 vote left. In the case where λ = IAC * , we obtain specifically:

λ (E) = 6 n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 n k k!(n -k)! (n + 1)!k!(n -k)! n k l!(n -l)! (n + 1)! n k 3 r!(n -r)! (n + 1)! = 6 (n + 1) 3 n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 = 6 (n + 1) 3 1 48 n 3 + 3 48 n 2 - 1 48 n - 3 48 = 1 8 
n 3 + 3n 2 -n -3 n 3 + 3n 2 + 3n + 1 = (n + 3)(n -1)(n + 1) 8(n + 1) 3 = n 2 + 2n -3 8(n + 1) 2
We deduce from above that λ (E) tends to 1 8 = 12.5% when n → ∞. Let us now consider the case where λ = IC. Denote S j for j = 1, 2, 3, the random variable ∑ n i=1 X j i where X j i = 1 iff voter i in district j votes left and X j i = 0 if voter i votes right: S j is therefore the number of voters who vote left in district j. Since S j is the sum of independent and identically distributed Bernoulli random variables of parameter 1 2 , we deduce from the central limit theorem that if n is large the law of

S j -n 2 √ n 2
is approximately the law of a unit Gaussian N(0, 1). Similarly, the law of

S-3n 2 √ 3n 2
where S = S 1 + S 2 + S 3 is also approximately the law of a unit Gaussian. Since the event F is described by the inequalities:

S 1 > n 2 S 2 > n 2 S < 3n 2
we deduce from the multivariate central limit theorem that when n is large, λ (F) is approximately the probability mass µ (F) of the area of R 3 described by the inequalities:

Z 1 > 0 Z 2 > 0 Z 1 + Z 2 + Z 3 < 0 where Z = (Z 1 , Z 2 , Z 3
) is a Gaussian vector with mean vector equal to 0 and a variances-covariances matrix equal to identity. The exact value of µ (F) has been derived by Feix, Lepelley, Merlin and Rouet (2004):

µ (F) = Arc cos( √ 3 
3 ) 2π -1 8 from which we deduce that λ (E) is approximately equal to 15 :

3 Arc cos( √ 3 
3 ) π -3 4 0.16226

The Probability of a Divided Verdict for IAC

The main purpose of this paper is to complete the above picture by offering a computation of λ (E) = 6λ (F) when λ is the IAC probability model. Under IAC, we obtain

λ (F) = 1 0 n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 n k n l n r p k (1 -p) n-k p l (1 -p) n-l p r (1 -p) n-r d p = 1 0 n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 n k n l n r p k+l+r (1 -p) 3n-k-l-r d p
which by using (1) simplifies to:

λ (F) = n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 n k n l n r (k + l + r)!(3n -k -l -r)! (3n + 1)! (2) 
In what follows, we will denote φ(n) the right hand-side of ( 2)

φ(n) = 6 n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 n k n l n r (k + l + r)!(3n -k -l -r)! (3n + 1)!
where n is an odd integer.

3 The Numerical Analysis of the Function φ

The main purpose of this section is to proceed to a numerical approach of the computation of φ(n) for a large but of course bounded set of values of n. The main goal of that analysis is to infer from these results the general behavior of φ(n) when n gets arbitrarily large. The numerical analysis will proceed in a sequence of steps that we now explain. First, we will proceed to a rewriting of φ(n), as factorials in the binomial coefficients lead quickly to very large numbers. The binomial coefficients which appear in φ(n) have a triple superscript, suggesting that (on top of their intrinsic size) we would have to compute about n 3 of them. To save computing time, we develop (section 3.3) a simplified algorithm which comes together with a lower bound and an upper bound which helps a lot in understanding the asymptotics. To build up this simplified algorithm, we take advantage of the binomial coefficients which show up in the summation. The first simplification of φ(n) takes advantage of the symmetry and reduces by a factor of 2 the number of computations. But the other properties of the binomial coefficients lead (section 3.4) to very useful lower and upper bounds for which the number of computations decreases from n 3 to n. We then move to approximations φ min and φ ma j of both the lower and the upper bounds based on the simple idea that values below some given very small threshold ε should be deleted in the sum. This leads consecutively to approximations of the two bounds as well of course to an ultimate approximation φ of φ, the number of computations and an estimate of the error. The results are reported in section 3.5 where the computations have been performed for many non adjacent values of n ranging from 3 to 10 8 with a very small ε. All numerical results confirm that φ (n) tends to

0 as 1 √ n . They suggest that √ nφ (n) , √ n φ (n) , √ nφ min (n)
and √ nφ ma j (n) tend respectively to 0.131, 0.131, 0.061 and 0.317 when n tends to ∞.

Rewriting of the Function

When n increases, the computation of the binomial coefficients and factorials tend quite rapidly towards infinite values (for instance, 150! 5.7 × 10 262 ). By using the R software, we cannot manipulate numbers beyond 1.797693 × 10 308 approximatively. To make the computation feasible for relative large values of n, we first rewrite the function φ as follows:

φ(n) = 6 n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l= n+1 2 3n-1 2 -k-l ∑ r=0 B k,l,r
with:

B k,l,r = exp(3 ln Γ(n + 1) + ln Γ(k + l + r + 1) + ln Γ(3n -k -l -r + 1) -ln Γ(k + 1) -ln Γ(n -k + 1) -ln Γ(l + 1) -ln Γ(n -l + 1)
ln Γ(r + 1)ln Γ(nr + 1)ln Γ(3n + 1 + 1))

Properties of the Function ln Γ

To compute φ, we need to know the values of ln Γ for the integers ranging from 1 to 3n + 2.

Algorithm

• For n < 12, we have used the following recursivity formula:

ln Γ(1) = 0 ln Γ(n + 1) = ln(n) + ln Γ(n)
• For n ≥ 13, we have used Stirling's formula (see appendix B) which ensures to keep a good machine accuracy even for large values of n:

ln Γ(n) = 1 2 × ln(2π) + (n - 1 2 ) × ln(n) -n + w(n) (3) 
where:

w(n) = 1 12n 1 n<8943979 - 1 360n 3 1 n<1456 + 1 1260n 5 1 n<123 - 1 1680n 7 1 n<37 + 1 1188n 9 1 n<19

Use

We have programmed in C the function loggamma. The values of ln Γ are computed before the computation of φ and stored in a vector of size 3n + 2 in order to avoid computational repetition in each loop of φ. The figure 1 represents ln Γ for all integer values which are used in the computation of φ until 100 000 001. 

Simplified Algorithm

The main objective of this subsection is to simplify the way to express φ in order to save as much as possible on computing time. In doing so, we will also propose a lower bound and an upper bound of the function φ which will lead to a relatively low computing time for large values of n and a good understanding of the asymptotics.

Initial Number of Computations

The computation of φ amounts to the computation of B k,l,r for different values of k, l and r. This number of values, of the order n 3 , is equal to:

1 6 (n 2 -1)n 2 (n 2 + 1), (4) 
where n 2 = (n+1) 2 . For instance when n = 10 001, we would need to calculate the expression B k,l,r 20 845 835 000 times. The objective is to reduce as much as we can this number without losing on the quality of the outcome.

Few Properties of B k,l,r

For n = 13, we have represented in figure 2 the values of k, l and r for which we calculate B k,l,r . In general this coefficient satisfies a number of properties some of them are reported below 16 .

P1. B k,l,r = B l,k,r P2. B k,l,r > B k,l,r-1 (for all feasible values of k, l, r and r -1) P3. B k,l,r > B k+1,l,r (for all feasible values of k, l, r and k + 1) P4. B k,l,r > B k,l+1,r (for all feasible values of k, l, r and l + 1) P5. For each fixed value of r, the largest B k,l,r is obtained for For each r, the red cell contains the maximum value and the blue cell the minimum. 16 Proofs are provided in appendix A. [START_REF] Le Breton | Une Analyse de la Loi Electorale du 29 Juin 1820[END_REF] Remark: If we pile up the 6 levels of figure 2, we obtain a geometric pattern close to a tetrahedron.

k = l = n 2 (= n+1 2 ) P6. ∀l ≥ k, B k,l,r > B k-1,l+1,
When we compute φ for the following value of n, we add to the tetrahedron a ground level with a number of new entries to compute equal to n 2 × (n 2 -1)/2. Note that when n increases, the values B k,l,r will decrease and converge to 0. For instance, on the top B n 2 ,n 2 ,n 2 -2 = O(n -2 ). The values on low levels converge even more rapidly towards 0. For instance, for the ground level (r = 0), B n 2 ,n 2 ,0 = O(n -1.5 16 27 n ).

Simplification of φ

By exploiting the symmetry property (P1), we can rewrite φ as follows :

φ(n) = 6 × [2 × ( n-1 ∑ k= n+1 2 3n-1 2 -k ∑ l=k+1 3n-1 2 -k-l ∑ r=0 B k,l,r ) + ( n 3 ∑ k= n+1 2 3n-1 2 -2k ∑ r=0 B k,k,r )], (5) 
where n 3 = 3n-1 4 1 {n 2 even} + 3n-3 4 1 {n 2 odd} For n = 13, we have represented in figure 3 the computations which have been save through the use of this symmetry property. The cells on the diagonal (represented in magenta) correspond to the computation on the right-side of equation 5. The number of computations to be done numerically has been almost divided by 2, but remains of the order of n 3 . Precisely this number is equal to:

C(n) =    1 24 n 2 (n 2 + 2)(2n 2 -1) if n 2 is even 1 24 (n 2 -1)(n 2 + 1)(2n 2 + 3) if n 2 is odd
For instance, when n = 10 001, we would need now to calculate the expression B k,l,r 10 426 043 750 times, leading to a relative gain by a factor 1.9994 when compared to the previous one.

Lower and Upper Bounds on φ

By exploiting properties P5 and P7, we obtain the following of the function φ:

φ min ≤ φ ≤ φ ma j ,
where:

φ ma j (n) = 6 n 2 -2 ∑ r=0 1 2 (n 2 -r -1)(n 2 -r)B n 2 ,n 2 ,r (6) 
and:

φ min (n) = 6 n 2 -2 ∑ r=0 1 2 (n 2 -r -1)(n 2 -r)B n-1-r,n 2 ,r
which can be expressed equivalently through the change of variable k = n -1r, as:

φ min (n) = 6 n-1 ∑ k=n 2 1 2 (k -n 2 + 2)(k -n 2 + 1)B k,n 2 ,(n-1-k)
which will be very useful in what follows (see 3.4.2).

The number of computations for φ ma j and φ min is of order n (in contrast to n 3 for φ).

On the other hand, as explained before, the values of the coefficients B k,l,r tend to 0 when n gets large and this decrease is faster at the ground levels of the tetrahedron as compared to the upper levels. Therefore, it is even possible to reduce further the number of computations without altering the accuracy of the overall computation.

Approximation of φ ma j and φ min

Intuition for an approximation of φ ma j : When n increases and r tends to 0, the coefficient B n 2 ,n 2 ,r tends to 0 (and will be then considered to be equal to 0 by R when around 2.225074 × 10 -308 ). The main idea to simplify the algorithm is to postulate that we will compute B n 2 ,n 2 ,r only for values of r such that B n 2 ,n 2 ,r is above a threshold considered to be reasonable.

Let r min , be the smallest integer value largest than or equal to 0, such that if r ≥ r min , then B n 2 ,n 2 ,r > ε where ε is the fixed degree of accuracy which we impose. We approximate φ ma j as follows:

φma j (n) = 6 n 2 -2 ∑ r=r min 1 2 (n 2 -r -1)(n 2 -r)B n 2 ,n 2 ,r
The error due to approximation resulting from φma j rather than φ ma j is:

Err 1 =          6 r min -1 ∑ r=0 1 2 (n 2 -r -1)(n 2 -r)B n 2 ,n 2 ,r if r min > 0 0 otherwise
Intuition for an approximation of φ min : The idea is the same as before. The coefficient B k,n 2 ,(n-1-k) converges to 0 when n gets large and k tends to n -1. More precisely, the idea is to compute B k,n 2 ,(n-1-k) only for the k for which B k,n 2 ,(n-1-k) is above the threshold which is above degree of accuracy which we impose.

Let k max , be the largest integer smallest than or equal to (n -1), defined such that if k ≤ k max , then B k,n 2 ,(n-1-k) > ε. We approximate φ min as follows:

φmin (n) = 6 k max ∑ k=n 2 1 2 (k -n 2 + 2)(k -n 2 + 1)B k,n 2 ,(n-1-k)
The error due to approximation resulting from φmin rather than φ min is:

Err 1 =          6 n-1 ∑ k=k max +1 1 2 (k -n 2 + 2)(k -n 2 + 1)B k,n 2 ,(n-1-k) if k max < n -1 0 otherwise
Hereafter, the C corresponding functions are called IAC_maj and IAC_min. In addition to the values of n that he wants to consider for the computation, the user will have to fix the degree of accuracy ε. Moreover, the functions C return in addition to φma j and φmin , the approximation errors Err 1 and Err 1 , as well as r min and k max . This would allow us to pick up ε in order to control Err 1 and Err 1 .

Remark:

The outcome for φ ma j (resp. φ min ) is identical to the outcome for φma j (resp. φmin ) with ε = 2.225074 × 10 -308 , since this value of ε is the smallest value recognizable by R. In contrast, the number of computations involved for φma j (resp. φmin ) is always smaller than the number involved for φ ma j (resp. φ min ). In order to save computation time, while keeping as much as possible B k,l,r , it is therefore always better to run the computations in considering φma j (resp. φmin ), with ε = 2.225074 × 10 -308 . This turns to be useful quite rapidly: as soon as n ≥ 1401 for φma j (before, r min = 0), even as soon as n ≥ 539 for φmin (before, k max = n -1). We deduce then wrongly that: Err 1 = Err 1 = 0. The errors resulting from the granularity of the values recognizable by R are discussed with further details in section 3.6. Note however that the number of B k,l,r below that ε (and therefore considered equal to 0) is less that the total number of B k,l,r (which is of the order n 3 48 ; see equation 4). Furthermore, we will see (see section 3.5.1) that φ min (n) gets close to 0.06 √ n i.e. 6 × 10 -(p+2) ,when n = 10 2p + 1. Since the granularity of R leads at best to 16 significant digits, we target an accuracy corresponding to 10 -(p+19) . Therefore, it is sufficient that n 3 48 × ε which is less than 10 6p-306 be smaller than 10 -(p+19) . This happens when p ≤ 287 7 = 41. Accordingly, getting wrongly Err 1 = Err 1 = 0 is without any consequence at least when n is less than 10 82 + 1 ; and we will see that we stop long before reaching that value!

Approximation of φ

Approximation 1 In using r min and k max as defined before, we approximate φ as follows:

φ0 (n) = 6 × [2 × ( k max ∑ k= n+1 2 l max ∑ l=k+1 r max ∑ r=r min B k,l,r ) + ( k max ∑ k= n+1 2 r max ∑ r=r min B k,k,r )]
where l max = min( 3n-1 2k, k max ), r max = 3n-1 2kl, k max = min(n 3 , k max ) and r max = 3n-1 2 -2k. The approximation error resulting from considering φ0 instead of φ is lower than Err 1 + Err 2 , with:

Err 2 =          6 n-1-r min ∑ k=k max +1 1 2 (k max -k)(k max -k + 1)B k,n 2 ,(n-1-k) if k max < n -1 -r min 0 otherwise
For the case where n = 13, we have represented in figure 4 the computations which have been avoided with the help of that approximation when ε = 2 × 10 -5 . In that example, we find r min = 1 and k max = 9.

Remark: In considering ε = 2 × 10 -5 , we observe that when r = 1, we keep counting the cells whose value is lower than ε. The next idea to improve on approximation is to delete these cells.

Approximation 2 Let r kl , be defined such that for fixed k and l, B k,l,r > ε for all r > r kl ≥ r min .

Then: The approximation error resulting from considering φ instead of φ0 is less than:

φ(n) = 6[2 × ( k max ∑ k= n+1 2 l max ∑ l=k+1 r max ∑ r=r kl B k,l,r ) + ( k max ∑ k= n+1 2 r max ∑ r=r kk B k,k,r )]
Err 3 = ε × 6[2 × ( k max ∑ k= n+1 2 l max ∑ l=k+1 (r kl -r min ) + ( k max ∑ k= n+1 2 (r kk -r min )]
When n = 13, we have represented in figure 5 in orange the computations which have been avoided

as a consequence of that second approximation (still when ε = 2 × 10 -5 ). In that example, we get: r 78 = r 79 = r 88 = r 89 = r 99 = 2. This is the expression 17 which has been used to code the function labeled IAC in C (see an illustration of its use in D).

Figure 5: Representation of the B k,l,r used in the computation of φ( 13) after a second approximation, with ε = 2 × 10 -5 . In this case r 78 = r 79 = r 88 = r 89 = r 99 = 2 (sparing the computation of the orange dotted cells).

Ultimate Number of Computations

The total number of computations corresponds to the number of times the expression B k,l,r has been computed. This implies: 18 :

Nb calc = k max ∑ k= n+1 2 l max ∑ l=k+1 (r max -r kl + 2) + k max ∑ k= n+1 2 (r max -r kk + 2) + n -1 -k max
We have represented in figure 6 the number of times we have to calculate the expression B k,l,r as a function of n, for several values of ε. We have also represented the number of computations in the case where we do no approximation of order n 3 (equation 3.3.3) and in the case where we compute φ ma j , of order n. The scale units are in log 10 to ease the reading of the representation. We observe that for all the first values of n (n < 21), there is no saving in computation since all the values of B k,l,r are larger than ε. In contrast when n = 10 8 + 1, the number of computations needed for φ is of the order 10 22 while it is only of the order 10 12 for φ when ε = 10 -25 and of the order 10 11 when ε = 10 -20 . If we compute φ by taking ε = 10 -15 , we observe that when n is larger than 2 × 10 7 + 1, all the expressions B k,l,r are smaller than the threshold and the number of computations collapses to 0 19 . But, Err = Err 1 > φ(n). Precisely, φ(2 × 10 7 + 1) ≈ 3 × 10 -5 , with Err = Err 1 ≈ 7 × 10 -5 . More generally, we will see in appendix B that the cell with the largest value (the peak of the tetrahedron) behaves as:

B n 2 ,n 2 ,n 2 -2 = 2 √ 3πn 2 -O 1 n 3 .
Therefore, if n = 10 p + 1 and ε = 10 -q , then the approximation returns 0 as the outcome when ε > B n 2 ,n 2 ,n 2 -2 , with B n 2 ,n 2 ,n 2 -2 < 10 -2p-0.434 , i.e. at least for q < 2p + 0.434.

For instance, this happens when q = 15, as soon as p > 7.283, i.e. n > 1.92 × 10 7 and when q = 20 as soon as n > 6.07 × 10 9 . Note also that for any given ε, the value of φ diverges from the value of φ long before reaching these limit values of n (see section 3.4.4). 

Approximation Error

We have pointed out that computing φ, instead of φ, saves the calculation of many B k,l,r . As a result, these expressions disappear from the computation of φ. The approximation error in moving from φ to φ is at most:

Err = Err 1 + Err 2 + Err 3
Figure 7 represents the approximation errors by taking φ instead of φ with respect to n for the following values of ε : 10 -25 , 10 -20 , 10 -15 . For small values of n, the approximation error vanishes 20 . Usually, the approximation errors increase as n increases. For instance, when n = 10 6 + 1, the approximation error is of the order of 10 -15 , 10 -11 and 10 -6 for ε = 10 -25 , 10 -20 , 10 -15 . Interestingly, whatever the choice of ε, after a short period of great increase of the approximation error (from 0 to ε × 10 5

when n increases), the increase seems to be linear (in log 10 scales) and the steeps of those lines seem to be very close from one ε to another: around 1.5. This comes from previous figure 6 As it has been shown (though not formally proved) that φ ma j (n) converges to 0 (see section 3.5.1), it is logical that the approximation error tends towards 0, once it is above the true value of φ(n). 

Parallelization of Function φ

To save on computing time, we have proceeded in parallel computing of φ i.e. we have computed φ piecewise. Otherwise stated, we have spread the computation of φ on several cores21 . To do so, we send onto the core i, i = 1, ..., nbc, where nbc is the total number of available cores, the computation of φ for the set of values {k, such that: k = ( n+1 2 + i -1) + npc × j ≤ k max , with j = 1, 2, ...}, based on the idea that the number of computations on each core is more or less the same. For instance the computation of φ(1 000 001) for ε = 10 -25 took a bit less than 56s by using 4 cores (instead of 222s with a unique core). The function coded in C is called IAC_par. For the computations of φ or φ, we have been using up to 50 cores.

Results

In this section, the computations have been performed for 68 non adjacent values of n ranging from 1 to 100 000 001. Precisely, we have selected the following values of n: 3, 5, 7, 9, then 11, 21, . . . , 91, then 101, 201, . . . , 901, then 1 001, 2 001, . . . , 9 001, then 10 001, 20 001, . . . , 90 001, then 100 001, 200 001, . . . , 900 001, then 1 000 001, 2 000 001, . . . , 9 000 001, then 10 000 001, 20 000 001, . . . , 90 000 001 and finally 100 000 001. Further, we decided to display the results in the case where ε = 10 -25 , which guarantees an approximation error quite negligible with respect to the differences between two consecutive values (in the sequence of 68 integers n which are considered) for φ(n) × √ n.

'Intuitive' Limit of φ

We have represented in figure 8, φ, φmin and φma j with respect to n. We also reported on table 

a = lim n→+∞ √ nφ min ≤ lim n→+∞ √ nφ = b ≤ lim n→+∞ √ nφ ma j = c
with: a 0.06, b 0.131 and c 0.32.

Validity of the Results

We have represented in figure 10 a zoom of √ n × φ for large values of n. We observe that the curve is less and less smooth when n increases. We can attribute these numerical perturbations to the relative precision given by R to the float format (around 10 -16 ), which is insufficient to compute accurately φ for large values of n. Then, it remains to determine until which decimals the results that we give remain valid: For each B k,l,r of the sum defining φ, ln Γ(3n + 2) is the highest computed value to obtain B k,l,r . Besides, ln Γ(3n + 2) is of the order 3n × ln(n) + o (n × ln(n)), see [START_REF] Chamberlain | A Note on the Probability of Casting a Decisive Vote[END_REF]. So ln(B k,l,r ) leads to the computation of value lB k,l,r , which is only known up to +/-u n at best, where u n = 3n×ln(n)×10 -16 .

Hence, B k,l,r = exp(lB k,l,r + /u n ) = exp(lB k,l,r ) * exp(+/u n ). As u n is supposed to be small, exp(+/u n ) can be approximated by 1 + /u n . Finally, φ, φma j and φmin are only known up to a relative precision of u n .

For instance, in Table 1, for n = 100 000 001, u n 10 -6 : so, the last digit (in orange) is +/-the first non-zero digit, and so only the digits in black are correct for sure. In fact, figure 11 shows that at this value of n, the approximation error is dominated by the relative precision of floats. Hence, the black digits in Table 1 are also correct for φ, φ ma j and φ min . Similar results hold in Table 2. Interestingly, when going to a n 10 times bigger, one digit precision is lost. For instance, in figure 10, for n = 100 000 001, the confidence interval of the true value of n 1/2 φ is from 0.13092067 to 0.13092092. Similar confidence intervals hold for the other points on the figure. So it is possible to imagine a smooth curve in the envelope formed by the confidence intervals.

In fact, the represented curve in figure 10 is not smooth because the confidence intervals between two consecutive computed values of n 1/2 φ are too overlapping. This is even better explained in figure 11: As n gets large, the difference between two consecutive computations of n 1/2 φ from the considered list of values of n gets smaller, whereas the absolute numerical imprecision increases.

When those two curves cross (log 10 (n) 6.4), the numerical imprecision is of same order as the computed difference between two consecutive computations. So the computed difference conveys no information: the true difference can (at least theoretically) even be of the opposite sign of the computed difference! The situation is even worse after log 10 (n) 6.6, where the numerical imprecision dominates the computed difference. So the absolute value of the true difference could be much bigger than the absolute value of the computed difference. This can explain why the curve of the computed difference does not follow the same pattern before and after log 10 (n) 6.6, as one could intuitively expect it to.

In fact, in order to be sure that the computed differences dominate the numerical imprecisions, computations should stop around log 10 (n) 5.9. There, the numerical imprecision is at least 10 times smaller than the computed difference. Note also that up to log 10 (n) 5.6, the numerical imprecision is at least 100 times smaller than the computed difference.

What about the approximation error between φ and φ? Figure 11 shows that for ε = 10 -25 (which has been used here for n 1/2 φ computations), the maximal approximation error is always dominated by the maximal numerical precision error. In fact, the latter is at least 100 times bigger than the former.

So the approximation error is negligible and every results for φ hold for φ too.

Had ε been 10 -20 , the maximal approximation error would have been at least 100 times smaller than the maximal numerical precision error only up to log 10 (n) 2.5. But as computation time is mainly a problem when n gets large, there is only very little interest to use a coarser ε for small values of n.

Finally, in order to have a more correct curve after log 10 (n) 5.9, one can either compute less values of n (hence, the difference between two computed values increases way above the maximal numerical precision error) or use a finer representation of floats than double precision (as quadruple precision that give at least 33 significant decimal digits instead of 15 for double precision).

Yet, a finer representation also implies more computing time. This does not seem necessary for this paper, as the results with double precision floats have already been shown valid up to n = 100 000 001 with 6 significant decimal digits. This numerical approach is mainly interesting in the sense that it gives intuitions on the speed of convergence thanks to results that are valid.

The following section builds on this intuition to give analytical bounds for the speed of convergence of φ. 

Machine precision Approximation errors

Figure 11: Representation according to n of the maximum approximation error (for ε = 10 -25 ), the maximal numerical imprecision error (due to machine precision limitations) and the difference between two consecutive computations from the considered list:

√ n × φ(n ) - √ n × φ(n),
where n is the value that follows n in the list of considered values.

Analytical Results on the Speed of Convergence of φ(n) Towards 0

In the preceding section we have introduced a lower and an upper bound of φ(n) and our numerical analysis brings evidence that each bound converges to 0 as O 1 √ n . In this section, by using repeatedly Stirling's formula, we prove this for a lower bound. The proof for an upper bound is still to be found, but we show the existence of upper bounds which are at least converging to 0 as O ln(n) 1.5 √ n and even as o

ln i (n) 3 n
, for any finite integer i, where ln i (n) is recursively defined by ln 0 (n) = n and ∀ j ∈ N * , ln j (n) = ln j-1 (ln(n)).

Lower Bound

Let r = r LB = n 2 -√ n 2 (where n 2 = n+1 2 ); this is possible for an infinity of values of n (all those which can expressed as twice a square minus 1: 7, 17, 31, 49, 71, ..., 19 999, ..., 1 999 999, ...). This restriction on the set of values of n which are considered makes the writing easier (which would otherwise call for the introduction of the integer parts). Let n = 2 * s 2 -1, with s integer. Then, r LB = s(s -1) and, from P7, the smallest B k,l,r LB is obtained for k = k LB = s(s + 1) -2 and l = l LB = n 2 = s 2 . From P2, we deduce that all the B k,l,r (which exist) with r > r LB are larger than B LB = B k LB ,l LB ,r LB . Finally, all the B k,l,r (which exist) with 0 ≤ r < r LB are strictly positive. Intuitively all the B k,l,r (which exist) constitute a kind of tetrahedron with an isosceles triangular base (for r = 0) and height n 2 -1 (until r = n 2 -2). Therefore, φ(n) which is equal to six times the sum of the cells of the tetrahedron (the B k,l,r which exist) is larger than six times the number of cells such that r ≥ r LB multiplied by the smallest of these cells: B LB . We also neglect all the values of the cells located on lower levels (r < r LB ). Let φ m (n) denote the value of this lower bound. The number of cells such that r ≥ r LB is the number of cells of the tetrahedron with isosceles triangular base and height n 2 -2r LB + 1 = s -1. The number of cells for a tetrahedron of height h is h(h+1)(h+2)

6

. When h = s -1, the number of cells is therefore (s-1)s(s+1) 6

. Furthermore, Stirling's formula (see appendix B) for

B LB implies B LB = O(s -4 ) = O(n -2 ).
Combining, we deduce:

φ m (n) is at least in O(s -1 ) = O 1 √ n .
Note that this result only needs to consider one point (B LB ) in the tetrahedron. Besides, we have tried to consider more points in order to obtain the highest possible lower bound, but its order remains the same. So our conjecture seems to hold for the lower bound.

Upper Bound

This subsection first shows that the upper bound is at most in O ln(n) 3 n

. This is obtained quite simply, using only two points of the tetrahedron (B S and B I 1 ). The subsection then tries to obtain the lowest possible upper bound, making use of more points on the vertical edge of the tetrahedron. We

show that the order of the upper bound is much lower, but O 1 √ n still remains a conjecture. Figure 12 shows all the points that were used in the tetrahedron. 

A Coarse Upper Bound

From P5 and P2, we deduce that the largest value of the tetrahedron is obtained on the top: B S = B n 2 ,n 2 ,n 2 -2 . Stirling's formula (cf. appendix B) implies that this expression converges to 0 as O(n -2 ).

Let r = r 1 = n 2 -3 2 n 2 ln(n), where n 2 = n+1
2 . An upper bound of the top part of the tetrahedron (cells for which r > r 1 ) is obtained by replacing each value of these cells by the value of B S . Since the height of this part is in O n ln(n) , we deduce that this part of the tetrahedron is majorized by an expression which converges to 0 as O ln(n) 1.5 √ n . In the lower part of the tetrahedron (r ≤ r 1 ), we also deduce from P5 and P2 that the largest value of a cell is obtained in B I 1 = B n 2 ,n 2 ,r 1 . Stirling's formula (see section B) implies that B I 1 converges much more rapidly than B S to 0: precisely as O(n -3.5 ). The height of this lower part of the tetrahedron is r 1 ; the length of its largest edge (for the base i.e. r = 0) is n 2 -1. Therefore the number of cells of this part is lower than n 3 . Hence, this part of the tetrahedron is majorized by an expression which converges to 0 as O 1 √ n .

All together, we have obtained an upper bound of φ(n), denoted φ M 1 (n), verifying:

φ M 1 (n) = O ln(n) 3 n .

A Finer Upper Bound

To prove our conjecture, we would need to cut the tetrahedron into parts that are at most in O 1 √ n . In the previous approach, the sum of the cells of the tetrahedron between the heights of B I 0 and B I 1 (lower part) is indeed at most in O 1 √ n , but the upper part was not. Here, the upper part is again divided into pieces to obtain a finer upper bound.

Top part of the tetrahedron

As B S is in O(n -2 ), the top part till B I ∞ (which corresponds to a tetrahedron of height in O(n 0.5 )) is in O 1 √ n .
Here, the order is exact, as all cells are in O(n -2 ): the largest (B S ) as well as the smallest (B LB ) or also B I ∞ .

Layer B I 1 to B I 2 of the tetrahedron Let r 2 = n 2 -3
2 n 2 ln(ln(n)). B I 2 is the point on the vertical edge of the tetrahedron for which r = r 2 . Again, Stirling's formula (cf. appendix B) implies that the value in

B I 2 is in O n -2 ln(n) -1.5 .
The volume of the tetrahedron layer between B I 1 and B I 2 is in O (n ln(n) 1.5 . And the highest value in this volume is at B I 2 . Hence, the sum of cells in this volume is at most in O(n 0.5 ).

Finally, only the tetrahedron part between B I 2 and B I ∞ remains to estimate. The corresponding volume is in O((n ln(ln(n))) 1.5 ). And the highest value in this volume is at B I ∞ , which is in O(n -2 ).

Hence, this part dominates the others, leading to a finer upper bound of φ(n), denoted φ M 2 (n), verify-

ing: φ M 2 (n) = O ln(ln(n)) 3 n
.

Recursively refining the dominating layer up to B I i -B I ∞ Let i be an integer greater than 2 and B I i be on the vertical edge of the tetrahedron at r = r i , with

r i = n 2 -3 2 n 2 ln i (n), where ln i (n) is recursively defined by ln 0 (n) = n and ∀ j ∈ N * , ln j (n) = ln j-1 (ln(n)).
All layers between B j-1 and B j are at most in O(n 0.5 ), as the top part of the tetrahedron. As i is finite, the sum of all these i + 1 volumes is also at most in O(n 0.5 ).

The dominating part corresponds to the layer between B I i and B I ∞ . The corresponding volume is in O (n ln i (n) 1.5 . And the highest value in this volume is again at

B I ∞ , which still is in O(n -2 ).
This recursively leads to a finer upper bound of φ(n), denoted φ M i (n), verifying:

φ M i (n) = O ln i (n) 3 n .
As this is true also at i + 1, we can also write φ

(n) = o(φ M i (n)).

Upper bound summary

This subsection has proven that for any finite integer i, φ(n) is dominated by ln i (n) 3 n . Note that, from numerical results, we believe that a closer upper bound converging even faster towards 0 (in O 1 √ n ) exists. But we leave that part as a conjecture 22 .

Concluding Remarks

In this paper, we have focused our attention on the case of three equipopulated districts. We have shown that the IAC probability of a divided verdict tends to zero, at least as O ln(n) 1.5 √ n

and we conjecture that it should be O 1 √ n . It is of course of interest to know if this inverse square root result is entirely driven by our stylistic assumptions. We have not been able to derive closed form formulas for the general equipopulated case, but we have run simulations for several values of K, the number of states, ranging from 3 to 101. If we denote φ(K, n) the IAC probability of an election inversion when there are K states and n voters per state, the graph of √ nφ(K, n) resulting from these simulations is depicted in figure 13 below for a range of values of n. Note first that the simulations confirm the result established in this paper that is the convergence of √ nφ(3, n) towards a value between 0.125 and 0.150. Second, this sample of values of K suggests that the inverse square root speed of convergence property, that is the convergence of √ nφ(K, n) towards a constant θ (K), is not specific to the three states case. But computing the constant θ (K) is pretty challenging: simulations suggest that θ (51) is around 0.0417. Simulations also suggest that θ (K)

is decreasing with respect to K. Of course, this is a first step and some further mathematical and numerical analysis is needed to reach a deeper understanding of this question.

A Proofs

A.1 P1. B k,l,r = B l,k,r

Follows trivially from commuting addition and multiplication:

B l,k,r = n l n k n r (l + k + r)!(3n -l -k -r)! (3n + 1)! = n k n l n r (k + l + r)!(3n -k -l -r)! (3n + 1)! = B k,l,r
A.2 P2. B k,l,r > B k,l,r-1 (for values k, l, r and r -1 which are feasible)

B k,l,r B k,l,r-1 = n r n r-1 (k + l + r)!(3n -k -l -r)! (k + l + r -1)!(3n -k -l -r + 1)! = (r -1)!(n -r + 1)! r!(n -r)! (k + l + r)!(3n -k -l -r)! (k + l + r -1)!(3n -k -l -r + 1)! = n -r + 1 r k + l + r 3n -k -l -r + 1
Since all the numbers are positive, we deduce:

B k,l,r > B k,l,r-1 (7) 
⇔ (n -r + 1)(k + l + r) r(3n -k -l -r + 1) > 1 ⇔(n -r + 1)(k + l + r) > r(3n -k -l -r + 1) ⇔(n + 1)(k + l) > r(3n -k -l + 1 -n -1 + k + l) ⇔ (n + 1)(k + l) 2n > r (8) 
Further, k ≥ n 2 and l ≥ n 2

with

n 2 = n + 1 2 which implies k + l ≥ n + 1 i.e. (n + 1)(k + l) 2n ≥ (n + 1) 2 2n = n 2 + 1 2 + 1 2n > n 2 -2 (9) 
Finally, r ≤ 3n -1 2 -k -l k ≥ n 2 and l ≥ n 2 implies r ≤ 3n -1 -2n -2 2 = n 2 -2 (10) 
Combining ( 10) and ( 9) implies ( 8) and then [START_REF] Good | Estimating the Efficacy of a Vote[END_REF].

A.3 P3. B k,l,r > B k+1,l,r (for values of k, l, r and k + 1 which are feasible)

B k,l,r B k+1,l,r = n k n k+1 (k + l + r)!(3n -k -l -r)! (k + 1 + l + r)!(3n -k -1 -l -r)! = (k + 1)!(n -k -1)! k!(n -k)! (k + l + r)!(3n -k -l -r)! (k + 1 + l + r)!(3n -k -1 -l -r)! = k + 1 n -k . 3n -k -l -r k + 1 l + r
Again, since all the numbers are positive, this implies::

B k,l,r > B k+1,l,r (11) 
⇔ k + 1 n -k . 3n -k -l -r k + 1 + l + r > 1 ⇔(k + 1)(3n -k -l -r) > (n -k)(k + 1 + l + r) ⇔k(3n -l -r -1 + 1 + l + r -n) > n(1 + l + r) -3n + l + r ⇔k > (n + 1)(l + r) -2n 2n (12) 
Further k ≥ n 2 [START_REF] Le Breton | Une Analyse de la Loi Electorale du 29 Juin 1820[END_REF] and

l + r ≤ 3n -1 2 -k implies l + r ≤ n -1 i.e. (n + 1)(l + r) -2n 2n ≤ (n -1) 2 2n = n 2 - 3 2 - 1 2n < n 2 (14) 
Combining ( 14) and ( 13) implies [START_REF] Kuga | Voter Antagonism and the Paradox of Voting[END_REF] and then [START_REF] Kikuchi | A Note on Election Inversion[END_REF].

A.4 P4. B k,l,r > B k,l+1,r (for values of k, l, r and l + 1 which are feasible)

The proof is a trivial implication of P1 and P3: B k,l,r = B l,k,r > B l+1,k,r = B k,l+1,r .

A.5 P5. For each fixed r, B k,l,r is maximized when k = l = n 2 (= n+1

2 )

It follows trivially from P3 with k ≥ n 2 and P4 with l ≥ n 2 .

A.6 P6. ∀l ≥ k, B k,l,r > B k-1,l+1,r (for values of k, k -1, l, l + 1 and r which are feasible)

From the beginning of the proof of P3 and P1, we deduce:

B k+1,l,r B k,l+1,r = B k,l,r B k,l+1,r × 1 B k,l,r B k+1,l,r = l + 1 n -l × 3n -k -l -r k + 1 + l + r 1 k+1 n-k × 3n-k-l-r k+1+l+r = l + 1 n -l × n -k k + 1
And since all numbers are positive

B k,l,r > B k-1,l+1,r (15) 
⇔ l + 1 n -l . n -k + 1 k > 1 ⇔ k + j + 1 n -k -j . n -k + 1 k > 1 ⇔(l + 1)(n + 1) -k -kl > nk -kl ⇔(l + 1)(n + 1) > k(n + 1) ⇔(l + 1) > k (16) 
But since [START_REF] May | Probability of Certain Election Results[END_REF] holds true for l ≥ k, we deduce [START_REF] Lepelley | Three Ways to Compute accurately the probability of the Referendum paradox[END_REF].

Remark: if l < k, we obtain a symmetric result via P1.

A.7 P7. For each fixed r, B k,l,r is minimized when k = n -1r and l = n 2 From P3 and P4, we deduce that the minimum is obtained on the base of the "isosceles triangle defined by B k,l,r entries such that k + l = 3n-1 2r". From P6 and P1, the minimum is reached when k or l is equal to n 2 (the other being then equal to n -1r).

B Taylor Expansions Using Stirling's Formula

This section explains in more details how the different asymptotic behaviors are obtained for specific B k,l,r used in the paper and represented on Figure 14. It all starts with Stirling's formula (and series) as B k,l,r is composed of products and divisions of different factorials. In fact, with Taylor expansions, Stirling's formula leads to Striling series, which are used in (3) to compute an accurate approximation of ln Γ(n).

For instance, ln Γ(n 

+ 1) = ln(n!) ∼ n ln(n) -n + 1 2 ln(2πn) + 1 12n - 1 360n 3 + 1 1260n 5 - 1 1680n 7 + 1 1188n 9 + . . .
+ ln Γ(k + l + r + 1) (17) 
+ ln Γ(3n -k -l -r + 1) (18) 
-ln Γ(k + 1) (19) 
ln Γ(nk + 1) ( 21)

-ln Γ(l + 1) (22) 
ln Γ(nl + 1) ( 23)

-ln Γ(r + 1) (24) 
ln Γ(nr + 1) (25)

-ln Γ(3n + 2). ( 26 
)
The approximations used for the different elements of this sum can be found in Table 3, Table 4 and Table 5.

ln Γ(i n ) = α i n n ln(n) +β i n n +γ i n ln(n) +δ i n + O(n -1 ) i n α i n β i n γ i n δ i n n -1 2 1 2 - 1 + ln(2) 2 -1 1 2 ln (8π) n + 1 2 1 2 - 1 + ln(2) 2 0 1 2 ln(2π) n + 3 2 1 2 - 1 + ln(2) 2 1 1 2 ln π 2 n + 5 2 1 2 - 1 + ln(2) 2 2 1 2 ln π 8 n + 1 1 -1 1 2 1 2 ln(2π) 3n + 1 2 3 2 - 3 2 1 -ln 3 2 0 1 2 ln(2π) 3n + 3 2 3 2 - 3 2 1 -ln 3 2 1 1 2 ln 9π 2 3n + 2 3 -3 + 3 ln(3) 3 2 1 2 (3 ln(3) + ln(2π))
Table 3: Approximations of ln Γ(i) for different integers i (in ascending order), using Stirling's formula: ln

Γ(i n ) = α i n n ln(n) + β i n n + γ i n ln(n) + δ i n + O(n -1 ).
The following subsections, are organized to give first common approximations of some parts of ln(B k,l,r ), either to any points of the tetrahedron: [START_REF] Miller | Election Inversions by the U.S. Electoral College[END_REF] and (26), or to the points of one of its face (l minimal): ( 22) and [START_REF] Tufte | The Relationship between Seats and Votes in Two-Party Systems[END_REF], or even to the points of its vertical edge (k also minimal): [START_REF] Owen | Evaluation of a Presidential Election Game[END_REF], [START_REF] Shapley | A method for evaluating the distribution of power in a committee system[END_REF]. Then the specific approximations of remaining parts of ln(B k,l,r ) are given for each point (B S , B LB and B I ), leading to final approximation for each of the three specific points on the tetrahedron.

For each of the three considered points in the tetrahedron, Table 3 For all points on the face of the tetrahedron presented in figure 14 (i.e. l = n 2 , with n 2 = n+1 2 ), parts ( 22) and ( 23) can be simplified into: [START_REF] Straffin | The Shapley-Shubik and Banzhaf Power Indices as Probabilities[END_REF]:

ln

Γ(l + 1) = ln Γ( n + 3 2 ) (23): ln Γ(n -l + 1) = ln Γ( n + 1 2 ).
This finally leads to the following approximation, when l = n 2 as for B LB :

-ln Γ(l + 1) -ln Γ(n -l + 1) = -n ln(n) + (1 + ln(2))n -ln(n) -ln(π) + O n -1 .
Tetrahedron edge k = l = n+1 2 For all points on the vertical edge of the tetrahedron (i.e. k = l = n 2 , with n 2 = n+1 2 ), parts ( 20) and ( 21) can similarly be simplified by symmetry (k = l): (20) is equivalent to [START_REF] Straffin | The Shapley-Shubik and Banzhaf Power Indices as Probabilities[END_REF] and ( 21) is equivalent to [START_REF] Tufte | The Relationship between Seats and Votes in Two-Party Systems[END_REF]. This finally leads to the following approximation, when k = l = n 2 as for B S and B I :

-ln Γ(k + 1) -ln Γ(n -k + 1) -ln Γ(l + 1) -ln Γ(n -l + 1) = -2n ln(n) + 2(1 + ln(2))n -2 ln(n) -2 ln(π) + O n -1 .

B.2.3 Final approximation for B S

The peak of the tetrahedron, B S , is located at k = l = n 2 and r = n 2 -2. So, the four last remaining parts of ln(B k,l,r ) to approximate for B S can be simplified into: [START_REF] Miller | Why the Electoral College is Good for Political Science (and Public Choice)[END_REF]: ln Γ(k

+ l + r + 1) = ln Γ( 3n + 1 2 ) (19): ln Γ(3n -k -l -r + 1) = ln Γ( 3n + 3 2 ) (24): ln Γ(r + 1) = ln Γ( n -1 2 ) (25): ln Γ(n -r + 1) = ln Γ( n + 5 2 
).

This leads to the following approximation, when k = l = n 2 and r = n 2 -2 (B S ):

ln Γ(k + l + r + 1) + ln Γ(3n -k -l -r + 1) -ln Γ(r + 1) -ln Γ(n -r + 1) = 2n ln(n) -(2(1 + ln(2)) -3 ln(3))n + ln(3) + O n -1 .
Summing all parts for the approximation of ln(B k,l,r ) value in B S , leads to:

ln(B n 2 ,n 2 ,n 2 -2 ) = -2 ln(n) + ln 2 π √ 3 + O n -1 .
Finally, in B S , B n 2 ,n 2 ,n 2 -2 reads:

B n 2 ,n 2 ,n 2 -2 = 2 π √ 3n 2 + O n -3 = O n -2 . (27) B.2.4 Final approximation for B LB B LB , is located at k = n 2 + √ n 2 -2, l = n 2 and r = n 2 - √ n 2 .
So, the six remaining parts of ln(B k,l,r )

to approximate for B LB can be simplified into:

(20): ln Γ(k + 1) = ln Γ( n -1 2 + n + 1 2 ) (22): ln Γ(n -k + 1) = ln Γ( n + 5 2 - n + 1 2 ) (18): ln Γ(k + l + r + 1) = ln Γ( 3n + 1 2 ) (19): ln Γ(3n -k -l -r + 1) = ln Γ( 3n + 3 2 ) (24): ln Γ(r + 1) = ln Γ( n + 3 2 - n + 1 2 ) (25): ln Γ(n -r + 1) = ln Γ( n + 1 2 + n + 1 2 
).

The approximations for the two middle parts can be found in Table 3. As for the two first and two last parts, their approximations can be found in Table 4.

Looking for the approximations of the four values in Table 4 leads to the following approximation,

when k = n 2 + √ n 2 -2, l = n 2 and r = n 2 - √ n 2 (B LB ): ln Γ(i n ) = n ln(n)• α i n + n• β i n + ln(n) √ n• γ i n + √ n• δ i n + ln(n)• ε i n + ζ i n + O 1 √ n i n α i n β i n γ i n δ i n ε i n ζ i n n + 3 2 - n + 1 2 1 2 - 1 + ln(2) 2 - 1 √ 2 ln(2) √ 2 1 1 + ln π 2 2 n + 5 2 - n + 1 2 1 2 - 1 + ln(2) 2 - 1 √ 2 ln(2) √ 2 2 1 + ln π 8 2 n -1 2 + n + 1 2 1 2 - 1 + ln(2) 2 1 √ 2 - ln(2) √ 2 -1 1 + ln π 2 2 n + 1 2 + n + 1 2 1 2 - 1 + ln(2) 2 1 √ 2 - ln(2) √ 2 0 1 + ln(2π) 2 
Table 4: Approximations of ln Γ(i) for different integers i (in ascending order), using Stirling's formula: ln

Γ(i n ) = α i n n ln(n) + β i n n + γ i n √ n ln(n) + δ i n √ n + ε i n ln(n) + ζ i n + O 1 √ n . -ln Γ(k +1)-ln Γ(n-k +1)+ln Γ(k +l +r +1)+ln Γ(3n-k -l -r +1)-ln Γ(r +1)-ln Γ(n-r +1) = n ln(n) + (3 ln(3) -(1 + ln(2)))n -ln(n) -2 + ln π 3 + O n -0.5 .
Summing all parts for the approximation of ln(B k,l,r ) value in B LB , leads to:

ln(B n 2 + √ n 2 -2,n 2 ,n 2 -√ n 2 ) = -2 ln(n) -2 + ln 2 π √ 3 + O n -0.5 . Finally, in B LB , B n 2 + √ n 2 -2,n 2 ,n 2 -√ n 2 reads: B n 2 + √ n 2 -2,n 2 ,n 2 -√ n 2 = 2 π √ 3n 2 e 2 + O n -2.5 = O n -2 . ( 28 
)
Note that the value in B LB is of the same order as in B S . In fact, when n tends to infinity, the relation between the two tends to e -2 .

B.2.5 Final approximation for B I

Looking at a range of heights on the vertical edge of the tetrahedron to find B I Point B I is located on the vertical edge of the tetrahedron (k = l = n 2 ) at height r = r M -1. Here, we are looking for a point where the sum of all cells at this height and below is converging towards 0 at least in O n -0.5 . For this aim, we chose

r M = n 2 - √ n 2 f (n), i.e. height r = n-1 2 - √ n 2 f (n), with
f a positive function which does not increase too much: lim n→+∞ r ≥ 0, i.e. r has to remain positive (at least for large enough n). So f is at most equivalent to

√ n 2 -1 -o ( √ n),
when n tends to infinity.

In fact, when using Taylor expansions, there is a difference between

f = O ( √ n), f = o ( √ n) and ∃x < 0.5/ f = O (n x ).
So this subsection is valid only for:

f is a positive function such that ∃x < 0.5 with f = O (n x ) . (29) 
Under this condition, lim n→+∞ r M = ∞. So, every asymptotic result that hold in this section with r M that might not be integer still hold if we consider only the integer part of r M , the rest being negligible (at least for large enough values of n).

Exemplifying the approximations in this subsection with function f

For instance, to better understand the approximations that use Taylor expansions, ln

(n - √ n f (n))
would give:

ln n - √ n f (n) = ln(n) + ln 1 - f (n) √ n . As (29) means that f (n) √ n = o(1)
, it is possible to use the Taylor expansion of ln(1 + u) when u is close to 0:

ln(1 + u) = u - 1 2 u 2 + 1 3 u 3 - 1 4 u 4 + . . . Hence, ln ((n - √ n f (n))!) would give: ln n - √ n f (n) ! = 1 2 ln(2π) -n - √ n f (n) + n - √ n f (n) + 1 2 ln n - √ n f (n) + o(1) = 1 2 ln(2π) -n + √ n f (n) + o(1) + n - √ n f (n) + 1 2 ln(n) + f (n) n 0.5 - 1 2 f (n) 2 n + 1 3 f (n) 3 n 1.5 - 1 4 f (n) 4 n 2 + . . . = 1 2 ln(2π) -n + √ n f (n) + o(1) + n ln(n) + f (n)n 0.5 - 1 2 f (n) 2 + 1 3 f (n) 3 n 0.5 - 1 4 f (n) 4 n + . . . - √ n ln(n) f (n) -f (n) 2 + 1 2 f (n) 3 n 0.5 - 1 3 f (n) 4 n + 1 4 f (n) 5 n 1.5 -. . . + ln(n) 2 + f (n) 2n 0.5 - f (n) 2 4n + f (n) 3 6n 1.5 - f (n) 4 8n 2 + . . . = 1 2 ln(2π) -n + √ n f (n) + o(1) + n ln(n) + f (n)n 0.5 - f (n) 2 2 + f (n) 3 3n 0.5 - f (n) 4 4n + . . . until (-1) p f (n) p pn p 2 -1
= o(1), and p finite from (29)

- √ n ln(n) f (n) -f (n) 2 + f (n) 3 2n 0.5 - f (n) 4 3n + f (n) 5 4n 1.5 -. . . until (-1) q f (n) q+1 qn q-1 2 
= o(1), and q = p -1

+ ln(n) 2 + o(1), because f (n) 2n 0.5 = o(1) from (29).
Note that p is finite, as (29 8 (i.e. x = 0.125), then p = 2 is sufficient (and q = 1).

) implies f (n) √ n = O 1 n 0.5-x , with 0.5 -x > 0. So p is such that (p + 1)(0.5 -x) > 1, i.e. p = 1 0.5-x . For instance, if f (n) = n 1
Finally, if we stop at p = 2, then, for all f such that f = o n 1 6 , we obtain:

ln n - √ n f (n) ! = 1 2 ln(2π) -n + √ n f (n) + o(1) + n ln(n) + f (n)n 0.5 - f (n) 2 2 + o(1) - √ n ln(n) f (n) -f (n) 2 + o(1) + ln(n) 2 + o(1) =n ln(n) -n - √ ln(n) f (n) + 2 √ n f (n) + ln(n) 2 - 3 f (n) 2 2 + ln(2π) 2 + o(1) Specific approximations for B I involving f Let ln(B f R ) = ln(B n 2 ,n 2 ,n 2 -√ n 2 f (n)-1
). The four last remaining parts of ln(B f R ) to approximate for B S can be simplified into: [START_REF] Miller | Why the Electoral College is Good for Political Science (and Public Choice)[END_REF]: ln Γ(k

+ l + r + 1) = ln Γ 3n + 3 2 - n + 1 2 f (n) (19): ln Γ(3n -k -l -r + 1) = ln Γ 3n + 1 2 + n + 1 2 f (n) (24): ln Γ(r + 1) = ln Γ n + 1 2 - n + 1 2 f (n) (25): ln Γ(n -r + 1) = ln Γ n + 3 2 + n + 1 2 f (n) .
Table 5 gives the corresponding approximations. Note that the approximations have terms in n ln(n) (highest order), √ n ln(n) f (n) and ln(n), have a constant, and have a series of terms in n 1-p 2 f (n) p , p ∈ N.

As we want an approximation up to o (1), we do not need all terms of the series. The number of terms depends on f . For instance, should f be a decreasing function, then only one (n, if f = o 1 √ n ) or two terms (n and √ n f (n)) of the series are enough. If f is strongly decreasing: f = o 1 √ n ln(n) , then even the term in √ n ln(n) f (n) can be skipped. Now, if lim n→+∞ f (n) is a constant, then we may stop at the third term (in f (n) 2 ). Similarly, if f is an increasing function, we may need to add more terms. And the more increasing the function is, the more terms need to be added.

Here, we have stopped the Taylor expansion at the term in f (n) 2 . This means that the approxima-

tion is in O f (n) 3 √ n . So it is o (1) only if f = o n 1 6 .
If f were to be at least in O n 1 6 , the approximation would be in O f (n) 3

√ n instead of o(1), so some columns of Table 5 would no longer be significant, as η. Column ε is no longer significant if f is at least in O(n

1 6 ln(n) 1 3 
). Conversely, for columns γ, δ and ζ of Table 5 to be significant (i.e. not in o( 1)), f should not be too small. Indeed, information in o (1) is useless. In fact, γ is significant only if f is at least in O 1 √ n ln(n) . Similarly for δ is significant only if f is at least in O 1 √ n and ζ is significant only if f is at least in O(1).

ln Γ(x n ) = n ln(n) • α x n + n • β x n + √ n ln(n) f (n) • γ x n + √ n f (n) • δ x n + ln(n) • ε x n + f (n) 2 • ζ x n + η x n + o(1)
x We have respectively : ρ intra IC = ρ inter IC = 0, ρ intra IAC * = 1 3 and ρ inter IAC * = 0 and ρ intra IAC = ρ inter IAC = 1 3 . The main message of this paper is that the IAC probability of an election inversion converges to 0 at a speed equal to 1 √ n where n denotes the number of voters in a district. The rarity of the paradox arises from the fact that under IAC, the electorate is likely to be very homogeneous since 1 3 is already a significant value. In the limit, when ρ intra = ρ inter = 1 i.e. when the society is populated by clones, the paradox vanishes completely. On the other hand, if a significant correlation exists but is limited to voters from the same district, the paradox does not disappear in the limit as the probability is 12.5%. The lesson that can be drawn from that is that we can likely generate all sorts of patterns by considering various values of ρ intra and ρ inter .

For the sake of illustration, consider the following simple23 generalization of IAC. Instead of drawing the Bernoulli parameter p uniformly in [0, 1], we draw p uniformly in the interval 1 2δ, 1 2 + δ where δ is a parameter in 0, 1 2 . IAC * is not covered by this model but IC and IAC are : IC corresponds24 to δ = 0 while IAC corresponds to δ = 1 2 . The probability that any two voters vote democrat is:

1 2δ 1 2 +δ 1 2 -δ p 2 d p = 1 4 + δ 2 3 
Therefore:

ρ δ ≡ ρ intra = ρ inter = 4δ 2 3 
Unsurprisingly, when δ tends to 0, ρ δ tends to 0 while when δ tends to 1 2 , ρ δ tends to 1 3 . We could revisit the evaluation of the probability of election inversions done in that paper for this general model for an arbitrary value of δ and thus an arbitrary value of ρ.

To do so we have cooked up a computer program that simulate the electoral outcomes of the electoral college for any number of districts for any large number of voters up to 10 8 voters per district

We will compute φ for n = 1001 on 4 processors:

> nbcpus=4

The values of x to be initialized are: > result2 <-sfClusterApplyLB(x, calpar1, 1001, r_min [START_REF] Banzhaf | Multi-member electoral districts: do they violate the one man, one vote principle[END_REF], k_max [START_REF] Banzhaf | Multi-member electoral districts: do they violate the one man, one vote principle[END_REF],

+ lg, eps, nbcpus)

> sfStop()

The returned object contains the peices of φ:

> unlist(lapply(result2,function(x) x$phi))

[1] 0.0006837732 0.0008864855 0.0011330502 0.0014285113

We then aggregate the values of φ and the number of calculations:

> print(sum(unlist(lapply(result2,function(x) x$phi))),20)

[1] 0.0041318201550210138448 > print(sum(unlist(lapply(result2,function(x) x$nb_calc))),20)

[1] 202011.00000000000000

To recover the approximation error, we sum the approximation errors Err 1 , Err 2 , Err 3 :28 > majorant$erreur1 [START_REF] Banzhaf | Multi-member electoral districts: do they violate the one man, one vote principle[END_REF] + minorant$erreur2 [START_REF] Banzhaf | Multi-member electoral districts: do they violate the one man, one vote principle[END_REF] + + sum(unlist(lapply(result2,function(x) x$approx3)))

[1] 2.470091e-19
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 1 theoretical lower and upper bounds of that probability, which are consistent with this conjecture: The lower bound behaves as O and the upper bound behaves as O ln(n) 3 √ n 11 .
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 1 Figure 1: Values of ln Γ for integers.
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 2 r (for all feasible values of k, k -1, l, l + 1 and r) P7. For each fixed value of r, the smallest B k,l,r is obtained for k = n -1r and l = n
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 2 Figure 2: Representation of the B k,l,r used in the computation of φ(13) without any simplification. For each r, the red cell contains the maximum value and the blue cell the minimum.

Figure 3 :

 3 Figure 3: Representation of the B k,l,r used in the computation of φ(13) after simplification. The cells on the diagonal (represented in magenta) correspond to the computation on the right-side of equation 5.

Figure 4 :

 4 Figure 4: Representation of the B k,l,r used in the computation of φ(13) after a first approximation, with ε = 2 × 10 -5 . In this case r min = 1 (sparing the computation of the magenta dotted cells) and k max = 9 (sparing the computation of the blue dotted cells).

Figure 6 :

 6 Figure 6: Number of B k,l,r computations necessary to compute φ, φ with ε = 10 -25 , 10 -20 , 10 -15 and φ ma j according to the value of n.

  : The number of avoided computations has a steep of 1.5 or so (in log 10 scales): steep difference between the black dotted line and the colored ones. So if you multiply the number of avoided computations by ε, you get a good proxy of the approximation error. Of course, the orange line (ε = 10 -15 ) deviates for large values of n. This has partly been explained when commenting the previous figure: For n > 1.92 × 10 7 , the approximation error (with this ε) is larger than the value of φ(n), φ(n) = 0 and Err = Err 1 = φ ma j (n).
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 7 Figure 7: Approximation errors when computing φ instead of φ, with ε = 10 -25 , 10 -20 and 10 -15 according to n.
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 10 Zoom of √n × φ for large values of n.
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 12 Figure 12: Representation of the tetrahedron containing all B k,l,r values that are added to compute φ, and the position of specific cells: B LB , B S , B I 0 , B I 1 , B I 2 , B I i and B I ∞ .

Figure 13 :

 13 Figure 13: Simulated Graph of √ nφ(K, n).

Figure 14 :.

 14 Figure 14: Representation of the tetrahedron containing all B k,l,r values that are added to compute φ, and the position of specific cells: B LB , B S and B I .

B. 2

 2 Approximations for B k,l,r values in B S , B I and B LB Using this approximation in ln(B k,l,r ) leads to approximations for values in B S , B I and B LB (their position in the tetrahedron are shown in figure14), with: ln(B k,l,r ) = 3 ln Γ(n + 1)

1 6 .- n+1 2 f 6 (Finally, in B I , B n 2 ,n 2 , 3 = O n -2 e - 2 3 1 ρ intra ρ intra ρ intra 1 ρ intra ρ intra ρ intra 1 

 1626223211 Final results for the approximation of the value in B IThe previous paragraph leads to the following approximation, when k = l = n 2 and r = n-12 (n), with f = o n 1 B I ): ln Γ(k + l + r + 1) + ln Γ(3nklr + 1)ln Γ(r + 1)ln Γ(nr + 1) = 2n ln(n) -(2(1 + ln(2)) -3 ln(3))n -2 3 f (n) 2 + ln(3) + o (1) .Summing all parts for the approximation of ln(B k,l,r ) value in B I , leads to:ln(B n 2 ,n 2 , f (n) 2eralization of the IC, IAC * and IAC models. Just consider a 9 × 9 matrix where the three diagonal blocks would be   where ρ intra ∈ [0, 1] denotes the correlation between the votes of any two voters from the same district and where the six off -diagonal blocks would be   ρ inter ρ inter ρ inter ρ inter ρ inter ρ inter ρ inter ρ inter ρ inter   where ρ inter ∈ [0, 1] denotes the correlation between the votes of any two voters from different districts. This probabilistic model remains very special as it is very symmetric and defined exclusively by two parameters. But it contains the three popular models as special cases.

>

  (x=(k_max[2]+1)-0:(nbcpus-1)) [1] 604 603 602 601 To run the parallel computing: > require("snowfall") > sfInit(parallel=TRUE,cpus=nbcpus) R Version: R Under development (unstable) (2014-06-11 r65921)

Table 1 :

 1 Values of φ, φma j and φmin . Orange decimals could be affected by numerical precision errors (see section 3.6).

	lim n→+∞	φ = 0.

1, φ, φmin and φma j for a sample of values of n. Both figure 8 and table 1, suggest:

Table 5 .

 5 is used. This sole table is sufficient for B S . For B LB , Table 4 is also required. And for B I , the second required table is B.2.1 Common approximations for B S , B I and B LB Approximations for B LB which are similar to common approximations for B S and B I

	Parts (17) and (26) are common to all ln(B k,l,r ), leading to the following approximation:
	3 ln Γ(n + 1) -ln Γ(3n + 2) = -3 ln(3)n -	3 2	ln(3) + ln(2π) + O n -1 .
	B.2.2 Tetrahedron face l = n+1 2		

Table 5 :

 5 Approximations of ln Γ(x) for different reals x (in ascending order), using Stirling's formula:ln Γ(x n ) = α x n n ln(n) + β x n n + γ x n √ n ln(n) f (n) + δ x n √ n f (n) + ε x n ln(n) + ζ x n f (n) 2 + η x n + o(1), fbeing positive and such that f = o n

See Nurmi (1999).

Miller (2012b) contains an insightful presentation of the Electoral College that he qualifies as "a terrific boon for political science (and public choice) research (and teaching)".

If there are m feasible orderings, this means that each marginal distribution is a multinomial probability distribution with vector of parameters 1 m , 1 m , ..., 1 m .

This prior is a special case of a Dirichlet distribution.

See Straffin (1988) for a very nice united presentation of IC and IAC.

In the two-alternative case, the IC and IAC model have been extensively used to study the fairness of voting bodies from the point of view of the power defined as the expected propensity for a voter to be influent/pivotal in the decision making process. The computation of the Banzhaf and Shapley-Shubik power indices is one of the main area of applied research.

In particular, Γ (n) = (n -1)! if n is a positive integer.

In our paper, we do not need to define the majority mechanism when m is an even integer.

We could use instead Monte-Carlo simulations to calculate the probability of the event. One idea consists in simulating long sequences t = 1, ...T of random draws of a three dimensional vector Z distributed as N(0, I). To each realization t of Z, we attach the corresponding realization of the multinomial random variable D defined by the following mutually exclusive modalities: the left wins 0 district and the popular vote, the left wins 1 district and the popular vote, the left wins 2 districts and the popular vote, the left wins three districts and the popular vote, the left wins 0 district and loses the popular vote, the left wins 1 district and loses the popular vote, the left wins 2 districts and loses the popular vote, the left wins three districts and loses the popular vote. The fourth and eighth events are empty and have therefore zero probability. According to the Glivenko-Cantelli theorem, the empirical distribution of D (defined by the eight dimensional vector of empirical frequencies) almost surely converges weakly to the true distribution of D.

Truly in coding the function, we have reversed the order of summation on k, l and r in order to arrange the B k,l,r in an increasing order. Without that, we could add further accuracy errors in computing φ.

Here, we report the number of computations which also allow to provide an estimate of the error in approximation. If we were not interested by the error in approximation, we could made some extra saving by substituting 2 to n -1k max in the formula.

In fact a unique calculation, the cell on the top of the tetrahedron B n 2 ,n 2 ,n 2 -2 , which leads to find that r max > n 2 -2 and therefore that no cell appears in the computation of the approximation of φ which is then considered to be equal to 0.

In the sense that all the B k,l,r are calculated. Then, φ = φ. It remains numerical errors attached to the computations but there are negligible.

Nowadays, most of the computers are endowed with at least two multi-core processes. At GREMAQ, we benefit from a computer server with four processors IntelXeon CPU E7 -4870 2.40Ghz, each with 10 physical cores (20 logic devices).

Indeed the result we have obtained in this subsection is not sufficient to get rid of the factor ln i (n)1.5 . Proving the conjecture would require to study analytically the sum φ(n) or, which might slightly be easier, the sum φ ma j , see[START_REF] Fishburn | Borda's Rule, Positional Voting, and Condorcet's Simple Majority Principle[END_REF], at least for values of r between r i and r ∞ . But this difficult task still remains to be done.

Other ways to generate correlation among Bernoulli variables exist. For instance, we could use a beta distribution instead of this truncated uniform distribution or the Gaussian distribution as in Le Breton,[START_REF] Breton | Correlation, Partitioning and the Probability of Casting a Decisive Vote under the Majority Rule[END_REF].

Strictly speaking the density is not defined for δ = 0. IC is truly the limit when δ → 0.

Until the 17 th decimal, we get the same values as those obtained without parallel computing. The differences which appear then result from the fact that the sum of the expressions B k,l,r does not follow the same order n the case of parallel computing.



 . The IAC model implies that there is a correlation of 1 3 between the votes of any two voters irrespective of their district affiliation. There is a probability of 2 3 that any two voters share the same preference. Among the features of the IAC model that deserve to be emphasized, we would like to call the attention on uniformity : the correlation is equal to 1 3 for any pair of voters which is considered while in the IAC * model it holds true only for voters from the same district. This observation suggests an immediate gen-and for any value of the parameter δ. The simulations confirm that when δ tends to 0 the probability of election inversions tends to 20% while it tends rapidly to 0 for large values of n when δ tends to 1 2 . For realistic values of n say 25 n around 10 6 and say 51 districts instead of 3, the probability of election inversions is equal to 4% (the empirical frequency of the paradox in U.S. presidential elections) when δ = 0.00037 i.e. ρ = 1.8 × 10 -7 . So a very small amount of correlation (but certainly not 1 3 ) is enough to generate a small, but not degenerate, frequency of the election inversion paradox for large populations of voters 26 .

D Functions coded in C

The library of files codeC.dll contains the following functions which will be run in C from R:

• loggamma3: allows to obtain a table containing the values of the function ln Γ (computed using Stirling's formula),

• IAC: computation of φ (for as much values of n as necessary),

• IAC_maj: computation of φma j (for as much values of n as necessary),

• IAC_min: computation of φmin (for as much values of n as necessary),

• IAC_par: parallel computation of φ (for a unique value of n).

We upload these functions from the file codeC.dll as follows 27 > dyn.load("code/codeC.dll") D.1 Function loggamma3 void loggamma3(double * lgamm, int * taillelgamm)

• lgamm: a vector of double (initialized at 0), of dimension taillelgamm,

• taillelgamm: an integer containing the size of the table that we want to consider. 25 Precisely, n = 2 × 10 6 + 1 and 10 6 simulations. 26 This exercise is theoretical and is by no means intended to suggest that this model fits the data. It simply points out the impact of the specific value of the correlation coefficient on the probability of election inversion. 27 To do so, we must check that the inputs are in the right format.

Illustration

We want to compute φ for n ≤ 1001. To do so we need the vector ln Γ for the integers ranging from 1 to 3n max + 2 with n max = 1001. We store these values in the object lg. • phi: a vector of double (initialized at 0) of dimension taille containing all the values φ,

• n: a vector of double (to be specified by the user) of dimension taille containing the values of n,

• taille: an integer (to be specified by the user) corresponding to the number of values to be calculated,

• lgamm: a vector of dimension 3n max + 2 containing the values of ln Γ, where n max = max(n),

• eps: a double (to be specified by the user) corresponding to the value of ε,

• nb_calc: a vector of double (initialized at 0) of dimension taille corresponding to the number of expressions which have been calculated,

• approx: a vector of double (initialized at 0) of dimension taille delivering Err = Err 1 + Err 2 + Err 3 .

Illustration We want to compute φ for two values: n = 101 and n = 1001.

> n<-c(101,1001)

To invoke the function IAC, we need to specify ε:

We invoke the function IAC as follows:

> res<-.C("$IAC$", phi=as.double(rep(0,2)), n=as.double(n), + taille=as.integer(2), lgamm=as.double(lg), eps=as.double(eps), + nb_calc=as.double(rep(0,2)), approx=as.double(rep(0,2)))

The object res contains the values of φ:

> print(res$phi,20)

[1] 0.0128348271775305423914 0.0041318201550210147122 we can multiply these numbers by √ n:

> print(sqrt(n) * res$phi,20)

[1] 0.12898841675276404017 0.13072493920913225152

The object res contains the number of computations which have been done:

It also contains the approximation errors Err resulting from the choice of ε:

> res$approx • phi: vector of double (initialized at 0) of dimension taille containing the values of φma j ,

• n: vector of double ((to be specified by the user) of dimension taille containing the values of n,

• taille: an integer ((to be specified by the user) giving the number of values to be calculated,

• lgamm: a vector of dimension 3n max + 2 containing the values of ln Γ, where n max = max(n),

• eps: a double ((to be specified by the user) specifying the value of ε,

• r_min: a vector of double (initialized at 0) of dimension taille delivering the values r min ,

• approx_maj: a vector of double (initialized at 0) of dimension taille giving Err 1 .

Illustration

We want to compute φma j for the same values of n and ε:

> majorant<-.C("$IAC$_maj", phi=as.double(rep(0,2)), n=as.double(n), + taille=as.integer(2), lgamm=as.double(lg), eps=as.double(eps), + r_min=as.double(rep(0,2)), erreur1=as.double(rep(0,2)))

Then we depict the values of φma j , √ n × φma j , the approximation errors Err 1 and the values r min which will be stored in the object r_min for subsequent use:

> print(majorant$phi,20)

[1] 0.0270715553140992437609 0.0096017241779385118644

[1] 0.27206576377699165370 0.30378495732408838936 • phi: vector of double (initialized at 0) of dimension taille containing the values of φma j ,

• n: vector of double ((to be specified by the user) of dimension taille containing the values of n,

• taille: an integer ((to be specified by the user) giving the number of values to be calculated,

• lgamm: a vector of dimension 3n max + 2 containing the values ln Γ, where n max = max(n),

• eps: a double ((to be specified by the user) specifying the value of ε,
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• k_max: a vector of double (initialized at 0) of dimension taille delivering the values k max ,

• r_min: a vector of double ((to be specified by the user) of dimension taille delivering the values r min ,

• erreur2: a vector of double (initialized at 0) of dimension taille delivering Err 2 ,

• erreur1_prime: a vector of double (initialized at 0) of dimension taille delivering Err 1 .

Illustration

We want to compute φmin for the same values of n and ε: • phi: one value of double (initialized at 0) containing the value of φ calculated for the set of values {k i } defined for i = 1, ..., npcpus and such that {k i = (k max + 1i)npcpus × j ≥ n+1 2 , with j = 1, 2, ...}, and where n, k_max and nbcpus are specified by the users,

• n: One value of double (to be defined by the user) containing the value of n,

• lgamm: vector of dimension 3n + 2 containing the values of ln Γ,

• eps: one double ((to be specified by the user) specifying the value of ε,

• r_min: a double ((to be specified by the user and obtained from the function IAC_maj) delivering the value of r min ,

• k_max: a double ((to be specified by the user and obtained from the function IAC_min) delivering the value of k max ,

• x: a double ((to be specified by the user) which changes depending upon the core on which the calculation is sent. x=(k_max+1-i) with i = 1, ..., npcpus,

• nbcpus: a double ((to be specified by the user) giving the number of cores where is sent the computation of φ,

• approx: a double (initialized at 0) delivering Err 3 .

Illustration To run parallel computing, we have to create a function which allows to send on IAC_on several cores via a simple modification of the parameter x. This function is called calpar1. return(list(phi=res2$phi,nb_calc=res2$approx [START_REF] Banzhaf | Multi-member electoral districts: do they violate the one man, one vote principle[END_REF],approx3=res2$approx [START_REF] Banzhaf | Weighted voting does not work: a mathematical analysis[END_REF])) + }