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Solving Quintics by RadicalsD. Lazard�LIP6, Universit�e P. et M. Curie, boite 168,4 place Jussieu, 75252 Paris Cedex 05, FranceNovember 7, 1997AbstractA formula is given for solving by radicals polynomials of degree 5 which are solvableby radicals. This formula is valid on any �eld of characteristic di�erent from 2 and 5.It is implemented in Maple.1 IntroductionSince Galois, it is well known that an equation is soluble by radicals i� its Galois group issoluble. This can be tested by looking if some auxiliary equation (resolvent) has a linearsimple factor.In the case of degree 5, Cayley has computed such a resolvent (called R� in this paper)which never has multiple factor. Thus, for testing if a �fth degree equation is soluble byradicals, it su�ces to write Cayley's resolvent in a computer and to call the factorizationpackage of any Computer Algebra system.If the equation is soluble by radicals, it remains to explicitly write down the solution.When we began to write this paper we did not know any previous work on this subject fordegree bigger than 4. Fran�cois Morain bring our attention on [PY1888], where a method isgiven for solving quintics.The aim of this paper is to provide a formula for the degree 5. It di�ers from [PY1888]method in several ways. A �rst but minor di�erence lies in the fact that he expresses theroot as a sum of four �fth roots. Without specifying which determination of the roots haveto be chosen, this gives 20 solutions, i.e. 15 in excess. This is a minor di�erence because itmay be easily corrected from Paxton Young paper itself.The second di�erence lies in genericity. In [PY1888] several cases are considered, depend-ing on the values of the coe�cients. In our formula the only branching instructions consist inchoosing (twice) the sign of a square root in order to avoid that some denominators becomezero. This means that our implementation in Maple is really a formula : Except these two�E-mail: Daniel.Lazard@lip6.fr 1



choices of signs, the only operation which=h are involved are : +, �, �, = and root extrac-tion (one �fth, two square roots and the computation of the rational root of a polynomialdegree 6). This means that our formula applies (in principle) also with symbolic coe�cients.However testing equality with 0 for an algebraic expression depending of symbols is a di�-cult task ; this has the consequence that our Maple program may provide a false answer insymbolic case, because of bad detection of zero.A third di�erence is that our method may apply to any �eld of coe�cients of characteristicdi�erent from 2 and 5. We have not veri�ed if this is also true for Paxton-Young one.A fourth di�erence, the most important in our opinion, is that our formula is presented ina systematic way, without ad hoc computational tricks. Thus, it would be possible, in theory,to extend it to degree 7 for example. However this would lead to horri�c computations (Thedegree 6 resolvent for degree 5 should be replaced by a resolvent of degree 120).Even for degree 5 the size of our formula shows that solving by radicals is the worstmethod, even when possible. In our opinion this is the main conclusion of our paper.Finally, we prove that our formula is optimal in following sense : The �eld extensionde�ned by the radicals appearing in our formula is always the smallest radical extensioncontaining one root (resp. all the roots.2 Notations and basic facts of Galois theoryIn all this paper, we consider a base �eld Q of characteristic di�erent from 2 and 5, whichmay be thinked of as the �eld of the rationals, but may be any other �eld.We consider also a univariate irreducible polynomial f of degree d over Q which onewants to solve by radicals (in most of the paper, we will have d = 5). The Galois group G off is the Galois group over Q of the �eld generated by all the roots of f .The main result of Galois may be rephrased as : \A polynomial is solvable by radicalsi� its Galois group is solvable", a group G being solvable i� it contains a tower of subgroupsfeg = G0 � G1 � � � � � Gk = G such each Gi is a normal subgroup of Gi+1 and that eachGi+1=Gi is an Abelian group.To be more precise, we introduce d variables x0; : : : ; xd�1, corresponding to the d rootsof f . The symmetric group Sd acts on the xi and, by this action, the Galois group G of f isa subgroup of Sd.For simpli�cation of notations, most indices will be assumed to be integers modulo d; thiswill be always the case when, other-way, the expression in which the index appears would notbe de�ned. For example, xd = x0 and xd+1 = x1For solving by radicals, we will consider some polynomials in the xi and we will use theirinvariance under some subgroup of the Galois group for expressing their values in term ofthe elementary symmetric functions, i.e. the coe�cients of f .The basic such polynomials ares0 = x0 + x1 + � � �+ xd�1 = d�1Xi=0 xi2



s1 = x0 + !x1 + � � �+ !d�1xd�1 = d�1Xi=0 !ixisk = x0 + !kx1 + � � �+ !k(d�1)xk(d�1) = d�1Xi=0 !ikxi for k = 2; : : : d � 1where ! is a primitive d-th root of unity.It is important to notice that the cyclic permutation xi ! xi�1 has the same action onthe sk as the multiplication by !k. Similarly, for a prime to d, the permutation xi ! xi=aand the substitution ! ! !a induce on the sk the permutation sk ! sak (let us recall thatindices are integer modulo d).It follows that S1 := sd1 and Sk := sksd�k1 are invariant under cyclic permutations of theindices. Solving the equation f is now reduced to compute the values of the Sk when the xiare substituted by the roots of f . In fact, s0 is easily expressed in term of the coe�cients off , and s1 = dqS1sk = Sk=sd�k1 for k > 1x0 = 1d d�1Xk=0 skxi = 1d d�1Xk=0!�iksk for i > 0Notation. We denote by Sd the symmetric group of order d and by Cd the cyclic group oforder d generated by the permutation i! i+1 mod d. When d is �xed we will simply writeS and C. As we shall encounter many polynomials which, like the Si, are invariant underthe action of some group, we will need the following abbreviations. For any polynomial p inthe xi and any subgroup G of the symmetric group Sd, we will denote by PG p the sum ofthe polynomials of the orbit of p under G. Thus for d = 3, we haveXC x0x21 = x0x21 + x21x2 + x2x20XS x0x21 = XC x0x1(x0 + x1) = x0x21 + x21x2 + x2x20 + x20x1 + x21x2 + x22x03 Invariants and ResolventsIt follows from last Section that solving by radicals reduces to compute the value of somepolynomials invariant by some subgroup of the symmetric group (here by the cyclic group).This computation will be done by expressing them in term of elementary symmetric polyno-mials, i.e. in term of the coe�cients of f . The main tool for this computation is the notionof resolvent.As we are working with polynomials in d variables over Q, let us set Rd := Q[x1; : : : xd],the ring of polynomials and Kd := Q(x1; : : : xd), the �eld of rational functions. For a3



subgroup G of Sd, we denote by RGd the sub-ring of Rd consisting of the polynomials whichare invariant under the action of G, acting by permutation of the indices. Similarly KGd isthe sub�eld of Kd of invariant rational functions.It is well known that we have RSd = Q[�1; : : : ; �d] and KSd = Q(�1; : : : ; �d), where�i = PS x0x1 � � �xi�1 is the i-th elementary symmetric function. This allows to expressany symmetrical function of the roots of f in term of the coe�cients of f .Given two subgroups G � H of Sd, we call resolvent invariant of G relatively to H anyelement of RGd which generates the �eld extension KGd =KHd . We call resolvent equation orsimply resolvent its minimal polynomial over KHd . When H is not speci�ed, it is assumedto be Sd. If f is an univariate irreducible polynomial with a Galois group included in H, aresolvent equation R becomes a polynomial in Q[X], by substituting the roots of f to the xi.We denotes by Rf the result of this substitution. A resolvent R is said separable for f if Rfis square free. A resolvent is always separable if it is separable for all irreducible polynomialswith Galois group included in H.For example, Qi<j(xi � xj) is a resolvent invariant for the alternate group Ad, and thecorresponding resolvent is x2�� where � is the discriminant of the polynomial having the xias roots. This resolvent is always separable because f is never irreducible if its discriminantis null.The interest of the resolvents is that they allow to test if a Galois group is contained inG and to express the polynomials invariant by G in term of a root of a polynomials withcoe�cients invariant by H.Theorem 1 Let R be a resolvent of G � H and f be a univariate polynomial of degree d.� If the Galois group of f is included in G, then Rf has a root in Q.� If R is separable for f and Rf has a root in Q, then if the Galois group of f is includedin H, it is also included in G.We will need another theorem on invariants. Despite it is not new, we give a proof of it,because this proof will be used for our computations. This proof is based on Gr�obner bases,for which we refer to [CLOS92].Theorem 2 Given a subgroup G of Sd, the ring RGd is a free RSd module which has a baseconsisting in invariant homogeneous polynomials of degree at most d(d � 1)=2Let us consider the elementary symmetric functions �i and let e1; : : : ; ed be new in-determinates which will be viewed as \names" for the �i. We consider the ideal I inQ[x0; : : : ; xd�1; e1; : : : ; ed] generated by the �i � ei. We will compute a Gr�obner basis ofI for any admissible ordering such that� x0 < x1 < � � � < xd�1,� m1 < m2 for any pair of monomials satisfying the same inequality for their total degreesin the xi. 4



Lemma 1 For such an ordering, a reduced Gr�obner base of I isJ = fxd0 � e1xd�10 + � � � + (�1)d�1ed�1x0 + (�1)ded;C(2)d�1 � e1C(2)d�2 + � � �+ (�1)d�2ed�2C(2)1 + (�1)d�1ed�1;� � � ;C(d�1)2 � e1C(d�1)1 + e2;C(d)1 � e1 = �1 � e1g;where C(i)k is the sum of all monomials of degree k in x0; : : : ; xi�1.Proof of the Lemma 1 : The leading monomials of the polynomials in J are xd0; xd�11 ; : : : ;xd�1, which are pairwise coprime. It follows immediately that J is a reduced Gr�obner base.For showing that the J � I, it su�ces to show that the elements of J become null whenthe ei are replaced by the �i. Let Ji be the i-th element of J and Ji;k be the result of thesubstitution of xi�1 by xk in Ji. We prove that the Ji;k for k � i � 1 becomes null by thereplacement of the ej by the �j. This is clearly true for i = 1 and results by recursion fromthe formula Ji;k � Ji = (xk � xi�1)Ji+1;k for k � i.Finally, we have to prove that J generates I, i.e. that J is the complete Gr�obner baseof I. There are n! monomials in the xi which are irreducible by J . If J were not a Gr�obnerof I, there would be a polynomial in I, irreducible by J , and these n! monomials would belinearly dependent overQ(�1; : : : �d). This would be a contradiction to the fact of the Galoisgroup of Q(x1; : : : xd) over Q(�1; : : : �d) is symmetric. }Lemma 2 Let G a sub-module of the symmetric group. The Q[e1; : : : ed]-module of thepolynomials in the xi which are invariant by G is generated by its elements such that theirleading monomial after reduction by J is independent of the ei.Proof : In Lemma 1, we have just speci�ed the ordering on the monomial by being sharperthan the partial ordering of the total degree in the xi. We precise now the ordering by settingthat monomials of the same total degree in the xi are �rst compared by comparing their eipart.Let f be a polynomial invariant by G and g its normal form after reduction by J . Let Ebe the monomial in the ei appearing in the leading term lt(g) of g and h be the homogeneouspolynomial in the xi such that hE is the part of g consisting in the monomials which areproduct of E by a monomial in the xi of the same degree as lt(g). Above choice on theordering implies that the monomials of g which are not in hE are lower than any monomialof hE, i.e. that hE is the beginning of g.As g becomes invariant by G after substitution of the ei by the �i, the polynomialP2G g,which is the sum of the orbit of g under G is reduced by J to card(G)g. Similarly, H :=P2G h is a polynomial invariant under G. The reduction by J of both sums may be donein parallel, showing that H reduces to a polynomial with card(G)h as leading part. Thusf � EH=card(G) reduces to a polynomial with a lower leading term than g.Iterating this process shows immediately the Lemma. }End of proof of Theorem 2 : The leading terms of J being fxd0; xd�11 ; : : : ; xdg, any poly-nomial irreducible by J has degree in the xi at most d(d � 1)=2, and the same is true for5



the polynomials H of Lemma 2. Thus, it remains to show that one may extract extract aQ[e1; : : : ; ed]-base from the set of these polynomials H.This may be done e�ectively by following process. For each monomial m of degree atmost d(d � 1)=2 in the xi, compute M := P2Gm and R the result of the reduction of Mby J . If the leading term of R is independent of the ei and is di�erent of the leading termsof previous R, add M to the base.The proof that the set thus de�ned is a basis is straightforward, by looking on the leadingterms. }This proof induces an algorithm for computing a basis of invariants and the decompo-sition of any invariant on this base : Compute the normal form under J of any orbit ofmonomial. The theorem says if it appears in a base. When enough such invariants withlinearly independent �rst terms are obtained, one has got a basis. The decomposition ofanother invariant on this basis may easily be done by normal form computation.The search of a base needs not to consider a lot of orbits of monomials, because thecomputation of the Hilbert series of the ring of invariants gives immediately the number ofbasis elements of each degree : This series is of the form P (t)=Qdi=1(1 � ti) where P (t) is apolynomial in t. The coe�cient of ti in P is the number of basis elements of degree i.This algorithm is not very e�cient, but very short to implement in Maple and it workssu�ciently for our purpose.4 Equations of small degreeIn this section, we will show how the polynomials si of Section 2 are useful to �nd again theclassical formulae for equations of small degree, showing that these formulae may be deducedwithout tricks from a general method we will apply again for degree 5.4.1 Degree 2Let f = ax2 + bx+ c; we have! = �1s0 = x0 + x1 = �b=aS1 = (x0 � x1)2 = (x0 + x1)2 � 4x0x1 = (b=a)2 � 4c=ax0 = (s0 +qS1)=2x1 = (s0 �qS1)=2Thus we obtain exactly the standard formulae.4.2 Degree 3Let us suppose that f = x3 + px+ q. The primitive third root of unit is as usually denotedby j. 6



The group S3 has only one subgroup A3 = C3. It has (x0 � x1)(x1 � x2)(x2 � x0) =PC(x0x21 � x20x1) as a resolvent invariant with resolvent X2 � �, where � is a symmetricpolynomial which becomes the discriminant 4p3+27q2 after substituting the xi by the rootsof f .However, to have a better formula, in which j does not appear, we will choose (j �j2)(x0 � x1)(x1 � x2)(x2 � x0) as a resolvent invariant ; it has X2 + 3� as resolvent. Thischoice is relevant because the conjugation of j, which exchange j and j2, has the same actionas the transposition of x1 and x2.This allows us to express the Si in term of this resolvent invariant and symmetric poly-nomials : S1 = (x0 + jx1 + j2x2)3= s30 + 32(j � j2)XC (x20x1 � x0x21)� 92XS x20S2 = (x0 + jx1 + j2x2)(x0 + j2x1 + jx2)= s20 � 3XS x0x1Thus, after substituting the xi by the roots of f , anything may be expressed in terms ofp, q and p3� = 18qp327 + q24 : s1 = 3 3vuut�q2 +sp327 + q24S2 = �3ps2 = �3p=s1x0 = s13 � ps1x1 = j2s13 � jps1x2 = js13 � j2ps1This formula is only valid if s1 6= 0, because it appears as denominator. Thus, if p = 0,the determination of the square root has to be chosen in order that s1 6= 0. This is alwayspossible when f is irreducible, because this implies q 6= 0.5 Degree �veThe transitive subgroups of S = S5 are well known. There are :� The alternate group A of order 60 and of index 2 in S� The meta-cyclic group M of order 20 and of index 6 in S. It is the maximal solvablesubgroup of S. Its element act as xi ! xai+b (indices modulo 5 and a 6= 0 mod 5).7



It is bi-transitive and has 6 conjugates, corresponding to the 6 permutations of the xi�xing x0 and x1.� The dyadic group D of order 10, of index 2 in M and of index 6 in A. Its elementsare those of M for which a = �1.� The cyclic group C of order 5 and of index 2 in D, consisting of the elementsM suchthat a = 1.The meta-cyclic group M being the maximal solvable subgroup of S, an equation issolvable by radicals i� its Galois group is contained in M. This implies that a separableresolvent of M has a root in Q. Thus our problem consists in expressing the roots of f interm of the coe�cients of f and of this root.As we have already expressed the roots of f in term of polynomials invariant by C inorder to solve by radicals, we have to make the following� To �nd relative resolvent invariants and the corresponding resolvents equations for eachinclusion in the chain C � D �M � S:These resolvents will be of the form X2�a, except the last one which will be of degree6.� To express any polynomial invariant under one of these groups in term of the resolventinvariant and of polynomials invariants under the bigger group.� This will �nally express (through two square roots) our invariants by C in term ofsymmetric polynomials and of the root of the resolvent of degree 6 which will be in Qi� the polynomial f is solvable by radicalsAs said above, this process starts by the fact that the root x0 of f = x5+px3+qx2+rx+swe want to compute is (s0 + s1 + s2 + s3 + s4)=5 wheres0 = x0 + x1 + x2 + x3 + x4 = 0s1 = x0 + !x1 + !2x2 + !3x3 + !4x4s2 = x0 + !2x1 + !4x2 + !x3 + !3x4s3 = x0 + !3x1 + !x2 + !4x3 + !2x4s4 = x0 + !4x1 + !3x2 + !2x3 + !x4where ! is a primitive 5-th root of unity.The circular permutation xi ! xi�1 acts on the si as the multiplication by !i. It followsthat the polynomials S1 := s51; S2 := s2s31; S3 := s3s21 and S4 := s4s1 are invariant under thecyclic permutations of the xi. Thus, if S1 6= 0, the root x0 is a rational function of the Siand 5pS1.We will need to consider two actions on the invariants : The permutation ' such '(xi) =x2i (let us recall that indices are computed modulo 5) and the conjugation  of ! acting as (!) = !2. All the invariant we will compute, including the si and the Si will be invariant8



under ' � =  �'. This will imply that the invariants underM, which appear in the �nalresolution will be independent of !.Thus the main di�culty of the solving process is to choose the best resolvent invariants.The resolvent invariants for C and D of lowest degree are of degrees 3 and 2 respectively.However they are not always separable because any invariant of C of degree less than 5 isnull together with its conjugates by M, when specialized for the equation x5 � a.Thus a resolvent invariant for C or D needs to be of degree at least 5 for being alwaysseparable. We explicit now such invariants.Let T 0 = (x0� x1)(x1� x2)(x2� x3)(x3� x4)(x4� x0) and U 0 = (x0� x2)(x1� x3)(x2�x4)(x3�x0)(x4�x1). They are resolvent polynomials for C which are clearly always separable(if they would not, f would have a multiple root). For managing the relation between ' and we take T = (! �!4)T 0+ (!2� !3)U 0 as resolvent invariant for C relatively to D, and weconsider also U =  (T ) = (!2 � !3)T 0 � (! � !4)U 0. They satisfy following properties :� '(T ) = �U '(U) = �T� T and U are never both null (if they were, T 0 would be 0 and f not irreducible).� If Q does not contains p�1, then T 2+U2 is never null (if not, p�1 = T=U would bein the �eld generated by the roots of f , and the complex conjugation would be in theGalois group ; as '2 is, up to a circular permutation of the roots, the only involution ofM, it would be equal to complex conjugation, which impossible by '2(T=U) = T=U).We do not know if this last property is true without hypothesis on Q.The most evident resolvent polynomial for D relatively toM, is T 0U 0, the square root ofthe discriminant of f . It is always separable, but of rather high degree (10) and a resolventpolynomial of lower degree would lead to simpler formulae. On the other hand, PC xixi+1 isthe resolvent polynomial of least degree, but not always separable.The best choice seems to be " = (! � !2 � !3 + !4)QC(x1 � x2 � x3 + x4), which is ofdegree 5. It satis�es '(") =  (") = �". Is is always separable ; in fact, its resolvent equationis of the shape x2 �D, and if it is not separable, some factor of ", say x1 � x2 � x3 + x4, isnull. It is now easy to extract an equation of degree 3 for x0 fromx0 + x1 + x2 + x3 + x4 = 0x1 + x4 � (x2 + x3) = 0x0(x1 + x2 + x3 + x4) + (x1 + x4)(x2 + x3) + x1x4 + x2x3 = px0((x1 + x4)(x2 + x3) + x1x4 + x2x3)+(x1x4 + x2x3)(x2 + x3) + x2x3(x1 + x4 � x2 � x3) = �qwhich shows that f is not irreducible.Now, if we know how to compute polynomials in the xi which are invariant under M(this will be the object of next section), we are able to solve f :" = pD where D is such an invariant byM.E = T 2 + U2 and F = "(T 2 � U2) are invariant by M. Thus T = qE + F" . If T = 0,which implies that " 2 Q, one may change the determination of pD, i.e. the sign of " inorder that T 6= 0. 9



G = "TU is invariant byM. Thus U = G"T .Thus, the computation of resolvent invariants is reduced to the computation of 4 invari-ants by M, and it remains to compute the Si, which are invariant by C. For each such apolynomial S, we consider the four following invariant byM :I1(S) := S + '(S) + '2(S) + '3(S)I2(S) := "(S � '(S) + '2(S)� '3(S))I3(S) := TS � U'(S) � T'2(S) + U'3(S)I4(S) := US + T'(S)� U'2(S)� T'3(S)from which one may easily deduce S by solving this linear system of determinant �8"(T 2+U2).If T 2+U2 = 0 (which is not possible over the �eld of the rationals), one may replace thelast invariant byI 04(S) := "((T + 2U)S + (U � 2T )'(S)� (T + 2U)'2(S)� (U � 2T )'3(S))The determinant of the new system is �16"2(TU � T 2 + U2) = �16"2(G � F ). AsTU � T 2 + U2 = T 0U 0(! + !4 � !2 � !3), this determinant is never null.The computation of I1(S); I2(S); I3(S); I 04(S) always allows to compute S on any �eld Qof characteristic di�erent of 2 and 5. However, the degree of I 04(S1) in the xi is 15 instead of10 for I4(S1). This leads to a much more complicate formula. For this reason, we have onlydone the computation with I1(S); I2(S); I3(S); I4(S), which gives a formula only proved for�elds Q in which �1 is not a square.6 Degree 5 | invariants of the meta-cyclic groupIn preceding Section, we have reduced our problem to the computation of a number ofinvariants of the meta-cyclic group M. We explain now how to compute them.The proof of Theorem 2 contains an algorithm for computing a base of the ring of invari-ants of M and for expressing any such invariant on this base. This has been implementedin Maple as follows.The function morbit of Figure 1 computes the sum of the orbit underM of any monomand reduces it by the Gr�obner base J of Lemma 1 (called here base). Applied to themonomials x20x1x4; x30x1x4; x40x1x4; x30x21x24; x40x21x24, this shows that the sums of the orbit ofthese monomial satisfy the condition of Lemma 2. Thus, the RSd -module RMd of rank 6 hasa basis consisting of 1 and these sums, namelyi4 = XC x20(x1x4 + x2x3)i5 = XC x30(x1x4 + x2x3)i6 = XC x40(x1x4 + x2x3)10



with(grobner);vars:=[x4,x3,x2,x1,x0,p,q,r,s]:base:=[x0+x1+x2+x3+x4, # The Groebner base Jx0^2+x0*x1+x0*x2+x0*x3+x1^2+x1*x2+x1*x3+x2^2+x2*x3+x3^2+p,x0^3+x0^2*x1+x0^2*x2+x0*x1^2+x0*x1*x2+x0*x2^2+x1^3+x1^2*x2+x1*x2^2+x2^3+x0*p+x1*p+x2*p+q,x0^4+x0^3*x1+x0^2*x1^2+x0*x1^3+x1^4+x0^2*p+x0*x1*p+x1^2*p+x0*q+x1*q+r,x0^5+x0^3*p+x0^2*q+x0*r+s]:morbit:=proc(exp) # sum of an orbit and reduction by the Groebner basesum(sum(subs('[x0=x[b],x1=x['modp(a+b,5)'],x2=x['modp(2*a+b,5)'],x3=x['modp(3*a+b,5)'],x4=x['modp(4*a+b, 5)']]',exp),a=1..4),b=0..4) ;subs([x[0]=x0,x[1]=x1,x[2]=x2,x[3]=x3,x[4]=x4],");sort(normalf(",base,vars)); primpart(")end:i4:= morbit(x_0^2*x_1*x_4); i5:= morbit(x_0^3*x_1*x_4);i6:= morbit(x_0^4*x_1*x_4); i7:= morbit(x_0^3*x_1^2*x_4^2);i8:= morbit(x_0^4*x_1^2*x_4^2);reduc:=proc(exp) # expression of an invariant on the basenormalf(exp,base,vars);normalf(",[i8-i_8,i7-i_7,i6-i_6,i5-i_5,i4-i_4],vars);sort(")end: Figure 1: Maple computationi7 = XC x30(x21x24 + x22x23)i8 = XC x40(x21x24 + x22x23)The function reduc expresses any polynomial invariant byM as a linear combination ofi4; i5; i6; i7 and i8. Here, i4,. . . is the normal form (reduced by J) of these invariants, andi 4, . . . is a name for them.Thus, it remains to express these �ve invariants as a rational function of a resolventinvariant. We chose i4 for such a resolvent invariant, because it has both advantages to bethe simplest one and to be always separable (see below).For expressing the i� in term of i4, we express �rst the i4i� as linear combination of thei� ; this needs to apply function reduc to corresponding products of normal forms, which arepolynoms in the xi of degree at most 12. Then, by the successive substitutions of Figure 2,we get the expression of the powers of i4 as linear expressions of i4; : : : ; i8. Thus solvingthe linear system fg2, g3, g4, g5g in fi 5, i 6, i 7, i 8g gives the expression of theseinvariants as a rational function of i4.It remains to computes the resolvent equation of i4 and to show that it is always separable,11



g2:= i_4^2 = reduc(i4^2);f2:= i_4*i_5 = reduc(i4*i5);f3:= i_4*i_6 = reduc(i4*i6);f4:= i_4*i_7 = reduc(i4*i7);f5:= i_4*i_8 = reduc(i4*i8);sub:=[i_5=op(2,f2)/i_4,i_6=op(2,f3)/i_4,i_7=op(2,f4)/i_4,i_8=op(2,f5)/i_4]:g3:= i_4^3 = sort(expand(subs(sub,g2,expand(i_4*op(2,g2)))));g4:= i_4^4 = sort(expand(subs(sub,g2,expand(i_4*op(2,g3)))));g5:= i_4^5 = sort(expand(subs(sub,g2,expand(i_4*op(2,g4)))));Figure 2: Maple computation, continuedi.e. that the determinant of above linear system never vanishes. For computing the resolventequation, it would su�ce to �nd a linear relation between the powers of i4, i.e. to eliminatei 5, i 6, ,i 7, i 8 between g2, g3, g4, g5 and also g6 which should be computed inthe same way. But for proving that i4 is always separable, we proceed in another way.Let V :=XC x0x1 and W :=XC x0x2:It is clear that V and W are invariant under  and exchanged by '. Thus � := (V �W )2 isinvariant under the action ofM. In fact � = 4i4+ p2 +12r, and the resolvent equation of i4and its separability are easily deduced by translation from those of �.With notation of last Section, (W � V )T 0U 0 is invariant by M and thus may be ex-pressed as a polynomial in � with coe�cients rational functions of p; q; r; s. In fact, this is apolynomial in �; p; q; r; s :P = 132(�3 � (20r + 3p2)�2 � (8p2r � 16pq2 � 240r2 + 400sq � 3p4)��p6 + 28p4r � 16p3q2 � 176p2r2 � 80p2sq + 224prq2 � 64q4 + 4000ps2 + 320r3 � 1600rsq)It follows that the resolvent equation for � is R� = P 2���, where �, the square of T 0U 0,is the discriminant of f .If this resolvent R� would have a multiple root for some values of the coe�cients of f ,this root would have a multiplicity at least 5 : In fact, if the polynomial f is irreductible, itsGalois group contains a cyclic permutation, and this permutation acts as a cycle of order 5on the conjugates of �. As the multiple root may not have 5 distinct conjugates, this cycle�xes it, and its multiplicity is at least 5.As R� = P 2 � ��, R0� = 2PP 0 � � and � 6= 0, such a multiple root is not a root ofPP 0 and is not 0. From R� = R0� = 0 and P 6= 0, we deduce P � 2�P 0 = 0. Substituting inthe derivatives of order 2; 3; 4 which are expressions involving only P and its derivatives, weeasily get the contradiction P = 0, proving that R� and, by translation, the resolvent of i4are alway separable. 12



7 The formulaIn this section, we describe and explicit the formula deduced from preceding sections.One want to solve the irreducible polynomialf := x5 + px3 + qx2 + rx+ s:It is solvable by radicals i� following polynomial R has a root i4 in Q, which may betested by any factorization algorithm. Let us remark that, when expanded, R is monic ofdegree 6 in x and that all numeric coe�cients are integer. Note also that the second factorof the second term (as written below) is the discriminant of f .R = 14 (2x3 + 8x2r + (�6p2r + 2pq2 � 50qs+ 24r2)x� 15p2qs � 16p2r2 + 13pq2r + 125ps2 � 2q4 � 200qrs+ 64r3)2� (x+ 3r + p24 ) (108p5s2 � 72p4qrs + 16p4r3 + 16p3q3s � 4p3q2r2 � 900p3rs2+ 825p2q2s2 + 560p2qr2s� 128p2r4 � 630pq3rs+ 144pq2r3 � 3750pqs3+ 2000pr2s2 + 108q5s � 27q4r2 + 2250q2rs2 � 1600qr3s+ 256r5 + 3125s4)From now on, i4 is a root of R in Q, and we will express the roots of f as functions ofi4; p; q; r; s. Let us de�ne i5; i6; i7; i8, related to i4 by following equations.i24 = 5i8 � 2pi6 + 4qi5 � 2p2i4 � 6p2r + 2pq2 + 10qs+ 4r2i34 = 12 ( (3p2 � 20r)i8 + (�pq � 50s)i7 + (�3p3 + 28pr� 12q2)i6+ (3p2q � 45ps� 6qr)i5 + (�3p4 + 36p2r � 15pq2 + 60qs� 32r2)i4� 6p4r + 3p3q2 + 41p2qs + 52p2r2 � 54pq2r � 250ps2 + 14q4 + 140qrs� 80r3 )i44 = (19p2r � 9pq2 + 225qs� 60r2)i8 + (15p2s � 8pqr + 3q3 + 100rs)i7+ (�4p3r + 4p2q2 � 105pqs� 16pr2 + 29q2r + 125s2)i6+ (�9p3s + 17p2qr � 8pq3 + 140prs+ 155q2s � 68qr2)i5+ (�4p4r + 4p3q2 � 79p2qs � 16p2r2 + 15pq2r � 25ps2 + 4q4 + 80qrs)i4+ 6p4qs� 22p4r2 + 16p3q2r � 4p2q4 � 404p2qrs+ 68p2r3 +132pq3s + 42pq2r2 + 550prs2 � 30q4r � 50q2s2 + 20qr2s + 16r4i54 = 12 ( (15p4r � 5p3q2 + 290p2qs � 152p2r2 � 27pq2r � 1375ps2 + 22q4 � 700qrs+ 240r3)i8+ (18p4s � 11p3qr + 3p2q3 � 530p2rs + 110pq2s + 124pqr2 � 41q3r � 2375qs2 + 200r2s)i7+ (�15p5r + 5p4q2 � 212p3qs + 168p3r2 � 83p2q2r + 325p2s2+ 10pq4 + 1560pqrs� 176pr3 � 620q3s � 12q2r2 � 1500rs2)i6+ (15p4qr � 5p3q3 � 147p3rs + 351p2q2s� 90p2qr2 � 43pq3r� 3175pqs2 � 420pr2s+ 20q5 + 215q2rs+ 152qr3 + 625s3)i5+ (�15p6r + 5p5q2 � 200p4qs + 200p4r2 � 110p3q2r + 355p3s2 + 15p2q4 + 1728p2qrs� 432p2r3 � 752pq3s + 220pq2r2 � 200prs2 � 43q4r + 1825q2s2 � 2640qr2s + 512r4)i4� 30p6r2 + 25p5q2r + 198p5s2 � 5p4q4 � 491p4qrs + 364p4r3 + 181p3q3s � 286p3q2r2� 810p3rs2 + 95p2q4r + 3005p2q2s2 + 4120p2qr2s � 1088p2r4 � 12pq6 � 4095pq3rs+ 612pq2r3 � 15875pqs3 + 900pr2s2 + 858q5s � 34q4r2 + 10700q2rs2 � 6240qr3s+ 960r5 + 6250s4 ) 13



These equations are linear in i5; i6; i7; i8 and solving this linear system expresses theseinvariants as polynomials in i4 with the determinant of the system as denominator. As i4 isalways separable, this determinant is never 0.We do not give here the expression of i5; i6; i7; i8 as polynomials in i4 because of theirsize : i8 needs 90 lines in our Maple program.With i4; i5; i6; i7; i8 one computesD = 40pi8 � 120qi7 + (�24p2 + 100r)i6 + (88pq � 300s)i5 + (�24p3 + 100pr + 24q2)i4� 80p3r + 40p2q2 � 480pqs+ 160pr2+ 332q2r + 125s2E = (3p2 + 20r)i6 + (�pq � 50s)i5 + (3p3 + 12pr+ 3q2)i4+ 4p3r � 3p2q2 + 40pqs+ 16pr2 � 21q2r + 125s2F = (�65p2q + 875ps� 550qr)i8 + (�58p2r + 41pq2 � 275qs+ 440r2)i7+ (85p3q � 520p2s� 298pqr+ 366q3 + 2100rs)i6+ (4p3r � 73p2q2 + 2095pqs� 56pr2 � 748q2r � 4875s2)i5+ (85p4q � 418p3s� 440p2qr + 419pq3 + 1590prs� 1040q2s+ 524qr2)i4� 12p5s + 158p4qr � 85p3q3 � 1462p3rs� 159p2q2s + 142p2qr2 + 896pq3r+ 175pqs2 + 2900pr2s� 402q5 � 1925q2rs � 448qr3 � 1875s3G = (�35p2q � 250ps� 200qr)i8 + (�22p2r + 19pq2 + 650qs� 40r2)i7+ (15p3q + 195p2s+ 68pqr� 6q3 � 1100rs)i6+ (�4p3r � 27p2q2 � 270pqs+ 96pr2 � 182q2r + 3000s2)i5+ (15p4q + 213p3s+ 50p2qr + pq3 � 940prs+ 515q2s � 184qr2)i4+ 12p5s + 42p4qr � 15p3q3 + 492p3rs � 156p2q2s+ 358p2qr2 � 246pq3r+ 2825pqs2 � 1400pr2s + 42q5 + 550q2rs � 232qr3 � 1250s3and then " = p5DT = s52(E + F" )U = 5GT"If T = 0, which implies that " is in Q, we change the sign of ". In fact, if both T valueswould be 0, the same would be true for E, F and the values of the invariants T and U ofpreceding sections, which is impossible.Consider nowH = 25 (2i5 � pq � 5s)I = 25 ( 40pi8 � 70qi7 + (�24p2 + 100r)i6 + (68pq � 300s)i5 + (�24p3 + 100pr� 46q2)i4� 80p3r + 20p2q2 � 255pqs+ 160pr2 � 28q2r + 125s2 )J = �25pi8 � 25qi7 + (�9p2 � 60r)i6 + (�7pq + 525s)i5 + (�p3 � 96pr+ 11q2)i4+ 50p3r � 7p2q2 � 145pqs� 308pr2 + 128q2r � 1000s2K = �125pi8 + 75qi7 + (67p2 � 420r)i6 + (�109pq + 1175s)i5 + (63p3 � 412pr+ 27q2)i4+ 210p3r � 79p2q2 � 415pqs� 676pr2 + 496q2r � 750s2which allows to de�ne Q1 = 54(H + I" + TJ + UKE )14



P1 = 5qQ1From now on we need P1 6= 0. If this is not the case, we get it by changing the sign ofone or two of above square roots, which is equivalent to one of the following substitutions ortheir composition applied to above formulae for Q1 and P2; P3; P4."! �" T ! U U !�TT ! �T U !�UWith P1, one computesP41 = �5pP42 = 5 (10i7 � 4pi5 � 14qi4 � 4p2q + 45ps � 72qr)P31 = �25qP32 = 25 (�10i8 + 2pi6 � 22qi5 + 2p2i4 + 20p2r + 2pq2 � 35qs� 40r2)P33 = 5 (35i8 � 4pi6 + 23qi5 + (�6p2 + 12r)i4 � 58p2r + 14pq2 � 105qs+ 76r2)P34 = 5 (5i8 � 22pi6 + 14qi5 + (�18p2 + 16r)i4 � 34p2r + 22pq2 � 140qs+ 68r2)P21 = 5 (3i4 + 2p2 � 16r)P22 = 25 (�10qi6 + (8p2 � 50r)i5 + (�2pq � 25s)i4 + 8p3q � 20p2s � 26pqr + 70q3 + 50rs)P23 = 25 (�4pi7 � qi6 + 4ri5 + (�3pq + 15s)i4 + 26p2s� 26pqr+ 7q3 � 40rs)P24 = 25 (3pi7 � 18qi6 + 22ri5 + (�14pq + 20s)i4 + 18p2s � 33pqr+ 21q3 + 30rs)Then P4 = P412P1 + P422"P1P3 = P314P 21 + P324"P 21 + P33T + P34U10EP 21P2 = P214P 31 + P224"P 31 + P23T + P24U10EP 31A root of f is then x0 = P1 + P2 + P3 + P45The other roots may be obtained by changing the determination of the �fth root. Theymay also be obtained by x = !P1 + !2P2 + !3P3 + !4P45where ! is any primitive �fth root of unit, i.e. a root of x4+ x3+ x2+ x+ 1, easily solvableby radicals.8 OptimalityIn this section, we shall prove that our formula is optimal in the number of roots to extract,and, moreover, that the �eld extension de�ned by the roots in our formula is the (unique)smallest �eld in which root of f is expressible by radicals.15



De�nition 1 A simple radical extension is a simple �eld extension k(x) such x has a primepower in k. A radical extension is an extension obtained by a �nite number of simple radicalextensions.The main result of this section is the following.Theorem 3 Let f be a irreducible quintic polynomial over the �eld Q which is solvable byradicals. Let L be a radical extension of Q which contains a root x of f . Then L contains aradical extension containing x and isomorphic to the extension de�ned by our formula.We may suppose that L = K(z) is a simple radical extension of some sub�eld K whichis a radical extension of Q and does not contain any root of f : Otherwise, we could replaceL by its smallest radical extension containing a root of f .We prove now that z = 5py for some y 2 K : The Galois group over K of the �eldgenerated by the 5 roots of f is a subgroup of the Galois group of f , itself included in M.As K does not contain any root of f , this subgroup has no �xed point and thus containC and is transitive on the roots. Thus f is irreducible over K and K(z)=K has a degreemultiple of 5. As z has a prime power in K, we haveL = K(z) = K( 5py) = K(x)Let ! be a primitive �fth root of unit. The conjugates of z over K are the !iz and ! isin the �eld generated by the conjugates of z. Thus, the splitting �eld of L over K isK(!; z) = K(!; x) = K(x; x1; x2; x3; x4)where x; x1; : : : are all the roots of f .It follows immediately that all radicals which appear in our formula are contained inK(!; x), being polynomials in !; x; x1; : : :, and it remains to prove that they are in K(x).For this we have three case to consider.If ! 2 K there is nothing more to prove.If ! 62 K but p5 2 K, we have K(!) : K = 2, K(!; x) : K = 10, and the Galois groupof f over K is D. Let # be its unique element of order 2 which �xes x. It maps ! on !4 andxi on x4�i (for some numbering of the xi). Thus it change the signs of !�!4; !2�!3; T 0; U 0and �xes T , U and ". As these invariants are also �xed by the circular permutation on theroots of f , they are in K.Finally, if p5 62 K, we have K(!) : K = 4, K(!; x) : K = 20, and the Galois group of fover K is M. Let # its element which �xes x and maps ! on !2. As it is of order 4, it actson the roots of f as a circular permutation. If we chose the numbering of the xi in orderthat it maps xi on x2i, it follows from the de�nition of the invariants T;U and ", that theyare �xed by #, and thus that, in all cases, K contains all square roots of our formula. Thus,the theorem is proved.Moreover, following characterization of the smallest radical extension containing all rootsof f is immediate from what precedes. 16



Theorem 4 The smallest radical extension containing all roots of a resoluble quintic f whichis irreducible over Q is the extension generated by all roots of f and a primitive �fth root ofunit !. Our formula expresses all the roots of f in this extension.If ! is of degree 2d over Q and if the Galois group of f over Q(!) is of order 5 � 2e, thissmallest radical extension is of degree 5 � 2d+e and is de�ned by d + e square roots and one�fth root.9 Implementation and conclusionThe formula of preceding Section has been implemented in Maple almost as it is described.The main di�erence is that the linear system to solve has been solved once for all. Theimplementation contains also all examples we know of quintics solvable by radicals.This implementation is available by anonymous ftp and may be down-loaded from fol-lowing address : ftp.lip6.fr:/lip6/softs/Maple/quinticV2.gzAs this implementation contains mainly polynomial expressions and root extractions, itstranslation to any computer algebra system is very easy.However such an implementation leads to a side problem which is not so easy : To verifythe correctness of the solution which is provided. This seems easy by substituting the solutionin the quintic polynomial and simplifying to 0. But such a task needs three ingredients.The �rst one is a precise semantic for the square and quintic roots. The one that we needis that given two occurrences of the same root, the same determination is chosen, whicheverit is.The second ingredient is that the number of root extractions which appears in the solutionis kept minimal. If not, the determination of the exceeding roots may wrongly be chosen.We have already mentioned this about Paxton Young formula which involves four �fth rootsimplying 25 solutions. For this reason, we could not use Maple expression for the primitive�fth roots of unit. In fact the answer given by Maple to solve(1+x+x^2+x^3+x^4) is�14 + 14p5 + 14q�10� 2p5; �14 + 14p5� 14q�10� 2p5;�14 � 14p5 + 14q�10 + 2p5; �14 � 14p5� 14q�10 + 2p5This contains two di�erent iterated square roots, and, consequently, Maple is unable tosimplify to 0 the di�erence between the square of the �rst solution and any other solution.Thus, in our program, we have replaced these expressions by the powers of the �rst one.The third ingredient is a good simpli�cator for expressions involving root extractions.From version V.3 on, Maple is able to verify the solution for the equations with numericcoe�cients. Nevertheless this remains a long computation, especially when one want toverify all solutions and not only the one which does not involves �fth roots of unit.For the case of equations with symbolic coe�cients, there were already a problem forthe simple case x5 � a = 0. Maple was unable to test that some expressions involved inour formula were null, and provided a false result in this case. The problem lyed in the factthat, for Maple, pa2 = csgn(a)a, and has been easily solved by replacing sqrt(exp) bysqrt(exp, symbolic) which returns a when applyed to a2.17



Nevertheless, even with this patch, we were unable to verify the solution of the threenon trivial examples of solvable quintics with symbolic coe�cients, which are given in ourprogram.All of this enforces our opinion that solving by radicals, when possible, leads to expres-sions which are too huge to be useful.Thus, in our opinion, the only usefulness for our program is to be a very good test forsimpli�cators for radical expressions.References[CLOS92] D. Cox, J.Little and D. O'Shea. Ideals, Varieties and Algorithms. UndergraduateTexts in Mathematics (Springer-Verlag, 1992).[PY1888] G. Paxton Young. Solvable Quintics Equations with Commensurable Coe�-cients. Amer. Journal of Math., 10(1888), 99{130.
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