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Abstract

We consider the problem of dynamically allocating production capacity be-
tween two products to minimize the average inventory and backorder costs per
unit time in a make-to-stock single machine system. Using sample path com-
parisons and dynamic programming, we give a characterization of the optimal
hedging point policy for a certain region of the state space. The characteriza-
tion is simple enough to lead to easily implementable heuristics and provides a

formal justification of some of the earlier heuristics proposed.

1 Introduction

A challenging problem in production control is the dynamic allocation of limited
production capacity between different products in a make-to-stock environment. The

fact that demands and even the production times are random makes this problem even



more challenging. In this paper, we provide new insights for the dynamic scheduling
problem of a stochastic production-inventory system.

The particular model that we consider here is a two part-type model where de-
mands of both types arrive in single units and a single production facility produces
units one by one. The model is, then, the make-to-stock version of the well known
multi-class single server queue, i.e. a two class make-to-stock queue. The question
is to decide dynamically when and which part type to produce. For tractability, we
make the usual assumptions that the demands arrive according to independent Pois-
son processes and that the production times are exponentially distributed. We also
disregard setup times and allow preemptive scheduling. Under these assumptions,
the dynamic scheduling problem is an optimal control problem which can be set as a
Markov Decision Process (MDP). This constitutes our starting point. Traditionally,
after setting up the MDP, one tries to obtain structural results on the optimal policy
by using induction on the time horizon. We choose to proceed in a different direction
instead and use coupling and sample path comparison techniques to obtain a partial
but exact characterization of the optimal policy.

For a single class make-to-stock queue, the issues are considerably simpler since
resource partition is not a concern. In that case, the issue is to determine when to
produce and when to idle. It turns out that a base-stock type policy is optimal for this
case, the machine should keep on producing whenever the stock are below a certain
safety level and should idle once that level is attained (Gavish and Graves, 1980).

Kimemia and Gershwin (1983) pioneered the approach of modeling production
control problems as optimal control problems. This led to the characterization of
the optimal policy for a single class continuous flow model by Bielecki and Kumar
(1988). The continuous flow model is closely related to the discrete part type model
considered here and involves a constant demand rate and constant production rate
but models the randomness through an unreliable machine which can be up or down.
For this model, Bielecki and Kumar have shown that the optimal policy is a hedging
point policy, where the production facility works at full rate when it is up and the
inventory level is below the hedging point (which determines a safety stock level) and
at a rate equal to the demand rate when the inventory level reaches the hedging point.

The multi-class make-to-stock queueing problem was first considered Zheng and



Zipkin (1990). Zheng and Zipkin show that in the case of two symmetric products,
the performance of a policy that always serves the longest queue is always better than
the performance of a FCFS policy. These results were later generalized to multiple
products by Zipkin (1995). Wein (1992) proposed a Brownian approximation for the
multi-class make-to-stock queueing control problem. The solution of the approximat-
ing stochastic control problem provides interesting insights into the structure of the
optimal policy, suggesting particularly the optimality of a hedging point policy and
a static priority rule when all products are backlogged.

Ha (1997) provides the theoretical justification of some of the ideas suggested
by the approximating model of Wein (1992). By considering the infinite horizon
discounted cost model and using dynamic programming he proves that a static priority
rule is optimal when all producs are backlogged. He also proves that for two part types
requiring identical production times, the optimal policy is a hedging point policy,
characterized by two switching curves, one curve determining the on-off region for
production and the other curve determining the dynamic priority between the part
types.

Ha’s results suggest that the optimal policy for the multi-class make-to-stock
queueing problem (in further generality than proven) is a hedging point policy com-
bined with monotone priority regions that state which of the part-types to produce.
On the other hand, even under the restriction of policies to this particular class, one
is left with a challenging problem of jointly optimizing the selection of a hedging point
and the priority regions for different part types. Veatch and Wein (1996) and Pena-
Perez and Zipkin (1997) study this problem and provide effective heuristics based on
approximations driven by intuition.

For the continuous flow two part type problem, on the other hand, Srivatsan and
Dallery (1998) have recently provided a partial (but exact) characterization of the
optimal hedging point policy. This exact characterization prompts the question as to
whether the same properties carry over to the conceptually related but considerably
different case of the discrete part make-to-stock queue.

Note that, in the single product case, the optimal control problems for the make-to-
stock queue and continuous model of Bielecki and Kumar (1991) are strongly related.

In fact, for both cases the optimal policy is of the hedging point type. This connection



also holds for the multi-product case when the service times do not depend on the
part type. Intuitively, the effect of randomness modeled by machine breakdowns
is very similar to the effect of randomness modeled by a class-independent server.
In the case where the production times depend on the part type, however, the two
systems represent randomness in radically different ways. For this second case, the
corresponding continuous flow model seems to be the one with part type dependent
breakdown rates which has not received a lot of attention so far.

In this paper, we show the surprising result that the partial characterization of
the optimal policy as provided by Srivatsan and Dallery (1998) for a continuous flow
two-part type system extends to the two-class make to stock queue with part-type
dependent production times. The extension turns out to be technically quite involved,
partially due to the passage from the continuous to the discrete case, but mainly due
to the different way the models capture the randomness. The end result, however,
is very simple and intuitively appealing. In a certain region of the state space, the
monotone switching curve that separates the priority regions of the two products
turns out to be a straight line whose position is expressed by a simple equation. This
characterization allows us to generalize the results of Ha (1997) on the structure of the
optimal switching curve. It also helps to recognize the advantages and disadvantages
of the various heuristic strategies proposed by Veatch and Wein (1996) and Pena-
Perez and Zipkin (1997). In particular, we formally justify the good performance of
some of these policies developed through intuitive approaches.

We give a formal definition of the problem and the model in section 2. In section
3, we present some properties of the class of policies that we study in this paper,
namely, the hedging point class of policies. These properties enable us to obtain the
main result on the characterization of the optimal hedging point policies presented in
Section 4. In section 5, we give numerical examples as well as discussing and justifying
the relative performance of some of the heuristic policies proposed earlier. Finally,

our conclusions and suggestions for future research are presented in Section 6.



2 The Optimal Control Problem

2.1 The Model and the Dynamic Scheduling Problem

Consider a production system with a single, flexible, machine that produces two part
types (type 1 and type 2), in a make-to-stock mode. Each finished item is placed
in its respective inventory. Demands that cannot be met from their respective on-
hand inventories are backordered. It is assumed that raw parts are always available
in front of the machine. The arrivals of demands to the system occur according
to independent Poisson processes with rates \;, ¢ = 1,2. The production times of
product ¢ are independent and exponentially distributed with rates p;.

At any time, one can choose whether to produce part type 1, 2 or to idle the
machine. A preemptive discipline is further assumed: the production of a part can be
interrupted and resumed. A control policy states the action to take at any time. Since
the system is memoryless, for the control of the system we can consider only Markov
policies, which only depend on the current state. Let X;(¢) denote the inventory level
at time t. We call X;(¢) the surplus (or backlog if demands are backordered) of Part
type i. X (t) = (X1(t), X2(t)) is then the state of the system. Let C, be the control

associated with a Markov policy a. We have:

0 when the action is to idle
Cu(t) = Co(X(2) = 1 when the action is to produce type 1

2 when the action is to produce type 2

The issue we are interested in is how to control this system to minimize a cost func-
tion. We consider a unit holding cost h; and a unit backorder cost b; per unit of time
for part type i. Here h; and b; are non-negative scalars. In the state (X, (¢), X2()),

the system incurs an instantaneous cost of

where the individual part type costs ¢; are

hi X;(t)  X;(t)

¢i(Xi(t)) = { —b;Xi(t) Xi(t)

>0
<0



X2 Idling Curve
IDLE
0

/
5

PRODUCE

@ © Hedging Point

PART TYPE 1

Switching Curve

PRODUCE PART TYPE 2

© O N O 0N O N R~ O RPN ®W MO O N 0 O

N N N NN N (P

Figure 1: Hedging Point Policy

Under a given policy, say a, the system will generate a long run average cost due to
surpluses and backlogs. The objective is then to find the policy which minimizes this
long run average cost. This problem can be expressed as an infinite horizon, average
cost control problem shown below:

min limsup%Eg[ /Otc(X(t))dt] where = = X(0). (1)

a t—00

2.2 Optimal Control and Hedging Point Policies

To solve the optimal control problem (1), a classical approach is to derive the dynamic
programming optimality equations. Following Veatch and Wein (96), with ¢* the
optimal average cost rate, V(x) the relative value function, we have
c(x) + MV (z1 — 1) + XV (ze — 1) + puV(x) + min(0, uy A1V (z), p2 AoV (z))
A 7
(2)

g
V(z) + =

where
AV(z)=V(ey +1,25) = V(z), AV (z) =V, ze+ 1) — V),
= maz(py, p2), A = Ay + Ay + p.



The optimality equation is useful in determining certain structural properties of
the optimal policy and also provides the basis for algorithms to compute it numeri-
cally. Ha (1996) has exploited these equations to characterize the monotone structure
of the optimal policy with discounting. On the other hand, this approach has not
given an exact general characterization of the optimal policy until now. Although a
formal proof does not exist in full generality, we conjecture that the optimal policy
belongs to a specific class : the hedging point (base stock) policies (see Figure 1).

Following Kimemia and Gershwin (1983) and Veatch and Wein (1994), we define

a hedging point policy for the manufacturing system in Section 2.1 as follows:

Definition 1 A hedging point policy a is a Markov control policy that has the fol-

lowing properties:

1. The policy divides the two dimensional surplus space into three distinct types of
regions, say Regions 0,1 and 2 such that C, = 0 in Region Type 0; C, =1 in
Region Type 1; C, = 2 in Region Type 2.

2. The idling curve defined as the set of points of Region 0 on the boundary between
the Region 0 and the others, is a positive curve, decreasing in x1 or xy. (The
curve can be written as a function of x1 in the values of xo, or of x5 in the

values of x1).

3. The switching curve which delimits Regions 1 and 2, is the following increasing
in x1 or xy curve defined by {x : (x, — 1,29) € Region 1 and (1,29 — 1) €
Region 2}. (The curve can be written as a function of x1 in the values of x,

or of xy in the values of x1).

4. These two curves intersect at a single point z = (z1, 22), which is called the

hedging point.

Remark: The parts 2 and 3 of the definition imply that the hedging point 2 is
positive.

When a hedging point policy is applied, if the initial point (z1,x9) of a surplus
trajectory is such that x; < z; and xy < 25, the machine will be used at full capacity
until the inventories levels are equal to z. Thus, the hedging point represents a surplus

level based on tradeoffs between expected inventory and backlog costs. Furthermore,
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if at a time instant the trajectory reaches the switching curve at a certain point y, it
will move along the curve until an arrival of a new demand causes it to move away
from the curve. Then the scenario is repeated until z is reached. This implies that
all the points of the switching curve between y and the hedging point z belong to the
trajectory.

The switching curve, with the hedging point, fully characterize a hedging point
policy for initial points verifying the above condition. In particular, if a surplus
trajectory originates at the hedging point, its future behavior can be completely
characterized by these parameters.

Furthermore, if 21 > 21 or x5 > 25 then after a transient behavior which does not
affect the long average cost, a trajectory under a hedging point policy will reach a
point such that x; < z; and x5 < z5. The description above then holds true.

In the rest of the paper we concentrate on hedging point policies, with starting
points in the region x; < z; and x5 < z,. Although a rigorous proof under general
assumptions is not yet available, there are strong evidences that the optimal policy
is a hedging point policy.

Previous work on this problem supports this conjecture. Firstly, Ha (1996) has
shown that the optimal policy in the discounted case is a hedging point policy in the
case of p; = pe. Hedging point policies are “plausible” according to Pena-Perez and
Zipkin (1997). This issue is also discussed from the monotonicity point of view in

Veatch and Wein (1996). Finally, our numerical experiments verify this point.

2.3 An Equivalent Model

We consider now a model which only differs from the original model in the way the
machine produces the parts. This new model, whose behavior will be shown to be

equivalent to that of the original model will be useful for deriving some of our results.

Definition 2 The Equivalent model (EQ) is a model similar to the original model

where:

1. the machine performs service activities whose durations do not depend on the

type of the product and are exponentialy distributed with rates p = py + jio,



2. at the end of a service time the "work” done during the service activity is either
allocated to one of the two parts or not used, according to a control policy a.

Specifically, we have

0 idle: the work 1s not used
C, = 1 produce type 1: the work s allocated to type 1
2 produce type 2: the work is allocated to type 2

3. When C,(t) # 0, the allocation of the "work” to a given part type may result in
the “instantaneaous production”™ of a part of this type, and the outcome is prob-
abilistic. Specifically if the work is allocated to part type @, then with probability
Pi = %, a part is instantaneously delivered to the corresponding output buffer,

while with probability 1 — p; nothing happens, i.e the "work” is lost.

Remark: In the EQ model we talk about “service times” instead of “production
times”. Note that not all service times correspond to actual production times.

An intuitive interpretation of this model is that the machine is not perfectly
reliable: it can produce parts which do not satisfy some quality criteria. For instance
with a probability 1 —p;, a part of type ¢ is “bad” and is rejected when it is produced.

Since the arrival processes and the service times are independent of the policy,

this model facilitates sample path comparisons, as we will see later.

Proposition 1 Under the same control policy, the behavior of the E() model is prob-

abilistically equivalent to that of the original model.

Proof: Consider first the machine and the both production processes. Suppose then
that the common policy a states to produce part i. Let U; be the discrete random

variable such that:

I { 1 when the work allocated to part type ¢ generates a real part
;=

0 when the work does not generate a real part (the work is lost)

with the probabilities:

U; corresponds to the probabilistic outcome mentioned in the third part of the EQ

model definition. Let 1" and 7j, be the exponentially distributed service times with



rates p and p; respectively. Consider the following events:

A={in the original model, the service time of part type i is less than dt}

B={in the EQ model, the service time of part type i is less than dt}.
We have:

P(A) = P(T; < dt) = wdt-+o(dt) = piudt-+o(dt) = P ({U; = 1} N {T < dt}) = P(B).

When «a states not to produce, nothing happens in the original as well as in the EQ
model. Thus under the same policy, the two models have a stochastically identical
behavior for their service time process.

Consider now the arrival processes. When a demand occurs, the effect on the
inventory level is exactly the same for both models. In the original model, the attri-
bution of the part type to the machine is determined by the preemptive discipline.
It is possible to switch part types at the time instant of the arrival, even when the
machine is working. In the EQ model, since we choose to attribute the part after
its completion, the attribution has not yet been made. The effects of the arrival
processes are thus exactly the same for both models. a

Note that the EQ Model corresponds to a uniformization of the service processes
in the Original Model. The proof of the above property is given here for clarity and

to introduce some useful notation to be used in the sequel.

3 Some Properties of Hedging Point Policies

3.1 Sample Path Properties

This subsection presents some properties of hedging point policies. These properties
will enable us to study the stability conditions. Moreover, they will also constitute
the basis of the proof for the characterization of optimal hedging point policies. These
results are based, as others in this paper, on sample path comparisons. We study
different trajectories by coupling them, that is by considering a common realization
of the random variables which generate them. In particular, we typically consider the
trajectories X and X" generated by the policies a and b under the same realizations

of the arrival processes and the service times.
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Following this approach, the next lemma states that if the same number of type-1
parts and the same number of type-2 parts have been completed for two coupled
trajectories, then the completion instances of the batches must be identical. Thus,
under certain conditions the lemma provides us the positions of coupled trajectories at
the same instance which will prove to be very critical for the sample path comparisons

in the sequel.

Lemma 1 Consider two hedging point policies a, b and two coupled trajectories X,

X" generated by these policies. If two time instants T, and T, are such that:
1. X{(T,) — X(0) = X(Ty) — X7(0), and X3(T,) — X5(0) = X3(T3) — X3(0)
2. For all t in [0,T,] (respectively [0,T},]) with i =1 ori =2,
X2(t) < X8(T,) (respectively X2 (t) < X2(T3))

and T, (resp. Ty) is the first time that X (resp. X°) reaches X“(T,) (resp
X"(T;)).

3. For all t in [0, max(T,,T})], the machine works at full capacity under both poli-

cies,
then T, =T, on the coupled path.

Proof: Consider the EQ model. Define 7" and Uj; as in the proof of Theorem 1. We
couple the service time T of the machine and the random variables U; for the policies
a and b.

Consider a sequence of realizations of the exponentially distributed service times:
ot

and sequences of realizations of the discrete random variables Uy :

up,ui, ... ul, ... where u; =0 or 1
and Us:
Uy, Uy, . .- Uy, ... where u> =0 or 1

11



These realizations are common for both policies. Let 1™ be the time instant of the
nth event. Since the machine works at full capacity, 7" = YF_, t*, and T is the
same for both policies. We denote by n(t) the number of service completions at time
t. At instant 7™, the nature of the new event is then given by the next element of the
sequence corresponding to u; (where i = 1 or ¢ = 2 depending on the choice stated
by the policy). Let n¢(t) be the number of elements of the sequence corresponding to
u;, which policy a has chosen before the time instant t. Similarly, we can define n?
for policy b. From the definition of n{, and since the machine works at full capacity,

we have for all ¢t in [0, max(T,, T})],
n(t) = ni(t) + ng(t) = ni(t) + ny(0). (3)

Let d;(t) be the number of demands for part Type ¢, which have occurred before the
instant . By coupling, these arrivals modify the inventory level at the same instant
for both policies. A demand may then change the choice stated by the policy, but for
all t in [0, max(T,,Ty)], d;(t) stays the same for a and b. Each time n{ is equal to 1,

the corresponding event is a production of a part. Thus,

né(t)

(3

XE(D) — XE(0) = 3wl — d(h). (4)

k=1

Suppose now that 7, < 7j. From the second condition of the lemma, it follows that
fori=1o0ri=2,
X)(Ty) = X;(0) > X7(T.) — X;(0), (5)

and one of the inequalities is strict. Without loss of generality suppose that,
X{)(Tb) - X{)(O) > X{)(Ta) - X{)(O)a (6)

From the first condition of the lemma, and from (5) and (6), we obtain,

By combining (7) and (8) with (4) we obtain the following results :
n$(T,) > nb(T,) and n%(T,) > nb(T,)

12



which from (3) are impossible. Using similar arguments when 7, < T}, we have
T, =1,. O

The previous lemma gives general conditions for two trajectories to complete the
same amount of work within the same time. This result will be adapted to the
class of policies defined by hedging points and switching curves in the following two

corollaries.

Corollary 1 Consider two hedging point policies a, b and two coupled trajectories

X, X" generated by these policies such that,

1. the switching curves of the policies have a common point z,

2. X% and X" start at the same initial point, such that X1(0) < 2y and X5(0) < 2o,
then, the trajectories reach z at the same time instant.

Proof: As explained in Section 2.2, once the trajectory reaches the switching curve,
it moves along it. From condition 2 above, both trajectories will reach their respective
switching curve below z. Thus both trajectories pass through this point.

Both policies also work at full capacity and Lemma 1 can be applied with X*(0) =
X*(0) and X“(T,) = X"(Tp,) = 2. =

Corollary 2 Consider two hedging point policies and two coupled trajectories begin-
ning at their respective hedging points. The inventory levels leave and reach their

respective hedging points at time instants which are the same for both policies.

Proof: At the time instant of the first arrival, both trajectories will decrease by 1 in
the respective inventory level. Then, they verify the lemma 1. Thus they will reach

their hedging point at the same instant, and the scenario will be repeated. O

3.2 Stability of Hedging Point Policies

In this subsection we analyse the stability of the hedging point policies. We define

Policy a with the hedging point z, to be stable if
1
lim —EY[X (t)’] =0 for i=1,i=2.
t—oo t

Corollary 2 enables us to relate the stability of hedging point policies to the

stability of static priority policies as presented in the following lemma.

13



Lemma 2 A hedging point policy a is stable if
A A
22
M1 H2

Proof Let z* be the hedging point of the policy a. Let Policy b, be the policy
with the same hedging point 2%, and the switching curve given by the straight-line
x1 = 2% From Corollary 2, Policy a is stable if and only if Policy b is stable. Policy
b actually defines a static priority policy with part type 1 having the high priority.
Thus, following Gross and Harris (1985), Policy b is stable if Ay /p; 4+ Ao/ p2 < 1 giving
us the result. O

Remark: Note that the stability condition of hedging point policies does not
depend on the hedging point or the switching curve but only on the quantity A /pu; +

Ao/ pe < 1, which can be interpreted as the utilization rate of the machine.

4 Partial Characterization of the Optimal Hedging
Point Policy

Consider the two-part-type system introduced in Section 2.1. Without loss of gener-

ality, let the two part types be numbered such that

bipr > bopio (9)

We derive in this section, a structural result for the optimal hedging point policy
of the two-part-type system introduced in Section 2.1. The main idea is to relate
the optimal control problem of the two-part-type system to a single-part-type system
problem. Informally, we will exploit the fact that the instantaneous cost function can
be expressed as:

c(xy,x9) = ™(x1) — f(x1, 29) for xo <0

where ¢ is the part of the cost that only depends on x1, and f is a function of x; and
2o that captures the remaining part of the cost. ¢” is an instantaneous cost function

of the form:

" (zy) =

h"xy x1 >0
—bml‘l T S 0

14



Intuitively, the function f should be proportional to W, the total amount of work (in

units of time) embodied in the system.

Definition 3 Let the aggregate workload W (t) be defined as:

_ X)X

W(t
() H1 H2

We denote by W(t), the aggregate workload under policy a. We also use the following
notations W(X) = W(X(t)) = W(t). Under certain conditions, the expectation of
W (t) does not depend on the policy, or differs only by a constant. Thus, the difference
in average costs of two given policies can be resumed by the difference in ¢™(z1),
which is the cost of a single part-type system. We are then able to give an analytical
expression for the switching curve when z, < 0.

Theorem 1 formalizes this characterization of the optimal policy. The following
lemmas give the properties of the expected value of the aggregate workload mentioned

above.

Lemma 3 Consider two trajectories X and X° generated by two hedging point poli-
cies a and b, and an interval [0,T] such that for all t in [0,T] the machine works at
full capacity,

then for all t in [0,T] we have,

AFE[W ()] = E“[W(1)] = E*[W ()] = W*(0) — W*(0)

Proof: Consider the EQ model. Let 7™ be the time instant random variable of the
nth event, which can be a demand arrival or a service completion (recall that in
the EQ model, a service completion does not necessarily correspond to a production
completion). For a policy m we denote by H,, = (Xy,Cz(0)...X,,C(T,)) the history
of the processes until the time of the nth event, where C is the control associated
(Cr = 1 or 2). We also denote E™[IW (t)] to be equal to E™[W (t)|H,], with 7" <
t <T"™. We have,

ET[W ()] = E[ET[W ()] (10)

Without loss of generality, we can take ¢ such that t =71™.

15



Suppose then that the instant 7™ corresponds to a service completion. It follows for
policy a when C,(7},) = i that,

. . U,

EW(T)] = B W(T") + ;] (11)
where U; is the discrete random variable of the EQ model. From the definition of U;
(see the proof Proposition 1) we obtain that E[U;]/p; = 1/p. Note that this value

does not depend on the part type. Thus, from (11) we have,

. . 1
E W (T™)] = B W (1" H)] + " (12)
If T™ corresponds to an arrival of type 7, then
5 n 5 m— 1
Ee[W(T")] = E«[W(T" )] - m (13)

Similary for policy b:
~ - 1 - - 1
EP[W(T™)] = EP[W(T"71)] = — or EYW(I™)] = EYW (") — —  (14)
7 K
Consider now realizations t; of T for ¢ € {0,...,n}. As it is done in the proof of
lemma 1, we couple the service times of the machine as well as the instants of demand
arrivals. Thus the ¢; instants are the same under policy a and b. From (12), (13),

(14), it follows then that:
APEIW(T™)] = AFEW (T )]

giving us the desired result using (10). O
Remarks: In the case where p; = py, we actually have We(t) — W°(t) = W*(0) —
W*(0) on the coupled path.

By combining the two lemmas, we obtain a property which holds for any time

instant, even when the machine is not working.

Lemma 4 Consider two hedging point policies begining at their respective hedging

points 2%, 2. Then, for all t, AfE[W ()] = Z—ii + Z—z — Z—% —

Proof: When the policies are hedging point policies, condition 2 of Lemma 3 holds
until one of the two trajectories reaches its hedging point. Using corollary 2, the
property holds then for all time instants t. O

Based on lemma 1, 3, and 4 we can now formulate the following theorem which

gives an analytical expression for the switching curve in a certain region of the space.
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Theorem 1 Consider a two-part-type system where (9) holds as a strict inequality.
When zo < 0, the switching curve of the optimal hedging point policy for this system
15 the straight-line defined by:

n (h1+bzﬁ—f

W)J

In 2L
M1

Ty =2z =
and the optimal hedging point policy a s of the form:

Ca(w):{ 1 if a1 <2 a5 <0

2 af x> 22y <0

Proof: A proof of this theorem can be found in the appendix.
Remark: Note that when x5 < 0, the switching curve depends neither on the arrival
process of type 2 demands, nor on the holding cost of part Type 2.

It is interesting to note that the value of 2{" as calculated above, could be zero for

certain a range of parameters. A direct calculation gives then the following property:
Z{n =0 <= hlﬂl —hi A > b — bg,ug.

This property leads to an intuitive interpretation of Theorem 1. Consider the case
where 2" > 0 and an inventory level with 2" > x; > 0 and z2 < 0. From Theorem
(1), the optimal policy states to produce one unit of product 1 which increases the
expected cost at rate hyp; —hi Ay —hoAe. While, if the policy had stated to produce one
unit of product 2, the expected cost would have increased at rate —bopig + b1 A1 — hoXs.
Thus, the optimal policy chooses the part to minimize this cost-change rate. This
extends the result and the interpretation given by Ha (1997) to justify the optimality
of the "bu” rule.

5 Numerical Results and Heuristic Policies

5.1 Numerical Results

To numerically compute optimal policies, we have used the value iteration algorithm

to solve the optimality equation (2). To overcome the problem of infinite state space,
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Figure 2: Numerical results

we truncated the state space and experimented with increasingly large state spaces
until the increase did not cause any change.

We perform a computional experiment to provide some insights on the behavior
of the optimal policy when zo < 0 varying the parameters of the system. The data
of the different problems we have studied are displayed in Table I. In the two first
cases, we consider systems which only differ by their backlog costs. The ratio by /by
increases from the first case to the second one. In the last case, the system is also
asymmetric in the arrival and service time process, such that p; = 2ps.

In Figure 2 which displays the optimal policy for the examples in Table I, the
straight line appears clearly. The figures also verify that the experimental value of

this line is equal to the theorical value given by Theorem 1, which is reported as Z™
in Table I.
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Table I: Data of the tested cases

Case A1 Ao p1 pe hy he by by Z™
1 04 04 1 1 1 1 50 25 O
2 04 04 1 1 1 1 50 5 2
3 06 01 1.2 04 2 1 60 6 4

Let us decribe the behavior of this line (in all this discussion we assume that
bipy > bops). Consider first that gy = ps = 1 as in cases 1 and 2. The position of
the switching curve when x5 < 0 depends then on by, by and h;. More precisely, it
depends on the relative values by /hy, by/h;. When h; tends to infinity, the line is at 0.
Note however that in practice hy is usually less than b;. Suppose then for simplicity
that hy = 1, as in the two first cases. Z™ increases in the ratio b;/b,. Thus the more
the two parts are assymetric in their backlog costs, the larger the stock of part type
1 when x5 < 0 must be. This can be seen in Figure 2. When gy # 9, the behavior
of the line is the same by taking the cost rate b;u; instead of b; with ¢ =1 or ¢ = 2,
and hqpy instead of hy.

In addition to the asymetry of the backlog cost rates, the utilisation ratio of the
first part type has a crucial impact in the position of the switching curve. Indeed,
Z™ increases with p;. Particulary, in heavy traffic, the position of the line tends to
infinity. In the third case, we have a straight line at Z™ = 4 when p; equals only 0.5.
Here Z™ is very close to the hedging point of part Type 1 (which from Figure 2 is
equal to five).

Note that for a certain set of parameters, the optimal policy can be a static priority
policy. In that case, Z™ is equal to the coordinate of the hedging point corresponding
to the first part type.

Thus, the position of the optimal switching curve when x5 < 0 seems to capture
at once the asymmetry of the backlog cost rate, and the utilization in isolation of the

part type with the larger of these costs.

5.2 Myopic Allocation

In Section 2, we have seen that no exact solution has been found for the Dynamic

Scheduling Problem (1). Consequently, efforts have been devoted to explore heuristic
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approaches.

For instance, a simple heuristic policy is a static priority policy with a hedging
point z, which switching curve is defined by the straight-line z; = 2;. Computations
can then give an approximation of the optimal hedging point z for this class of policies.
These heuristics have been studied by Wein (1992) and have been called by Pena-Perez
and Zipkin (1997) the static-priority(r) Policy (with r; = z;/p;). Using Theorem 1,
we can see that this kind of policy would perform efficiently in cases where the hedging
point of part Type 1 is close to the position of the straight-line as it can be seen in
the third case of our numerical results. However, in the more general case, the static
priority will not perform well.

Thus, other more sophisticated, yet easily computable heuristics have been ex-
plored. In particular, Pefia-Perez and Zipkin (1997) have developed heuristics (the
”Myopic Allocation”) which perform substantially better than the static-priority(r)
Policy. Veatch and Wein (1996) have also studied these heuristics coupled with a
Brownian approximation developed by Wein (1992). They show that these myopic
allocation policies give very good results when applied to approximate the optimal
switching curve. However, the myopic allocation is based on intuitive but informal
arguments. After its short presentation, we give a partial justification of the myopic
allocation using Theorem 1.

The main idea of the myopic allocation, is to look-ahead a service time of part type
i, say S;. The policy allocates then the production capacity to the part type which in-
creases the expected instantaneous cost at the smaller rate. Let D(.S;) be the number
of demands of part type ¢ in the interval [0, S;]. If part type ¢ is produced and if the
current inventory level is x;, g(x;) = Elc(z;+1—D(S;))] is then the expected instanta-
neous cost after the completion of the service time. Thus, p; Ag(z;) = g(z;+1) —g(2)
is the rate at which serving this class increases the instantaneous expected cost. The
myopic allocation chooses then the part type with the smaller p;Ag(z;). Pena and
Zipkin have derived an analytical expression for this index p;Ag(z;). However, they
suggest that, taking instead of S; the sojourn time 7} in a system (where j # i are
omitted), the heuristic policy will perform better. Thus in that case, D(T;) replaces
D(S;) in the computations above, where T; is exponentially distributed with rate

(1 — p;)pi- The intuitive rational they give is that, by choosing product type i, the

20



production requirement is to increase x; by one taking into account the demands that
arrive in the mean time. The machine will then not only produce one part type i,
but will also respond to the new demands until the inventory level reaches z; + 1.

1 as has

This ”replenishment” time has actually a mean proportional to (1 — p;)~
E(T;). The improvement brought by this modification was verified by their numeric
examples. Indeed, they remark that the myopic policy with 7; performs better than
the myopic policy with S;, which is better than the static priority rule. But they do
not give any formal justification of these conclusions.

The following Lemma partially proves that their intuitions were well-founded.

Lemma 5 The myopic allocation policy applied with the sojourn time T; is an optimal

policy when xy < 0.

Proof: Let (z1,x9) be an inventory level. Without loss of generality we suppose that
bipn > bops. The myopic allocation policy chooses the part type with the smaller
pilAg(z;) (i = 1 or i = 2). Following Pena and Zipkin (1997), we have with the

sojourn time 7Tj,

—4ib; for ;<0
—pibi + pi(hi +0) (1 — pFtYy for ;>0

pidg(x;) = {

When z; < 0 and x5 < 0, since —bypuy < —bous, part type 1 is produced. When
xy > 0 and zy < 0, part type 1 is still produced as long as p1Ag(x;) < peAg(zs)

which can be written as,

— by + pr(hy + 01) (1 — pP ™) < —pgby.

A straightfoward computation shows that the myopic allocation policy states to pro-

duce part type 1 when 2o < 0 if and only if|

hi+by£2
In (1) |

In AL
p1

r <

Using Theorem 1, the myopic allocation policy with T} is thus optimal when x5 < 0.
(I
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This Lemma explains the good performance of the myopic allocation computed
with the sojourn time. A direct calculation will show that, for the myopic allocation

with the service time, the switching curve is also a straight-line when zo < 0 with

hi+b2 E2
In (——)
—— ] (15)
11+A1

.7/'1:|_

In

Thus in light traffic conditions, the myopic policy with S; is close to the optimal policy
when zo < 0. However in heavy traffic condition for part type 1, the straight-line is
at xy = 0, while this line tends to infinity for the optimal policy. This explains in
part that the myopic policy with the service time can perform poorly in contrast with

the one that uses the sojourn time.

6 Conclusion

Using sample path comparisons for hedging point policies, we have partially charac-
terized the switching curve that determines the production priorities for the two-class
make-to-stock queue. Our results suggest that in the case where both products are
backlogged, it is optimal to produce the most expensive item in terms of the back-
order cost (the product with the higher bu) until its stock reaches a predetermined
(non-negative) level before switching to save the less expensive product from backlog.
In addition, it is shown that this safety stock level does not depend on the level of
backlogs of the less expensive products and can, in certain cases, be significantly high
depending on the cost and traffic parameters.

Similar results have been shown for an analogous continuous flow model. On the
one hand, it may be considered somewhat surprising that the optimal policy should
have the identical structure for the make-to-stock queue as for the two part type
continuous model with an unreliable machine. On the other hand, it is relieving that
the optimal policy has the same structure for two models that represent randomness in
very different ways indicating the robustness of the structure. This strongly suggests,
for instance, that for the continuous model with part type dependent breakdown rates
the structure should be retained.

Our results contribute to the understanding of the control problem of the single

stage multi-product system. These results could also be useful for the multi-product
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multi-stage system which constitutes a major challenge both from theoretical and

practical perspectives. Future research will focus on some of the issues in multiple

stage production.
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Figure 3: Case 1 p; > 27"
A Appendix

A.1 Proof of Theorem 1

Let Policy b be an optimal hedging point policy with a non-negative hedging point,
z = (z1,22), and a switching curve which differs from the straigth-line defined in
Theorem 1. This switching curve for Policy b has at least one point on the x; axis.
Let p; be the minimum of the x; coordinates of these points.

There are two cases to be considered depending on whether p; is greater than 27"
or not.
Case 1: p; > 2"
Let us construct another hedging point policy, Policy a, with the same hedging point
z as Policy b, and a switching curve which is: a vertical line through (27", 0) for zo < 0;
the x; axis for xzo = 0, 2]* < 27 < p;; the same as the switching curve of Policy b
elsewhere. Policies a and b are illustrated in Figure 3. Consider two trajectories, X*
and X", that start at the hedging point and evolve under Policies a and b respectively.
These trajectories are the same until an arrival of type 2 causes them to enter the
region x5 < 0. Let s denote the last time instant just before the two trajectories

separate. Since X{(s) = X?(s) < pi, from corollary 1, both trajectories reach the
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point (p1,0) at the same time instant 77.

By construction, Trajectories X and X are identical for ¢t > T} until an arrival
of type 2 again takes them to the region xy < 0 in which case the above scenario
restarts.

Consider now the costs of Policies ¢ and b over the interval [s, T}].

From Section 2.1, the instantaneous cost function for x5 < 0, is given by:

hixy —byxy x>0
co(x) =
—bl.’El — bgl‘Q T S 0

This can also be expressed as:
c(x1, 29) = " (x1) — boproW (1, o) for zo <0

where W is the aggregate workload, and ¢™ is the instantaneous cost function given
by:

B

m( ) h"mx, = (hl + b2&)x1 1 >0
c(r1) =
' —meEl = —(b1 - bgﬁ—f)xl T S 0

Since hedging point policies are stable, it follows that,

MEL[ (X)) = [ AEX ()
_ /0 CASEL [ (X ()]t — bojis /0 " ASE W (1)]dt

At time s we have W%(s) = W°(s), and for all ¢ in [0,7}], the machine works at full
capacity. Thus for ¢ in [0,7}], X* and X" verify the conditions of lemma 3 and, we
obtain AyE,[W(t)] = 0.

So the difference in expectations of cost between the two trajectories in [s, 7] is
the same as that for system where the instantaneous cost function in the non-positive
x4y region is given by ¢™. It can be noted that this cost function depends only on the
value of the Part Type 1 surplus, x;.

Consider the behavior of X over [s,#;] when Xs < 0, under Policies a and b
respectively. Under Policy a, Part Type 1 behaves as if it were following the policy
given by:

26



a m
1 af <27
(Ll:
a __ m
0 27 =7

Thus the surplus trajectory for Part Type 1 under Policy a over the interval [s, ;]
when X§ < 0 is the same as that for generated by an optimal hedging point policy for
the single-part-system where the arrival rate, the production rate and the function
of cost are respectively, A1, u; and ¢™. One can see that the corresponding optimal
hedging value is given by z]" (see equation (20) of the following appendix). Also, by

construction, when X§(t) = 0 we have
24(t) < 2b(t) fort € [s,Ty] such that z(¢) > 21"

Thus trajectories X® and X° satisfy conditions of Theorem 2 of the appendix
from which we get
t1
ASE,| / (X, (1)dt] < 0
0

Since this is true for every renewal cycle when Trajectories X and X" are different,
we get, . . . .

Jim o] [ e )] < Jim 2] [ e (0 1))
Case 2: p; < 2". There are two subcases corresponding to whether the switching
curve intersects the line z; = 2{* or not.
Subcase 1: The switching curve does not intersect the line x; = 2{".

The policy a is now chosen such that the hedging point is 2% = (27", z3), and the
switching curve is defined by the straight line z§ = 2{*, xo < 27" (see Figure 4).
Consider two trajectories X, X° which evolve respectively under policies ¢ and b, and
originate at their respective hedging point. From Corollary 2, X and X" leave and
reach these hedging points at the same instants. Note the switching curve for policy
b does not intersect the line z; = 27", and since z; < 2" and z, = 23*, trajectories
X*“, X" are such that Note that the Policy a is a static priority policy that always
produces Part Type 1 first. Since initially X¢(0) > X?(0) and X5(0) = X5(0), the

sample path comparison yields,



X1

b=1 a=2

b=2 a=2

Figure 4: Case 2 p; < 21"

Using (17), and disecting the problem as did Srivatsan and Dallery (1998) in three
cases (when z4(¢) and 2%(t) are both positive, when z%(¢) is positive and z%(t) is
negative, and when both are positive), a straightforward computation reveals that
for all t,

Aje(Xq(t), Xao(t) < Affer(Xi (1) — b2 Xo(2)]
Furthermore,
Apler(Xa (1) = b Xo(8)] = Aplar(Xa(?)) + %52)(1(75) —bopaW(t)]  (18)
= AR (X1(0))] = bap AF[W (1)] (19)
We have A¢W(0) > 0. So, from Lemma 4 and (18) it follows that
AYE[e(X(1)] < AFE,[c™ (X1 (2))]

Under policy a, part Type 1 behaves as if it were following the optimal hedging
point policy for the single-part-system where the arrival rate, the production rate and
the function of cost are respectively, A;, u; and ¢™ (see the appendix).

So we get
T
ASE,| / (XL (1)) dt] < 0
0
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Since this is true for every renewal cycle when Trajectories X* and X" leave their
hedging point, we get,

lim %E;;[/OT X (1))dt] < lim %Ez[/oTcm(Xl(t))dt].

T—o0 T—o0

Subcase 2: The switching curve does intersect the line z; = 2" in the point 2 =
(27", Z3). Let Policy a be a hedging point policy with the same hedging point z as
policy b and whose switching curve is the vertical line x; = 21" for x5 < 2, and the
same as policy b elsewhere.

Consider two trajectories X® X which evolve respectively under policy a and
b, and that originate at the same point x at time ¢ = 0. From Corollary 1, the
trajectories pass through the point 2 at the same time 77. Using the same arguments

as in the proof of subcase 1, it follow that for all ¢ in [0, 7]
APE[c(X(1)] < AfE[er(X1(F) — beXa(1)] < AFE[™(X1(1))]]

Furthermore as in case 1, the trajectories of part type 1 under policies a and b satisfy

the conditions of Theorem 2 of the appendix, and
T
ASE,[ / (X, (1)dt] < 0
0

Hence the result. O
Remark: In the case where u; = pus, we actually have in case 1 Afe(X(t)) =
A¢c™(X,(t)) for ¢ in [s,T}] on the coupled path.

A.2 Results in the Single-Part-Type System

In this section, we derive results based on comparisons of the cost function of (1)
for trajectories generated by two different policies over a given interval of time. The
system considered here is a single-part-type system with exponential production and
demand interarrival times, with rates p and A respectively. In this case, the controls

associated with the policies are of the form:

0 the action is to idle
C, = {

1 when the action is to produce
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For this system a hedging point policy is optimal. Following Buzacott and Shanthiku-
mar (93), the optimal hedging point z is given by:

e 20)

In 2
7

xp =2 =|

In most of the cases considered below, neither of the two policies is a hedging point
policy. But the trajectories generated by these policies satisfy conditions that are
relevant in the context of the two-part-type system. This policies are admissible
scheduling policies in the sense of Veatch and Wein (1996): they are functions of the
state X and the time instant ¢, and are nonanticipating with respect to X.

Let the expected cost of policy a in the interval [s, f] be denoted as

f
T*(s,f) = B{ [ ela"(®)dtfa" (5) = 7}

(For notational simplicity, we do not explicitly express the dependence of this cost on
the initial conditions z%(s).)
The difference in the expected costs of policies a and b in the interval [s, f] is repre-
sented by
ATy (s, f) = J(s. f) = J*(s. f)

Let J® be the long term average cost of policy b . Let J* be the optimal long average
cost.

We first show that for some specified initial conditions and the same final condi-
tions, a trajectory generated by a hedging point policy in an interval [0, 7] incurs a
cost no greater than that generated by any other feasible policy. Note that our result

pertains to total costs incurred over a finite interval.

Lemma 6 Consider two trajectories X and X° and an interval of time [0,T] such
that: X is generated by the optimal hedging point policy and X° is generated by some
other policy over [0, T] and:

1) Xb(0) < X%(0) < 2 or X°(0) > X*(0) > 2;

2) X4T) = X¥T) = z.
Then, AJ®(0,T) < 0.

Proof: Using the uniformization of Markovian processes, we can take A and p such

that A + @ = 1 without loss of generality. Let G' be the infinitesimal generator of the
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controlled Markov process with Policy 7 (with 7 = b or 7 = a),

G fo) = lim 20 = [(@(0)

h—0 h

where f is a function of the states. Using Dynkin’s formula (see Karlin and Taylor
(81)) in the interval [0,77], we have:

B[ G f(X)df] = FIf (D) - f@O) = f() — fx(0)) (1)

There exists a relative value function V' which verifies the following dynamic equa-

tion:
J"—c(z) = G(m)V(x) (22)
Since a is the optimal policy, It follows from (22) that,
G(a)V(z) = J" —c(x)

= mgn(J”) —¢(x)

= min(G(m)V(z))

Thus, we have :
GO)V(z) > J — c(x) (23)

Integrating and taking the expected value, we obtain from (23):

E(/OTG(b)V(X(t))dt) > T - E[/OT c(X (1))d1]
> J*T — J"0,T) (24)
B( /0 L GV(XW)d) = JT — J0,T) (25)

Combining (21) and (24) it follows,
J'0,T) > J*+V(X°(0) — V(2).
From condition 3 of the lemma, we have V (2°(0)) > V(2%(0)). Thus, from (25)
J0,7) > J* +V(X0)) — V(z) = J*0,T)
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(I
Next, we establish a similar result for the case where the initial conditions of the
two trajectories satisfy a stricter condition than in Lemma 6 but the final conditions

of the trajectories are not as restrictive as in Lemma 6.

Lemma 7 Consider two trajectories X® and X° and an interval [0,T] such X% is
generated by the optimal hedging point policy and X° by some other policy over [0, T
and:

1) X4(0) > X°(0) > 2;

2) XUT) > X4T) = z.
Then, AJ®(0,T) < 0.

Proof: There are two cases to be considered.
Case 1: Trajectory X° does not go below z in [0,7T]. Let t,, a time instant when
Trajectory X° takes its minimum value in [0,77] . Define a new trajectory X¢ as

follows:
oo | X0 = (Xo(tm) —2) 0<t<tn
Z t, <t <T

By definition, for all ¢ in [0, 7]

XP(t) > X(t) > =

which gives, J°(0,T) > J¢(0,T). The Trajectories X@ and X°¢ satisfy the conditions
of Lemma 6. Thus,

JN(T) > J4T) > JYT)

Case 2: X(t) < z for some t, 0 <t < T. Let t, be the last time instant such that
X" crosses z from below. From condition 2 of the lemma, ¢,, does exist. Define a new

trajectory X°¢ as follows:

e | X = (X0(tm) —2) O<t<tn
z t, <t<T

Similarly as in the case 1, we obtain J(¢) > J¢(t) > J°(t). O
We now combine the results of Lemmas 6 and 7 to show that if we choose trajec-

tories X% and X and an interval [0, 7] such that X X" satisfy specific conditions
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over an interval [0, T'], have the same initial and final conditions, and their final values
at 1" are greater than the optimal hedging point value, then the cost incurred by X

is no greater than that incurred by X°.

Theorem 2 Consider two trajectories X® and X and an interval [0,T] such that
X® and X° satisfy Condition C1 over the interval and:

1) X® is generated by the optimal hedging point policy for all t € [0,T] such that
X(t) < z;

2) X(t) < X°(t) for all t € [0,T] such that X°(t) > z.

3)X(0) = X°(0);

4)XYT) = XYT) > z. Then, AJ®(0,T) <0

Proof: We have to consider two cases.
Case 1: X%(0) = X°(0) > 2. Now, if X%(¢) > z for all ¢ in [0, T, then from Condition
2, hz < c(X*(t)) < ¢(X"(¢)) for all ¢ in [0, T7.

The more interesting case is when Trajectory X® goes below z at least once in
[0,T]. Define ¢; the time instant when Trajectory X crosses z from above, for the
ith time. From Condition 4, there also exists at least one time instant such that
Trajectory X¢ crosses z from below. Define 7; the time instant when Trajectory X¢

crosses z from below, for the ith time. By definition we have:

n—1
ARI(0,T) = AT(0, 1)+ Y _[AFT (ti, 7a) + A5 T (73, )|+ AT (tn, 7) +A5T (10, T) (26)

i=1
For all ¢ in [7;,#;] and in [7,,T], we obtain as above hz < ¢(X2(t)) < ¢(X°(¢)).
For all ¢ in [t;, 7;] and in [0, ¢;], Trajectories X® and X° satisfy conditions of Lemma
7. Thus, we have:

ApJ(t;, ) <0and ApJ(0,¢) <0.

Hence, from (26) we obtain AfJ(0,77) < 0.
Case 2: X%(0) = X%(0) < 2. From the conditions of the lemma, there exists a time
instant such that X reaches z. Let 7 be the first of these instants. In the interval
[0, 7], the trajectories satisfy the conditions of the lemma 6. Therefore, Af.J[0, 7] < 0.

In [7,T], we can use the same arguments as in Case 1. Thus we have:

ALT[0,T] = ALJ[0,7] + ALJ[r, T] < 0
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