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DYNAMIC SCHEDULING IN AMAKE-TO-STOCK SYSTEM: A PARTIALCHARACTERISATION OF OPTIMAL POLICIESFRANCIS DE VERICOURT, FIKRI KARAESMENYVES DALLERYLaboratoire d'Informatique de Paris 6 (LIP6-CNRS)Universite Pierre et Marie CurieMay 28, 1998Key Words: Production/scheduling, Stochastic: Multi-item; Queues: make-to-stock system; Inventory/production: Optimal policies.AbstractWe consider the problem of dynamically allocating production capacity be-tween two products to minimize the average inventory and backorder costs perunit time in a make-to-stock single machine system. Using sample path com-parisons and dynamic programming, we give a characterization of the optimalhedging point policy for a certain region of the state space. The characteriza-tion is simple enough to lead to easily implementable heuristics and provides aformal justi�cation of some of the earlier heuristics proposed.1 IntroductionA challenging problem in production control is the dynamic allocation of limitedproduction capacity between di�erent products in a make-to-stock environment. Thefact that demands and even the production times are randommakes this problem even1



more challenging. In this paper, we provide new insights for the dynamic schedulingproblem of a stochastic production-inventory system.The particular model that we consider here is a two part-type model where de-mands of both types arrive in single units and a single production facility producesunits one by one. The model is, then, the make-to-stock version of the well knownmulti-class single server queue, i.e. a two class make-to-stock queue. The questionis to decide dynamically when and which part type to produce. For tractability, wemake the usual assumptions that the demands arrive according to independent Pois-son processes and that the production times are exponentially distributed. We alsodisregard setup times and allow preemptive scheduling. Under these assumptions,the dynamic scheduling problem is an optimal control problem which can be set as aMarkov Decision Process (MDP). This constitutes our starting point. Traditionally,after setting up the MDP, one tries to obtain structural results on the optimal policyby using induction on the time horizon. We choose to proceed in a di�erent directioninstead and use coupling and sample path comparison techniques to obtain a partialbut exact characterization of the optimal policy.For a single class make-to-stock queue, the issues are considerably simpler sinceresource partition is not a concern. In that case, the issue is to determine when toproduce and when to idle. It turns out that a base-stock type policy is optimal for thiscase, the machine should keep on producing whenever the stock are below a certainsafety level and should idle once that level is attained (Gavish and Graves, 1980).Kimemia and Gershwin (1983) pioneered the approach of modeling productioncontrol problems as optimal control problems. This led to the characterization ofthe optimal policy for a single class continuous 
ow model by Bielecki and Kumar(1988). The continuous 
ow model is closely related to the discrete part type modelconsidered here and involves a constant demand rate and constant production ratebut models the randomness through an unreliable machine which can be up or down.For this model, Bielecki and Kumar have shown that the optimal policy is a hedgingpoint policy, where the production facility works at full rate when it is up and theinventory level is below the hedging point (which determines a safety stock level) andat a rate equal to the demand rate when the inventory level reaches the hedging point.The multi-class make-to-stock queueing problem was �rst considered Zheng and2



Zipkin (1990). Zheng and Zipkin show that in the case of two symmetric products,the performance of a policy that always serves the longest queue is always better thanthe performance of a FCFS policy. These results were later generalized to multipleproducts by Zipkin (1995). Wein (1992) proposed a Brownian approximation for themulti-class make-to-stock queueing control problem. The solution of the approximat-ing stochastic control problem provides interesting insights into the structure of theoptimal policy, suggesting particularly the optimality of a hedging point policy anda static priority rule when all products are backlogged.Ha (1997) provides the theoretical justi�cation of some of the ideas suggestedby the approximating model of Wein (1992). By considering the in�nite horizondiscounted cost model and using dynamic programming he proves that a static priorityrule is optimal when all producs are backlogged. He also proves that for two part typesrequiring identical production times, the optimal policy is a hedging point policy,characterized by two switching curves, one curve determining the on-o� region forproduction and the other curve determining the dynamic priority between the parttypes.Ha's results suggest that the optimal policy for the multi-class make-to-stockqueueing problem (in further generality than proven) is a hedging point policy com-bined with monotone priority regions that state which of the part-types to produce.On the other hand, even under the restriction of policies to this particular class, oneis left with a challenging problem of jointly optimizing the selection of a hedging pointand the priority regions for di�erent part types. Veatch and Wein (1996) and Pe~na-Perez and Zipkin (1997) study this problem and provide e�ective heuristics based onapproximations driven by intuition.For the continuous 
ow two part type problem, on the other hand, Srivatsan andDallery (1998) have recently provided a partial (but exact) characterization of theoptimal hedging point policy. This exact characterization prompts the question as towhether the same properties carry over to the conceptually related but considerablydi�erent case of the discrete part make-to-stock queue.Note that, in the single product case, the optimal control problems for the make-to-stock queue and continuous model of Bielecki and Kumar (1991) are strongly related.In fact, for both cases the optimal policy is of the hedging point type. This connection3



also holds for the multi-product case when the service times do not depend on thepart type. Intuitively, the e�ect of randomness modeled by machine breakdownsis very similar to the e�ect of randomness modeled by a class-independent server.In the case where the production times depend on the part type, however, the twosystems represent randomness in radically di�erent ways. For this second case, thecorresponding continuous 
ow model seems to be the one with part type dependentbreakdown rates which has not received a lot of attention so far.In this paper, we show the surprising result that the partial characterization ofthe optimal policy as provided by Srivatsan and Dallery (1998) for a continuous 
owtwo-part type system extends to the two-class make to stock queue with part-typedependent production times. The extension turns out to be technically quite involved,partially due to the passage from the continuous to the discrete case, but mainly dueto the di�erent way the models capture the randomness. The end result, however,is very simple and intuitively appealing. In a certain region of the state space, themonotone switching curve that separates the priority regions of the two productsturns out to be a straight line whose position is expressed by a simple equation. Thischaracterization allows us to generalize the results of Ha (1997) on the structure of theoptimal switching curve. It also helps to recognize the advantages and disadvantagesof the various heuristic strategies proposed by Veatch and Wein (1996) and Pe~na-Perez and Zipkin (1997). In particular, we formally justify the good performance ofsome of these policies developed through intuitive approaches.We give a formal de�nition of the problem and the model in section 2. In section3, we present some properties of the class of policies that we study in this paper,namely, the hedging point class of policies. These properties enable us to obtain themain result on the characterization of the optimal hedging point policies presented inSection 4. In section 5, we give numerical examples as well as discussing and justifyingthe relative performance of some of the heuristic policies proposed earlier. Finally,our conclusions and suggestions for future research are presented in Section 6.
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2 The Optimal Control Problem2.1 The Model and the Dynamic Scheduling ProblemConsider a production system with a single, 
exible, machine that produces two parttypes (type 1 and type 2), in a make-to-stock mode. Each �nished item is placedin its respective inventory. Demands that cannot be met from their respective on-hand inventories are backordered. It is assumed that raw parts are always availablein front of the machine. The arrivals of demands to the system occur accordingto independent Poisson processes with rates �i, i = 1; 2. The production times ofproduct i are independent and exponentially distributed with rates �i.At any time, one can choose whether to produce part type 1, 2 or to idle themachine. A preemptive discipline is further assumed: the production of a part can beinterrupted and resumed. A control policy states the action to take at any time. Sincethe system is memoryless, for the control of the system we can consider only Markovpolicies, which only depend on the current state. Let Xi(t) denote the inventory levelat time t. We call Xi(t) the surplus (or backlog if demands are backordered) of Parttype i. X(t) = (X1(t); X2(t)) is then the state of the system. Let Ca be the controlassociated with a Markov policy a. We have:Ca(t) = Ca(X(t)) = 8>>><>>>: 0 when the action is to idle1 when the action is to produce type 12 when the action is to produce type 2The issue we are interested in is how to control this system to minimize a cost func-tion. We consider a unit holding cost hi and a unit backorder cost bi per unit of timefor part type i. Here hi and bi are non-negative scalars. In the state (X1(t); X2(t)),the system incurs an instantaneous cost ofc(X(t)) = 2Xi=1 ci(Xi(t))where the individual part type costs ci areci(Xi(t)) = 8<: hiXi(t) Xi(t) � 0�biXi(t) Xi(t) � 05



9

8 X 2 Idling Curve

7 IDLE

6 0

5 0

4 0 0 Hedging Point

3 PRODUCE Z

2 PART TYPE 1 1 2 0 0

1 2 0

0 1 2

-1 1 2 X 1

-2 2

-3 2

-4 1 2 Switching Curve

-5 2

-6 2 PRODUCE PART TYPE 2

-7 2

-8 2

-9 2
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The optimality equation is useful in determining certain structural properties ofthe optimal policy and also provides the basis for algorithms to compute it numeri-cally. Ha (1996) has exploited these equations to characterize the monotone structureof the optimal policy with discounting. On the other hand, this approach has notgiven an exact general characterization of the optimal policy until now. Although aformal proof does not exist in full generality, we conjecture that the optimal policybelongs to a speci�c class : the hedging point (base stock) policies (see Figure 1).Following Kimemia and Gershwin (1983) and Veatch and Wein (1994), we de�nea hedging point policy for the manufacturing system in Section 2.1 as follows:De�nition 1 A hedging point policy a is a Markov control policy that has the fol-lowing properties:1. The policy divides the two dimensional surplus space into three distinct types ofregions, say Regions 0; 1 and 2 such that Ca = 0 in Region Type 0; Ca = 1 inRegion Type 1; Ca = 2 in Region Type 2.2. The idling curve de�ned as the set of points of Region 0 on the boundary betweenthe Region 0 and the others, is a positive curve, decreasing in x1 or x2. (Thecurve can be written as a function of x1 in the values of x2, or of x2 in thevalues of x1).3. The switching curve which delimits Regions 1 and 2, is the following increasingin x1 or x2 curve de�ned by fx : (x1 � 1; x2) 2 Region 1 and (x1; x2 � 1) 2Region 2g. (The curve can be written as a function of x1 in the values of x2,or of x2 in the values of x1).4. These two curves intersect at a single point z = (z1; z2), which is called thehedging point.Remark: The parts 2 and 3 of the de�nition imply that the hedging point z ispositive.When a hedging point policy is applied, if the initial point (x1; x2) of a surplustrajectory is such that x1 � z1 and x2 � z2, the machine will be used at full capacityuntil the inventories levels are equal to z. Thus, the hedging point represents a surpluslevel based on tradeo�s between expected inventory and backlog costs. Furthermore,7



if at a time instant the trajectory reaches the switching curve at a certain point y, itwill move along the curve until an arrival of a new demand causes it to move awayfrom the curve. Then the scenario is repeated until z is reached. This implies thatall the points of the switching curve between y and the hedging point z belong to thetrajectory.The switching curve, with the hedging point, fully characterize a hedging pointpolicy for initial points verifying the above condition. In particular, if a surplustrajectory originates at the hedging point, its future behavior can be completelycharacterized by these parameters.Furthermore, if x1 > z1 or x2 > z2 then after a transient behavior which does nota�ect the long average cost, a trajectory under a hedging point policy will reach apoint such that x1 � z1 and x2 � z2. The description above then holds true.In the rest of the paper we concentrate on hedging point policies, with startingpoints in the region x1 � z1 and x2 � z2. Although a rigorous proof under generalassumptions is not yet available, there are strong evidences that the optimal policyis a hedging point policy.Previous work on this problem supports this conjecture. Firstly, Ha (1996) hasshown that the optimal policy in the discounted case is a hedging point policy in thecase of �1 = �2. Hedging point policies are \plausible" according to Pe~na-Perez andZipkin (1997). This issue is also discussed from the monotonicity point of view inVeatch and Wein (1996). Finally, our numerical experiments verify this point.2.3 An Equivalent ModelWe consider now a model which only di�ers from the original model in the way themachine produces the parts. This new model, whose behavior will be shown to beequivalent to that of the original model will be useful for deriving some of our results.De�nition 2 The Equivalent model (EQ) is a model similar to the original modelwhere:1. the machine performs service activities whose durations do not depend on thetype of the product and are exponentialy distributed with rates � = �1 + �2,8



2. at the end of a service time the "work" done during the service activity is eitherallocated to one of the two parts or not used, according to a control policy a.Speci�cally, we haveCa = 8>>><>>>: 0 idle: the work is not used1 produce type 1: the work is allocated to type 12 produce type 2: the work is allocated to type 23. When Ca(t) 6= 0, the allocation of the "work" to a given part type may result inthe "instantaneaous production" of a part of this type, and the outcome is prob-abilistic. Speci�cally if the work is allocated to part type i, then with probabilitypi = �i� , a part is instantaneously delivered to the corresponding output bu�er,while with probability 1� pi nothing happens, i.e the "work" is lost.Remark: In the EQ model we talk about \service times" instead of \productiontimes". Note that not all service times correspond to actual production times.An intuitive interpretation of this model is that the machine is not perfectlyreliable: it can produce parts which do not satisfy some quality criteria. For instancewith a probability 1�pi, a part of type i is \bad" and is rejected when it is produced.Since the arrival processes and the service times are independent of the policy,this model facilitates sample path comparisons, as we will see later.Proposition 1 Under the same control policy, the behavior of the EQ model is prob-abilistically equivalent to that of the original model.Proof: Consider �rst the machine and the both production processes. Suppose thenthat the common policy a states to produce part i. Let Ui be the discrete randomvariable such that:Ui = 8<: 1 when the work allocated to part type i generates a real part0 when the work does not generate a real part (the work is lost)with the probabilities:P (fUi = 1g) = pi and P (fUi = 0g) = 1� pi:Ui corresponds to the probabilistic outcome mentioned in the third part of the EQmodel de�nition. Let T and Ti, be the exponentially distributed service times with9



rates � and �i respectively. Consider the following events:A=fin the original model, the service time of part type i is less than dtgB=fin the EQ model, the service time of part type i is less than dtg.We have:P (A) = P (Ti < dt) = �idt+o(dt) = pi�dt+o(dt) = P (fUi = 1g \ fT < dtg) = P (B):When a states not to produce, nothing happens in the original as well as in the EQmodel. Thus under the same policy, the two models have a stochastically identicalbehavior for their service time process.Consider now the arrival processes. When a demand occurs, the e�ect on theinventory level is exactly the same for both models. In the original model, the attri-bution of the part type to the machine is determined by the preemptive discipline.It is possible to switch part types at the time instant of the arrival, even when themachine is working. In the EQ model, since we choose to attribute the part afterits completion, the attribution has not yet been made. The e�ects of the arrivalprocesses are thus exactly the same for both models. 2Note that the EQ Model corresponds to a uniformization of the service processesin the Original Model. The proof of the above property is given here for clarity andto introduce some useful notation to be used in the sequel.3 Some Properties of Hedging Point Policies3.1 Sample Path PropertiesThis subsection presents some properties of hedging point policies. These propertieswill enable us to study the stability conditions. Moreover, they will also constitutethe basis of the proof for the characterization of optimal hedging point policies. Theseresults are based, as others in this paper, on sample path comparisons. We studydi�erent trajectories by coupling them, that is by considering a common realizationof the random variables which generate them. In particular, we typically consider thetrajectoriesXa and Xb generated by the policies a and b under the same realizationsof the arrival processes and the service times.10



Following this approach, the next lemma states that if the same number of type-1parts and the same number of type-2 parts have been completed for two coupledtrajectories, then the completion instances of the batches must be identical. Thus,under certain conditions the lemma provides us the positions of coupled trajectories atthe same instance which will prove to be very critical for the sample path comparisonsin the sequel.Lemma 1 Consider two hedging point policies a, b and two coupled trajectories Xa,Xb generated by these policies. If two time instants Ta and Tb are such that:1. Xa1 (Ta)�Xa1 (0) = Xb1(Tb)�Xb1(0), and Xa2 (Ta)�Xa2 (0) = Xb2(Tb)�Xb2(0)2. For all t in [0; Ta] (respectively [0; Tb]) with i = 1 or i = 2,Xai (t) � Xai (Ta)(respectively Xbi (t) � Xbi (Tb))and Ta (resp. Tb) is the �rst time that Xa (resp. Xb) reaches Xa(Ta) (respXb(Tb)).3. For all t in [0; max(Ta; Tb)], the machine works at full capacity under both poli-cies,then Ta = Tb on the coupled path.Proof: Consider the EQ model. De�ne T and Ui as in the proof of Theorem 1. Wecouple the service time T of the machine and the random variables Ui for the policiesa and b.Consider a sequence of realizations of the exponentially distributed service times:t1; t2; : : : ; tn; : : :and sequences of realizations of the discrete random variables U1:u11; u21; : : : un1 ; : : : where u1n = 0 or 1and U2: u12; u22; : : : un2 ; : : : where u2n = 0 or 111



These realizations are common for both policies. Let T n be the time instant of thenth event. Since the machine works at full capacity, T n = Pnk=1 tk, and T n is thesame for both policies. We denote by n(t) the number of service completions at timet. At instant T n, the nature of the new event is then given by the next element of thesequence corresponding to ui (where i = 1 or i = 2 depending on the choice statedby the policy). Let nai (t) be the number of elements of the sequence corresponding toui, which policy a has chosen before the time instant t. Similarly, we can de�ne nbifor policy b. From the de�nition of nai , and since the machine works at full capacity,we have for all t in [0; max(Ta; Tb)],n(t) = na1(t) + na2(t) = nb1(t) + nb2(t): (3)Let di(t) be the number of demands for part Type i, which have occurred before theinstant t. By coupling, these arrivals modify the inventory level at the same instantfor both policies. A demand may then change the choice stated by the policy, but forall t in [0; max(Ta; Tb)], di(t) stays the same for a and b. Each time nai is equal to 1,the corresponding event is a production of a part. Thus,Xai (t)�Xai (0) = nai (t)Xk=1 uki � di(t): (4)Suppose now that Ta < Tb. From the second condition of the lemma, it follows thatfor i = 1 or i = 2, Xbi (Tb)�Xbi (0) � Xbi (Ta)�Xbi (0); (5)and one of the inequalities is strict. Without loss of generality suppose that,Xb1(Tb)�Xb1(0) > Xb1(Ta)�Xb1(0); (6)From the �rst condition of the lemma, and from (5) and (6), we obtain,Xa1 (Ta)�Xa1 (0) > Xb1(Ta)�Xb1(0) (7)Xa2 (Ta)�Xa2 (0) � Xb2(Ta)�Xb2(0) (8)By combining (7) and (8) with (4) we obtain the following results :na1(Ta) > nb1(Ta) and na2(Ta) � nb2(Ta)12



which from (3) are impossible. Using similar arguments when Ta < Tb, we haveTa = Tb. 2The previous lemma gives general conditions for two trajectories to complete thesame amount of work within the same time. This result will be adapted to theclass of policies de�ned by hedging points and switching curves in the following twocorollaries.Corollary 1 Consider two hedging point policies a, b and two coupled trajectoriesXa, Xb generated by these policies such that,1. the switching curves of the policies have a common point ẑ,2. Xa andX b start at the same initial point, such that X1(0) � ẑ1 and X2(0) � ẑ2,then, the trajectories reach ẑ at the same time instant.Proof: As explained in Section 2.2, once the trajectory reaches the switching curve,it moves along it. From condition 2 above, both trajectories will reach their respectiveswitching curve below ẑ. Thus both trajectories pass through this point.Both policies also work at full capacity and Lemma 1 can be applied with Xa(0) =Xb(0) and Xa(Ta) =Xb(Tb) = ẑ. 2Corollary 2 Consider two hedging point policies and two coupled trajectories begin-ning at their respective hedging points. The inventory levels leave and reach theirrespective hedging points at time instants which are the same for both policies.Proof: At the time instant of the �rst arrival, both trajectories will decrease by 1 inthe respective inventory level. Then, they verify the lemma 1. Thus they will reachtheir hedging point at the same instant, and the scenario will be repeated. 23.2 Stability of Hedging Point PoliciesIn this subsection we analyse the stability of the hedging point policies. We de�nePolicy a with the hedging point z, to be stable iflimt!1 1t Eaz [X(t)2] = 0 for i = 1; i = 2:Corollary 2 enables us to relate the stability of hedging point policies to thestability of static priority policies as presented in the following lemma.13



Lemma 2 A hedging point policy a is stable if�1�1 + �2�2 < 1Proof Let za be the hedging point of the policy a. Let Policy b, be the policywith the same hedging point za, and the switching curve given by the straight-linex1 = za. From Corollary 2, Policy a is stable if and only if Policy b is stable. Policyb actually de�nes a static priority policy with part type 1 having the high priority.Thus, following Gross and Harris (1985), Policy b is stable if �1=�1+�2=�2 < 1 givingus the result. 2Remark: Note that the stability condition of hedging point policies does notdepend on the hedging point or the switching curve but only on the quantity �1=�1+�2=�2 < 1, which can be interpreted as the utilization rate of the machine.4 Partial Characterization of the Optimal HedgingPoint PolicyConsider the two-part-type system introduced in Section 2.1. Without loss of gener-ality, let the two part types be numbered such thatb1�1 � b2�2 (9)We derive in this section, a structural result for the optimal hedging point policyof the two-part-type system introduced in Section 2.1. The main idea is to relatethe optimal control problem of the two-part-type system to a single-part-type systemproblem. Informally, we will exploit the fact that the instantaneous cost function canbe expressed as: c(x1; x2) = cm(x1)� f(x1; x2) for x2 � 0where cm is the part of the cost that only depends on x1, and f is a function of x1 andx2 that captures the remaining part of the cost. cm is an instantaneous cost functionof the form: cm(x1) = 8<: hmx1 x1 > 0�bmx1 x1 � 014



Intuitively, the function f should be proportional to W , the total amount of work (inunits of time) embodied in the system.De�nition 3 Let the aggregate workload W (t) be de�ned as:W (t) = X1(t)�1 + X2(t)�2We denote byW a(t), the aggregate workload under policy a. We also use the followingnotations W (X) = W (X(t)) = W (t). Under certain conditions, the expectation ofW (t) does not depend on the policy, or di�ers only by a constant. Thus, the di�erencein average costs of two given policies can be resumed by the di�erence in cm(x1),which is the cost of a single part-type system. We are then able to give an analyticalexpression for the switching curve when x2 < 0.Theorem 1 formalizes this characterization of the optimal policy. The followinglemmas give the properties of the expected value of the aggregate workload mentionedabove.Lemma 3 Consider two trajectories Xa and Xb generated by two hedging point poli-cies a and b, and an interval [0; T ] such that for all t in [0; T ] the machine works atfull capacity,then for all t in [0; T ] we have,�abE[W (t)] = Ea[W (t)]� Eb[W (t)] = W a(0)�W b(0)Proof: Consider the EQ model. Let T n be the time instant random variable of thenth event, which can be a demand arrival or a service completion (recall that inthe EQ model, a service completion does not necessarily correspond to a productioncompletion). For a policy � we denote by Hn = (X0; C�(0) : : :Xn; C�(Tn)) the historyof the processes until the time of the nth event, where C� is the control associated(C� = 1 or 2). We also denote Ê�[W (t)] to be equal to E�[W (t)jHn], with T n�1 <t � T n. We have, E�[W (t)] = E[Ê�[W (t)]]: (10)Without loss of generality, we can take t such that t = T n.15



Suppose then that the instant T n corresponds to a service completion. It follows forpolicy a when Ca(Tn) = i that,Êa[W (T n)] = Êa[W (T n�1) + Ui�i ] (11)where Ui is the discrete random variable of the EQ model. From the de�nition of Ui(see the proof Proposition 1) we obtain that E[Ui]=�i = 1=�. Note that this valuedoes not depend on the part type. Thus, from (11) we have,Êa[W (T n)] = Êa[W (T n�1)] + 1�: (12)If T n corresponds to an arrival of type i, thenÊa[W (T n)] = Êa[W (T n�1)]� 1�i (13)Similary for policy b:Êb[W (T n)] = Êb[W (T n�1)]� 1� or Êb[W (T n)] = Êb[W (tn�1)]� 1�i (14)Consider now realizations ti of T i for i 2 f0; : : : ; ng. As it is done in the proof oflemma 1, we couple the service times of the machine as well as the instants of demandarrivals. Thus the ti instants are the same under policy a and b. From (12), (13),(14), it follows then that: �ab Ê[W (T n)] = �ab Ê[W (T n�1)]giving us the desired result using (10). 2Remarks: In the case where �1 = �2, we actually have W a(t) �W b(t) = W a(0) �W b(0) on the coupled path.By combining the two lemmas, we obtain a property which holds for any timeinstant, even when the machine is not working.Lemma 4 Consider two hedging point policies begining at their respective hedgingpoints za; zb. Then, for all t, �abE[W (t)] = za1�1 + za2�2 � zb1�1 � zb2�2 :Proof: When the policies are hedging point policies, condition 2 of Lemma 3 holdsuntil one of the two trajectories reaches its hedging point. Using corollary 2, theproperty holds then for all time instants t. 2Based on lemma 1, 3, and 4 we can now formulate the following theorem whichgives an analytical expression for the switching curve in a certain region of the space.16



Theorem 1 Consider a two-part-type system where (9) holds as a strict inequality.When x2 < 0, the switching curve of the optimal hedging point policy for this systemis the straight-line de�ned by:x1 = zm1 = b ln (h1+b2 �2�1h1+b1 )ln �1�1 cand the optimal hedging point policy a is of the form:Ca(x) = 8<: 1 if x1 < zm1 ; x2 < 02 if x1 � zm1 ; x2 < 0Proof: A proof of this theorem can be found in the appendix.Remark: Note that when x2 < 0, the switching curve depends neither on the arrivalprocess of type 2 demands, nor on the holding cost of part Type 2.It is interesting to note that the value of zm1 as calculated above, could be zero forcertain a range of parameters. A direct calculation gives then the following property:zm1 = 0 () h1�1 � h1�1 > b1�1 � b2�2:This property leads to an intuitive interpretation of Theorem 1. Consider the casewhere zm1 > 0 and an inventory level with zm1 > x1 � 0 and x2 < 0. From Theorem(1), the optimal policy states to produce one unit of product 1 which increases theexpected cost at rate h1�1�h1�1�h2�2. While, if the policy had stated to produce oneunit of product 2, the expected cost would have increased at rate �b2�2+b1�1�h2�2.Thus, the optimal policy chooses the part to minimize this cost-change rate. Thisextends the result and the interpretation given by Ha (1997) to justify the optimalityof the "b�" rule.5 Numerical Results and Heuristic Policies5.1 Numerical ResultsTo numerically compute optimal policies, we have used the value iteration algorithmto solve the optimality equation (2). To overcome the problem of in�nite state space,17
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-1 0 1 2 3 4 5 6 7 8 9 -1 0 1 2 3 4 5 6 7 8 9Figure 2: Numerical resultswe truncated the state space and experimented with increasingly large state spacesuntil the increase did not cause any change.We perform a computional experiment to provide some insights on the behaviorof the optimal policy when x2 < 0 varying the parameters of the system. The dataof the di�erent problems we have studied are displayed in Table I. In the two �rstcases, we consider systems which only di�er by their backlog costs. The ratio b1=b2increases from the �rst case to the second one. In the last case, the system is alsoasymmetric in the arrival and service time process, such that �1 = 2�2.In Figure 2 which displays the optimal policy for the examples in Table I, thestraight line appears clearly. The �gures also verify that the experimental value ofthis line is equal to the theorical value given by Theorem 1, which is reported as Zmin Table I.
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Table I: Data of the tested casesCase �1 �2 �1 �2 h1 h2 b1 b2 Zm1 0.4 0.4 1 1 1 1 50 25 02 0.4 0.4 1 1 1 1 50 5 23 0.6 0.1 1.2 0.4 2 1 60 6 4Let us decribe the behavior of this line (in all this discussion we assume thatb1�1 � b2�2). Consider �rst that �1 = �2 = 1 as in cases 1 and 2. The position ofthe switching curve when x2 < 0 depends then on b1; b2 and h1. More precisely, itdepends on the relative values b1=h1, b2=h1. When h1 tends to in�nity, the line is at 0.Note however that in practice h1 is usually less than b1. Suppose then for simplicitythat h1 = 1, as in the two �rst cases. Zm increases in the ratio b1=b2. Thus the morethe two parts are assymetric in their backlog costs, the larger the stock of part type1 when x2 < 0 must be. This can be seen in Figure 2. When �1 6= �2, the behaviorof the line is the same by taking the cost rate bi�i instead of bi with i = 1 or i = 2,and h1�1 instead of h1.In addition to the asymetry of the backlog cost rates, the utilisation ratio of the�rst part type has a crucial impact in the position of the switching curve. Indeed,Zm increases with �1. Particulary, in heavy tra�c, the position of the line tends toin�nity. In the third case, we have a straight line at Zm = 4 when �1 equals only 0:5.Here Zm is very close to the hedging point of part Type 1 (which from Figure 2 isequal to �ve).Note that for a certain set of parameters, the optimal policy can be a static prioritypolicy. In that case, Zm is equal to the coordinate of the hedging point correspondingto the �rst part type.Thus, the position of the optimal switching curve when x2 < 0 seems to captureat once the asymmetry of the backlog cost rate, and the utilization in isolation of thepart type with the larger of these costs.5.2 Myopic AllocationIn Section 2, we have seen that no exact solution has been found for the DynamicScheduling Problem (1). Consequently, e�orts have been devoted to explore heuristic19



approaches.For instance, a simple heuristic policy is a static priority policy with a hedgingpoint z, which switching curve is de�ned by the straight-line x1 = z1. Computationscan then give an approximation of the optimal hedging point z for this class of policies.These heuristics have been studied by Wein (1992) and have been called by Pe~na-Perezand Zipkin (1997) the static-priority(r) Policy (with ri = zi=�i). Using Theorem 1,we can see that this kind of policy would perform e�ciently in cases where the hedgingpoint of part Type 1 is close to the position of the straight-line as it can be seen inthe third case of our numerical results. However, in the more general case, the staticpriority will not perform well.Thus, other more sophisticated, yet easily computable heuristics have been ex-plored. In particular, Pe~na-Perez and Zipkin (1997) have developed heuristics (the"Myopic Allocation") which perform substantially better than the static-priority(r)Policy. Veatch and Wein (1996) have also studied these heuristics coupled with aBrownian approximation developed by Wein (1992). They show that these myopicallocation policies give very good results when applied to approximate the optimalswitching curve. However, the myopic allocation is based on intuitive but informalarguments. After its short presentation, we give a partial justi�cation of the myopicallocation using Theorem 1.The main idea of the myopic allocation, is to look-ahead a service time of part typei, say Si. The policy allocates then the production capacity to the part type which in-creases the expected instantaneous cost at the smaller rate. Let D(Si) be the numberof demands of part type i in the interval [0; Si]. If part type i is produced and if thecurrent inventory level is xi, g(xi) = E[c(xi+1�D(Si))] is then the expected instanta-neous cost after the completion of the service time. Thus, �i�g(xi) = g(xi+1)�g(xi)is the rate at which serving this class increases the instantaneous expected cost. Themyopic allocation chooses then the part type with the smaller �i�g(xi). Pe~na andZipkin have derived an analytical expression for this index �i�g(xi). However, theysuggest that, taking instead of Si the sojourn time Ti in a system (where j 6= i areomitted), the heuristic policy will perform better. Thus in that case, D(Ti) replacesD(Si) in the computations above, where Ti is exponentially distributed with rate(1 � �i)�i. The intuitive rational they give is that, by choosing product type i, the20



production requirement is to increase xi by one taking into account the demands thatarrive in the mean time. The machine will then not only produce one part type i,but will also respond to the new demands until the inventory level reaches xi + 1.This "replenishment" time has actually a mean proportional to (1 � �i)�1, as hasE(Ti). The improvement brought by this modi�cation was veri�ed by their numericexamples. Indeed, they remark that the myopic policy with Ti performs better thanthe myopic policy with Si, which is better than the static priority rule. But they donot give any formal justi�cation of these conclusions.The following Lemma partially proves that their intuitions were well-founded.Lemma 5 The myopic allocation policy applied with the sojourn time Ti is an optimalpolicy when x2 < 0.Proof: Let (x1; x2) be an inventory level. Without loss of generality we suppose thatb1�1 > b2�2. The myopic allocation policy chooses the part type with the smaller�i�g(xi) (i = 1 or i = 2). Following Pe~na and Zipkin (1997), we have with thesojourn time Ti,�i�g(xi) = 8<: ��ibi for xi < 0��ibi + �i(hi + bi)(1� �xi+1i ) for xi � 0When x1 < 0 and x2 < 0, since �b1�1 < �b2�2, part type 1 is produced. Whenx1 � 0 and x2 < 0, part type 1 is still produced as long as �1�g(x1) < �2�g(x2)which can be written as,��1b1 + �1(h1 + b1)(1� �x1+11 ) < ��2b2:A straightfoward computation shows that the myopic allocation policy states to pro-duce part type 1 when x2 < 0 if and only if,x1 < b ln (h1+b2 �2�1h1+b1 )ln �1�1 c:Using Theorem 1, the myopic allocation policy with Ti is thus optimal when x2 < 0.2 21



This Lemma explains the good performance of the myopic allocation computedwith the sojourn time. A direct calculation will show that, for the myopic allocationwith the service time, the switching curve is also a straight-line when x2 < 0 withx1 = b ln (h1+b2 �2�1h1+b1 )ln �1�1+�1 c: (15)Thus in light tra�c conditions, the myopic policy with Si is close to the optimal policywhen x2 < 0. However in heavy tra�c condition for part type 1, the straight-line isat x1 = 0, while this line tends to in�nity for the optimal policy. This explains inpart that the myopic policy with the service time can perform poorly in contrast withthe one that uses the sojourn time.6 ConclusionUsing sample path comparisons for hedging point policies, we have partially charac-terized the switching curve that determines the production priorities for the two-classmake-to-stock queue. Our results suggest that in the case where both products arebacklogged, it is optimal to produce the most expensive item in terms of the back-order cost (the product with the higher b�) until its stock reaches a predetermined(non-negative) level before switching to save the less expensive product from backlog.In addition, it is shown that this safety stock level does not depend on the level ofbacklogs of the less expensive products and can, in certain cases, be signi�cantly highdepending on the cost and tra�c parameters.Similar results have been shown for an analogous continuous 
ow model. On theone hand, it may be considered somewhat surprising that the optimal policy shouldhave the identical structure for the make-to-stock queue as for the two part typecontinuous model with an unreliable machine. On the other hand, it is relieving thatthe optimal policy has the same structure for two models that represent randomness invery di�erent ways indicating the robustness of the structure. This strongly suggests,for instance, that for the continuous model with part type dependent breakdown ratesthe structure should be retained.Our results contribute to the understanding of the control problem of the singlestage multi-product system. These results could also be useful for the multi-product22



multi-stage system which constitutes a major challenge both from theoretical andpractical perspectives. Future research will focus on some of the issues in multiplestage production.References[1] T. Bielecki and P.R Kumar (1988), Optimality of Zero Inventory Poli-cies for Unreliable Manufacturing Systems. Operations Research, Vol.36 pp 532-546.[2] J.A. Buzacott and J. G. Shanthikumar, Stochastic Models of Manufac-turing Systems, Prentice Hall, 1993.[3] B. Gavish and S. Graves (1980), A One-Product Production/InventoryProblem under Continuous Review Policy, Operations Research 28, pp1228-1236.[4] D. Gross and C.M. Harris, Fundementals of Queueing Theory, JohnWiley and Sons, 1985.[5] A. Ha (1997), Optimal Dynamic Scheduling Policy for a Make-to-StockProduction System, Operations Research 45, pp 42-53.[6] J. Kimemia and S. B. Gershwin (1983), An Algorithm for ComputerControl of a Flexible Manufacturing System, IIE Transactions, pp 353-362.[7] A. Pe~na Perez and P. Zipkin (1997), Dynamic Scheduling Rules For aMultiproduct Make-to-Stock Queue, Operations Research 45, pp 919-930.[8] N. Srivatsan and Y. Dallery (1998) Partial Characterizations of OptimalHedging Point Policies in Unreliable Two-Part-Type Systems, Opera-tions Research 46, pp 36-45.[9] M. Veatch and L.M. Wein (1996), Scheduling a Make-to-Stock Queue:Index Policies and Hedging Points, Operations Research 44, pp 634-647.23
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Figure 3: Case 1 p1 > zm1A AppendixA.1 Proof of Theorem 1Let Policy b be an optimal hedging point policy with a non-negative hedging point,z = (z1; z2), and a switching curve which di�ers from the straigth-line de�ned inTheorem 1. This switching curve for Policy b has at least one point on the x1 axis.Let p1 be the minimum of the x1 coordinates of these points.There are two cases to be considered depending on whether p1 is greater than zm1or not.Case 1: p1 > zm1Let us construct another hedging point policy, Policy a, with the same hedging pointz as Policy b, and a switching curve which is: a vertical line through (zm1 ; 0) for x2 < 0;the x1 axis for x2 = 0, zm1 � x1 � p1; the same as the switching curve of Policy belsewhere. Policies a and b are illustrated in Figure 3. Consider two trajectories, XaandXb , that start at the hedging point and evolve under Policies a and b respectively.These trajectories are the same until an arrival of type 2 causes them to enter theregion x2 < 0. Let s denote the last time instant just before the two trajectoriesseparate. Since Xa1 (s) = Xb1(s) < p1, from corollary 1, both trajectories reach the25



point (p1; 0) at the same time instant T1.By construction, Trajectories Xa and Xb are identical for t > T1 until an arrivalof type 2 again takes them to the region x2 < 0 in which case the above scenariorestarts.Consider now the costs of Policies a and b over the interval [s; T1]:From Section 2.1, the instantaneous cost function for x2 < 0, is given by:c(x) = 8<: h1x1 � b2x2 x1 > 0�b1x1 � b2x2 x1 � 0This can also be expressed as:c(x1; x2) = cm(x1)� b2�2W (x1; x2) for x2 � 0where W is the aggregate workload, and cm is the instantaneous cost function givenby: cm(x1) = 8<: hmx1 = (h1 + b2 �2�1 )x1 x1 > 0�bmx1 = �(b1 � b2 �2�1 )x1 x1 � 0Since hedging point policies are stable, it follows that,�abEx[Z T0 c(X(t))dt] = Z T0 �abEx[c(X(t))]dt= Z T0 �abEx[cm(X1(t))]dt � b2�2 Z T0 �abEx[W (t)]dtAt time s we have W a(s) = W b(s), and for all t in [0; T1], the machine works at fullcapacity. Thus for t in [0; T1], Xa and Xb verify the conditions of lemma 3 and, weobtain �abEx[W (t)] = 0.So the di�erence in expectations of cost between the two trajectories in [s; T ] isthe same as that for system where the instantaneous cost function in the non-positivex2 region is given by cm. It can be noted that this cost function depends only on thevalue of the Part Type 1 surplus, x1.Consider the behavior of X1 over [s; t1] when X2 < 0, under Policies a and brespectively. Under Policy a, Part Type 1 behaves as if it were following the policygiven by: 26



a1 = 8<: 1 xa1 < zm10 xa1 = zm1Thus the surplus trajectory for Part Type 1 under Policy a over the interval [s; t1]when Xa2 < 0 is the same as that for generated by an optimal hedging point policy forthe single-part-system where the arrival rate, the production rate and the functionof cost are respectively, �1, �1 and cm. One can see that the corresponding optimalhedging value is given by zm1 (see equation (20) of the following appendix). Also, byconstruction, when Xa2 (t) = 0 we havexa1(t) � xb1(t) for t 2 [s; T1] such that xa1(t) > zm1 :Thus trajectories Xa and Xb satisfy conditions of Theorem 2 of the appendixfrom which we get �abEx[Z t10 cm(X1(t))dt] � 0Since this is true for every renewal cycle when Trajectories Xa and Xb are di�erent,we get, limT!1 1T Eax[Z T0 cm(X1(t))dt] � limT!1 1T Ebx[Z T0 cm(X1(t))dt]Case 2: p1 � zm1 . There are two subcases corresponding to whether the switchingcurve intersects the line x1 = zm1 or not.Subcase 1: The switching curve does not intersect the line x1 = zm1 .The policy a is now chosen such that the hedging point is za = (zm1 ; z2), and theswitching curve is de�ned by the straight line xa1 = zm1 ; x2 < zm1 (see Figure 4).Consider two trajectoriesXa,Xb which evolve respectively under policies a and b, andoriginate at their respective hedging point. From Corollary 2, Xa and Xb leave andreach these hedging points at the same instants. Note the switching curve for policyb does not intersect the line x1 = zm1 , and since z1 < zm1 and z2 = zm2 , trajectoriesXa, Xb are such that Note that the Policy a is a static priority policy that alwaysproduces Part Type 1 �rst. Since initially Xa1 (0) > Xb1(0) and Xa2(0) = Xb2(0), thesample path comparison yields, Xa2 (t) � Xb2(t) (16)Xb1(t) � Xa1 (t) (17)27
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Figure 4: Case 2 p1 � zm1Using (17), and disecting the problem as did Srivatsan and Dallery (1998) in threecases (when xb2(t) and xa2(t) are both positive, when xb2(t) is positive and xa2(t) isnegative, and when both are positive), a straightforward computation reveals thatfor all t, �abc(X1(t); X2(t)) � �ab [c1(X1(t))� b2X2(t)]Furthermore,�ab [c1(X1(t))� b2X2(t)] = �ab [c1(X1(t)) + �2�1 b2X1(t)� b2�2W (t)] (18)= �ab [cm(X1(t))]� b2�2�ab [W (t)] (19)We have �abW (0) > 0. So, from Lemma 4 and (18) it follows that�abE[c(X(t))] � �abEx[cm(X1(t))]Under policy a, part Type 1 behaves as if it were following the optimal hedgingpoint policy for the single-part-system where the arrival rate, the production rate andthe function of cost are respectively, �1, �1 and cm (see the appendix).So we get �abEx[Z T0 cm(X1(t))dt] � 028



Since this is true for every renewal cycle when Trajectories Xa and Xb leave theirhedging point, we get,limT!1 1T Eax[Z T0 cm(X1(t))dt] � limT!1 1T Ebx[Z T0 cm(X1(t))dt]:Subcase 2: The switching curve does intersect the line x1 = zm1 in the point ẑ =(zm1 ; ẑ2). Let Policy a be a hedging point policy with the same hedging point z aspolicy b and whose switching curve is the vertical line x1 = zm1 for x2 < ẑ2 and thesame as policy b elsewhere.Consider two trajectories Xa, Xb which evolve respectively under policy a andb, and that originate at the same point x at time t = 0. From Corollary 1, thetrajectories pass through the point ẑ at the same time T1. Using the same argumentsas in the proof of subcase 1, it follow that for all t in [0; T1]�abE[c(X(t))] � �abE[c1(X1(t))� b2X2(t)] � �abE[cm(X1(t))]]Furthermore as in case 1, the trajectories of part type 1 under policies a and b satisfythe conditions of Theorem 2 of the appendix, and�abEx[Z T0 cm(X1(t))dt] � 0Hence the result. 2Remark: In the case where �1 = �2, we actually have in case 1 �abc(X(t)) =�abcm(X1(t)) for t in [s; T1] on the coupled path.A.2 Results in the Single-Part-Type SystemIn this section, we derive results based on comparisons of the cost function of (1)for trajectories generated by two di�erent policies over a given interval of time. Thesystem considered here is a single-part-type system with exponential production anddemand interarrival times, with rates � and � respectively. In this case, the controlsassociated with the policies are of the form:Ca = 8<: 0 the action is to idle1 when the action is to produce29



For this system a hedging point policy is optimal. Following Buzacott and Shanthiku-mar (93), the optimal hedging point z is given by:x1 = zm1 = b ln ( hb+h)ln �� c (20)In most of the cases considered below, neither of the two policies is a hedging pointpolicy. But the trajectories generated by these policies satisfy conditions that arerelevant in the context of the two-part-type system. This policies are admissiblescheduling policies in the sense of Veatch and Wein (1996): they are functions of thestate X and the time instant t, and are nonanticipating with respect to X.Let the expected cost of policy a in the interval [s; f ] be denoted asJa(s; f) = EfZ fs c(xa(t))dtjxa(s) = xg(For notational simplicity, we do not explicitly express the dependence of this cost onthe initial conditions xa(s).)The di�erence in the expected costs of policies a and b in the interval [s; f ] is repre-sented by �Jab (s; f) = Ja(s; f)� Jb(s; f)Let J b be the long term average cost of policy b . Let J� be the optimal long averagecost.We �rst show that for some speci�ed initial conditions and the same �nal condi-tions, a trajectory generated by a hedging point policy in an interval [0; T ] incurs acost no greater than that generated by any other feasible policy. Note that our resultpertains to total costs incurred over a �nite interval.Lemma 6 Consider two trajectories Xa and Xb and an interval of time [0; T ] suchthat: Xa is generated by the optimal hedging point policy and Xb is generated by someother policy over [0; T ] and:1) Xb(0) � Xa(0) � z or Xb(0) � Xa(0) � z;2) Xa(T ) = Xb(T ) = z.Then, �Jab(0; T ) � 0.Proof: Using the uniformization of Markovian processes, we can take � and � suchthat �+ � = 1 without loss of generality. Let G be the in�nitesimal generator of the30



controlled Markov process with Policy � (with � = b or � = a),G(�)f(x) = limh!0 E[f(x(h))� f(x(0))]hwhere f is a function of the states. Using Dynkin's formula (see Karlin and Taylor(81)) in the interval [0; T ], we have:E[Z T0 G(�)f(X)dt] = E[f(x(T ))]� f(x(0)) = f(z)� f(x(0)) (21)There exists a relative value function V which veri�es the following dynamic equa-tion: J� � c(x) = G(�)V (x) (22)Since a is the optimal policy, It follows from (22) that,G(a)V (x) = J� � c(x)= min� (J�)� c(x)= min� (G(�)V (x))Thus, we have : G(b)V (x) � J� � c(x) (23)Integrating and taking the expected value, we obtain from (23):E(Z T0 G(b)V (X(t))dt) � J�T � E[Z T0 c(X(t))dt]� J�T � Jb(0; T ) (24)E(Z T0 G(a)V (X(t))dt) = J�T � Ja(0; T ) (25)Combining (21) and (24) it follows,J b(0; T ) � J� + V (Xb(0))� V (z):From condition 3 of the lemma, we have V (xb(0)) � V (xa(0)). Thus, from (25)Jb(0; T ) � Ja + V (Xa(0))� V (z) = Ja(0; T )31



2Next, we establish a similar result for the case where the initial conditions of thetwo trajectories satisfy a stricter condition than in Lemma 6 but the �nal conditionsof the trajectories are not as restrictive as in Lemma 6.Lemma 7 Consider two trajectories Xa and Xb and an interval [0; T ] such Xa isgenerated by the optimal hedging point policy and Xb by some other policy over [0; T ]and:1) Xb(0) � Xa(0) � z;2) Xb(T ) � Xa(T ) = z.Then, �Jab(0; T ) � 0.Proof: There are two cases to be considered.Case 1: Trajectory Xb does not go below z in [0; T ]. Let tm a time instant whenTrajectory Xb takes its minimum value in [0; T ] . De�ne a new trajectory Xc asfollows: Xc = 8<: Xb(t)� (Xb(tm)� z) 0 � t � tmz tm < t � TBy de�nition, for all t in [0; T ] Xb(t) � Xc(t) � zwhich gives, Jb(0; T ) � Jc(0; T ). The Trajectories Xa and Xc satisfy the conditionsof Lemma 6. Thus, J b(T ) � Jc(T ) � Ja(T )Case 2: Xb(t) < z for some t, 0 < t < T . Let tn be the last time instant such thatXb crosses z from below. From condition 2 of the lemma, tn does exist. De�ne a newtrajectory Xc as follows:Xc = 8<: Xb(t)� (Xb(tm)� z) 0 � t � tnz tn < t � TSimilarly as in the case 1, we obtain Jb(t) � Jc(t) � Ja(t). 2We now combine the results of Lemmas 6 and 7 to show that if we choose trajec-tories Xa and Xb and an interval [0; T ] such that Xa, Xb satisfy speci�c conditions32



over an interval [0; T ], have the same initial and �nal conditions, and their �nal valuesat T are greater than the optimal hedging point value, then the cost incurred by Xais no greater than that incurred by Xb.Theorem 2 Consider two trajectories Xa and Xb and an interval [0; T ] such thatXa and Xb satisfy Condition C1 over the interval and:1) Xa is generated by the optimal hedging point policy for all t 2 [0; T ] such thatXa(t) < z;2) Xa(t) � Xb(t) for all t 2 [0; T ] such that Xa(t) > z.3)Xa(0) = Xb(0);4)Xb(T ) = Xa(T ) � z. Then, �Jab(0; T ) � 0Proof: We have to consider two cases.Case 1: Xa(0) = Xb(0) � z. Now, ifXa(t) � z for all t in [0; T ], then from Condition2, hz � c(Xa(t)) � c(Xb(t)) for all t in [0; T ].The more interesting case is when Trajectory Xa goes below z at least once in[0; T ]. De�ne ti the time instant when Trajectory Xa crosses z from above, for theith time. From Condition 4, there also exists at least one time instant such thatTrajectory Xa crosses z from below. De�ne �i the time instant when Trajectory Xacrosses z from below, for the ith time. By de�nition we have:�abJ(0; T ) = �abJ(0; t1)+n�1Xi=1 [�abJ(ti; �i)+�abJ(�i; ti)]+�abJ(tn; �n)+�abJ(�n; T ) (26)For all t in [�i; ti] and in [�n; T ], we obtain as above hz � c(Xa(t)) � c(Xb(t)).For all t in [ti; �i] and in [0; t1], Trajectories Xa and Xb satisfy conditions of Lemma7. Thus, we have: �abJ(ti; �i) � 0 and �abJ(0; t1) � 0:Hence, from (26) we obtain �abJ(0; T ) � 0.Case 2: Xa(0) = Xb(0) < z. From the conditions of the lemma, there exists a timeinstant such that Xa reaches z. Let � be the �rst of these instants. In the interval[0; � ], the trajectories satisfy the conditions of the lemma 6. Therefore, �abJ [0; � ] � 0.In [�; T ], we can use the same arguments as in Case 1. Thus we have:�abJ [0; T ] = �abJ [0; � ] + �abJ [�; T ] � 0 233


