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We consider the problem of dynamically allocating production capacity between two products to minimize the average inventory and backorder costs per unit time in a make-to-stock single machine system. Using sample path comparisons and dynamic programming, we give a characterization of the optimal hedging point policy for a certain region of the state space. The characterization is simple enough to lead to easily implementable heuristics and provides a formal justi cation of some of the earlier heuristics proposed.

Introduction

A challenging problem in production control is the dynamic allocation of limited production capacity between di erent products in a make-to-stock environment. The fact that demands and even the production times are random makes this problem even 1 more challenging. In this paper, we provide new insights for the dynamic scheduling problem of a stochastic production-inventory system.

The particular model that we consider here is a two part-type model where demands of both types arrive in single units and a single production facility produces units one by one. The model is, then, the make-to-stock version of the well known multi-class single server queue, i.e. a two class make-to-stock queue. The question is to decide dynamically when and which part type to produce. For tractability, we make the usual assumptions that the demands arrive according to independent Poisson processes and that the production times are exponentially distributed. We also disregard setup times and allow preemptive scheduling. Under these assumptions, the dynamic scheduling problem is an optimal control problem which can be set as a Markov Decision Process (MDP). This constitutes our starting point. Traditionally, after setting up the MDP, one tries to obtain structural results on the optimal policy by using induction on the time horizon. We choose to proceed in a di erent direction instead and use coupling and sample path comparison techniques to obtain a partial but exact characterization of the optimal policy.

For a single class make-to-stock queue, the issues are considerably simpler since resource partition is not a concern. In that case, the issue is to determine when to produce and when to idle. It turns out that a base-stock type policy is optimal for this case, the machine should keep on producing whenever the stock are below a certain safety level and should idle once that level is attained [START_REF] Gavish | A One-Product Production/Inventory Problem under Continuous Review Policy[END_REF]. [START_REF] Kimemia | An Algorithm for Computer Control of a Flexible Manufacturing System[END_REF] pioneered the approach of modeling production control problems as optimal control problems. This led to the characterization of the optimal policy for a single class continuous ow model by [START_REF] Bielecki | Optimality of Zero Inventory Policies for Unreliable Manufacturing Systems[END_REF]. The continuous ow model is closely related to the discrete part type model considered here and involves a constant demand rate and constant production rate but models the randomness through an unreliable machine which can be up or down. For this model, Bielecki and Kumar have shown that the optimal policy is a hedging point policy, where the production facility works at full rate when it is up and the inventory level is below the hedging point (which determines a safety stock level) and at a rate equal to the demand rate when the inventory level reaches the hedging point.

The multi-class make-to-stock queueing problem was rst considered Zheng and Zipkin (1990). Zheng and Zipkin show that in the case of two symmetric products, the performance of a policy that always serves the longest queue is always better than the performance of a FCFS policy. These results were later generalized to multiple products by [START_REF] Zipkin | Performance Analysis of a Multi-Item Production-Inventory System under Alternative Policies[END_REF]. [START_REF] Wein | Dynamic Scheduling of a Multiclass Make-to-Stock Queue[END_REF] proposed a Brownian approximation for the multi-class make-to-stock queueing control problem. The solution of the approximating stochastic control problem provides interesting insights into the structure of the optimal policy, suggesting particularly the optimality of a hedging point policy and a static priority rule when all products are backlogged. [START_REF] Ha | Optimal Dynamic Scheduling Policy for a Make-to-Stock Production System[END_REF] provides the theoretical justi cation of some of the ideas suggested by the approximating model of [START_REF] Wein | Dynamic Scheduling of a Multiclass Make-to-Stock Queue[END_REF]. By considering the in nite horizon discounted cost model and using dynamic programming he proves that a static priority rule is optimal when all producs are backlogged. He also proves that for two part types requiring identical production times, the optimal policy is a hedging point policy, characterized by two switching curves, one curve determining the on-o region for production and the other curve determining the dynamic priority between the part types.

Ha's results suggest that the optimal policy for the multi-class make-to-stock queueing problem (in further generality than proven) is a hedging point policy combined with monotone priority regions that state which of the part-types to produce. On the other hand, even under the restriction of policies to this particular class, one is left with a challenging problem of jointly optimizing the selection of a hedging point and the priority regions for di erent part types. [START_REF] Veatch | Scheduling a Make-to-Stock Queue: Index Policies and Hedging Points[END_REF] and Peña- [START_REF] Perez | Dynamic Scheduling Rules For a Multiproduct Make-to-Stock Queue[END_REF] study this problem and provide e ective heuristics based on approximations driven by intuition.

For the continuous ow two part type problem, on the other hand, Srivatsan and Dallery (1998) have recently provided a partial (but exact) characterization of the optimal hedging point policy. This exact characterization prompts the question as to whether the same properties carry over to the conceptually related but considerably di erent case of the discrete part make-to-stock queue.

Note that, in the single product case, the optimal control problems for the make-tostock queue and continuous model of Bielecki and Kumar (1991) are strongly related. In fact, for both cases the optimal policy is of the hedging point type. This connection also holds for the multi-product case when the service times do not depend on the part type. Intuitively, the e ect of randomness modeled by machine breakdowns is very similar to the e ect of randomness modeled by a class-independent server. In the case where the production times depend on the part type, however, the two systems represent randomness in radically di erent ways. For this second case, the corresponding continuous ow model seems to be the one with part type dependent breakdown rates which has not received a lot of attention so far.

In this paper, we show the surprising result that the partial characterization of the optimal policy as provided by Srivatsan and Dallery (1998) for a continuous ow two-part type system extends to the two-class make to stock queue with part-type dependent production times. The extension turns out to be technically quite involved, partially due to the passage from the continuous to the discrete case, but mainly due to the di erent way the models capture the randomness. The end result, however, is very simple and intuitively appealing. In a certain region of the state space, the monotone switching curve that separates the priority regions of the two products turns out to be a straight line whose position is expressed by a simple equation. This characterization allows us to generalize the results of [START_REF] Ha | Optimal Dynamic Scheduling Policy for a Make-to-Stock Production System[END_REF] on the structure of the optimal switching curve. It also helps to recognize the advantages and disadvantages of the various heuristic strategies proposed by [START_REF] Veatch | Scheduling a Make-to-Stock Queue: Index Policies and Hedging Points[END_REF] and Peña- [START_REF] Perez | Dynamic Scheduling Rules For a Multiproduct Make-to-Stock Queue[END_REF]. In particular, we formally justify the good performance of some of these policies developed through intuitive approaches.

We give a formal de nition of the problem and the model in section 2. In section 3, we present some properties of the class of policies that we study in this paper, namely, the hedging point class of policies. These properties enable us to obtain the main result on the characterization of the optimal hedging point policies presented in Section 4. In section 5, we give numerical examples as well as discussing and justifying the relative performance of some of the heuristic policies proposed earlier. Finally, our conclusions and suggestions for future research are presented in Section 6.

The Optimal Control Problem

2.1 The Model and the Dynamic Scheduling Problem Consider a production system with a single, exible, machine that produces two part types (type 1 and type 2), in a make-to-stock mode. Each nished item is placed in its respective inventory. Demands that cannot be met from their respective onhand inventories are backordered. It is assumed that raw parts are always available in front of the machine. The arrivals of demands to the system occur according to independent Poisson processes with rates i , i = 1; 2. The production times of product i are independent and exponentially distributed with rates i .

At any time, one can choose whether to produce part type 1, 2 or to idle the machine. A preemptive discipline is further assumed: the production of a part can be interrupted and resumed. A control policy states the action to take at any time. Since the system is memoryless, for the control of the system we can consider only Markov policies, which only depend on the current state. Let X i (t) denote the inventory level at time t. We call X i (t) the surplus (or backlog if demands are backordered) of Part type i. X(t) = (X 1 (t); X 2 (t)) is then the state of the system. Let C a be the control associated with a Markov policy a. We have:

C a (t) = C a (X(t)) = 8 > > > < > > > :
0 when the action is to idle 1 when the action is to produce type 1 2 when the action is to produce type 2

The issue we are interested in is how to control this system to minimize a cost function. We consider a unit holding cost h i and a unit backorder cost b i per unit of time for part type i. Here h i and b i are non-negative scalars. In the state (X 1 (t); X 2 (t)), the system incurs an instantaneous cost of c(

X(t)) = 2 X i=1 c i (X i (t))
where the individual part type costs c i are Under a given policy, say a, the system will generate a long run average cost due to surpluses and backlogs. The objective is then to nd the policy which minimizes this long run average cost. This problem can be expressed as an in nite horizon, average cost control problem shown below:

c i (X i (t)) = 8 < : h i X i (t) X i (t) 0 b i X i (t) X i (t) 0
min a lim sup t!1 1 t E a x Z t 0 c(X(t)
)dt] where x = X(0):

(1)

Optimal Control and Hedging Point Policies

To solve the optimal control problem (1), a classical approach is to derive the dynamic programming optimality equations. Following Veatch and Wein (96), with g the optimal average cost rate, V (x) the relative value function, we have V (x) + g = c(x) + 1 V (x 1 1) + 2 V (x 2 1) + V (x) + min(0; 1 1 V (x); 2 2 V (x)) ;

(2) where 1 V (x) = V (x 1 + 1; x 2 ) V (x); 2 V (x) = V (x 1 ; x 2 + 1) V (x); = max( 1 ; 2 ); = 1 + 2 + :

The optimality equation is useful in determining certain structural properties of the optimal policy and also provides the basis for algorithms to compute it numerically. Ha (1996) has exploited these equations to characterize the monotone structure of the optimal policy with discounting. On the other hand, this approach has not given an exact general characterization of the optimal policy until now. Although a formal proof does not exist in full generality, we conjecture that the optimal policy belongs to a speci c class : the hedging point (base stock) policies (see Figure 1).

Following [START_REF] Kimemia | An Algorithm for Computer Control of a Flexible Manufacturing System[END_REF] and Veatch and Wein (1994), we de ne a hedging point policy for the manufacturing system in Section 2.1 as follows:

De nition 1 A hedging point policy a is a Markov control policy that has the following properties:

1. The policy divides the two dimensional surplus space into three distinct types of regions, say Regions 0; 1 and 2 such that C a = 0 in Region Type 0; C a = 1 in Region Type 1; C a = 2 in Region Type 2.

2. The idling curve de ned as the set of points of Region 0 on the boundary between the Region 0 and the others, is a positive curve, decreasing in x 1 or x 2 . (The curve can be written as a function of x 1 in the values of x 2 , or of x 2 in the values of x 1 ).

3. The switching curve which delimits Regions 1 and 2, is the following increasing in x 1 or x 2 curve de ned by fx : (x 1 1; x 2 ) 2 Region 1 and (x 1 ; x 2 1) 2

Region 2g. (The curve can be written as a function of x 1 in the values of x 2 , or of x 2 in the values of x 1 ).

4. These two curves intersect at a single point z = (z 1 ; z 2 ), which is called the hedging point.

Remark: The parts 2 and 3 of the de nition imply that the hedging point z is positive. When a hedging point policy is applied, if the initial point (x 1 ; x 2 ) of a surplus trajectory is such that x 1 z 1 and x 2 z 2 , the machine will be used at full capacity until the inventories levels are equal to z. Thus, the hedging point represents a surplus level based on tradeo s between expected inventory and backlog costs. Furthermore, if at a time instant the trajectory reaches the switching curve at a certain point y, it will move along the curve until an arrival of a new demand causes it to move away from the curve. Then the scenario is repeated until z is reached. This implies that all the points of the switching curve between y and the hedging point z belong to the trajectory.

The switching curve, with the hedging point, fully characterize a hedging point policy for initial points verifying the above condition. In particular, if a surplus trajectory originates at the hedging point, its future behavior can be completely characterized by these parameters.

Furthermore, if x 1 > z 1 or x 2 > z 2 then after a transient behavior which does not a ect the long average cost, a trajectory under a hedging point policy will reach a point such that x 1 z 1 and x 2 z 2 . The description above then holds true.

In the rest of the paper we concentrate on hedging point policies, with starting points in the region x 1 z 1 and x 2 z 2 . Although a rigorous proof under general assumptions is not yet available, there are strong evidences that the optimal policy is a hedging point policy.

Previous work on this problem supports this conjecture. Firstly, Ha (1996) has shown that the optimal policy in the discounted case is a hedging point policy in the case of 1 = 2 . Hedging point policies are \plausible" according to Peña- [START_REF] Perez | Dynamic Scheduling Rules For a Multiproduct Make-to-Stock Queue[END_REF]. This issue is also discussed from the monotonicity point of view in [START_REF] Veatch | Scheduling a Make-to-Stock Queue: Index Policies and Hedging Points[END_REF]. Finally, our numerical experiments verify this point.

An Equivalent Model

We consider now a model which only di ers from the original model in the way the machine produces the parts. This new model, whose behavior will be shown to be equivalent to that of the original model will be useful for deriving some of our results.

De nition 2 The Equivalent model (EQ) is a model similar to the original model

where:

1. the machine performs service activities whose durations do not depend on the type of the product and are exponentialy distributed with rates = 1 + 2 , 2. at the end of a service time the "work" done during the service activity is either allocated to one of the two parts or not used, according to a control policy a.

Speci cally, we have

C a = 8 > > > < > > > :
0 idle: the work is not used 1 produce type 1: the work is allocated to type 1 2 produce type 2: the work is allocated to type 2 3. When C a (t) 6 = 0, the allocation of the "work" to a given part type may result in the "instantaneaous production" of a part of this type, and the outcome is probabilistic. Speci cally if the work is allocated to part type i, then with probability p i = i , a part is instantaneously delivered to the corresponding output bu er, while with probability 1 p i nothing happens, i.e the "work" is lost.

Remark: In the EQ model we talk about \service times" instead of \production times". Note that not all service times correspond to actual production times.

An intuitive interpretation of this model is that the machine is not perfectly reliable: it can produce parts which do not satisfy some quality criteria. For instance with a probability 1 p i , a part of type i is \bad" and is rejected when it is produced.

Since the arrival processes and the service times are independent of the policy, this model facilitates sample path comparisons, as we will see later.

Proposition 1 Under the same control policy, the behavior of the EQ model is probabilistically equivalent to that of the original model.

Proof: Consider rst the machine and the both production processes. Suppose then that the common policy a states to produce part i. Let U i be the discrete random variable such that:

U i = 8 < :
1 when the work allocated to part type i generates a real part 0 when the work does not generate a real part (the work is lost) with the probabilities: P(fU i = 1g) = p i and P(fU i = 0g) = 1 p i : U i corresponds to the probabilistic outcome mentioned in the third part of the EQ model de nition. Let T and T i , be the exponentially distributed service times with rates and i respectively. Consider the following events: A=fin the original model, the service time of part type i is less than dtg B=fin the EQ model, the service time of part type i is less than dtg.

We have: P(A) = P(T i < dt) = i dt+o(dt) = p i dt+o(dt) = P (fU i = 1g \ fT < dtg) = P(B):

When a states not to produce, nothing happens in the original as well as in the EQ model. Thus under the same policy, the two models have a stochastically identical behavior for their service time process. Consider now the arrival processes. When a demand occurs, the e ect on the inventory level is exactly the same for both models. In the original model, the attribution of the part type to the machine is determined by the preemptive discipline. It is possible to switch part types at the time instant of the arrival, even when the machine is working. In the EQ model, since we choose to attribute the part after its completion, the attribution has not yet been made. The e ects of the arrival processes are thus exactly the same for both models.
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Note that the EQ Model corresponds to a uniformization of the service processes in the Original Model. The proof of the above property is given here for clarity and to introduce some useful notation to be used in the sequel.

3 Some Properties of Hedging Point Policies

Sample Path Properties

This subsection presents some properties of hedging point policies. These properties will enable us to study the stability conditions. Moreover, they will also constitute the basis of the proof for the characterization of optimal hedging point policies. These results are based, as others in this paper, on sample path comparisons. We study di erent trajectories by coupling them, that is by considering a common realization of the random variables which generate them. In particular, we typically consider the trajectories X a and X b generated by the policies a and b under the same realizations of the arrival processes and the service times.

Following this approach, the next lemma states that if the same number of type-1 parts and the same number of type-2 parts have been completed for two coupled trajectories, then the completion instances of the batches must be identical. Thus, under certain conditions the lemma provides us the positions of coupled trajectories at the same instance which will prove to be very critical for the sample path comparisons in the sequel.

Lemma 1 Consider two hedging point policies a, b and two coupled trajectories X a , X b generated by these policies. If two time instants T a and T b are such that:

1. X a 1 (T a ) X a 1 (0) = X b 1 (T b ) X b 1 (0), and X a 2 (T a ) X a 2 (0) = X b 2 (T b ) X b 2 (0) 2. For all t in 0; T a ] (respectively 0; T b ]) with i = 1 or i = 2, X a i (t) X a i (T a )(respectively X b i (t) X b i (T b ))
and T a (resp. T b ) is the rst time that X a (resp. X b ) reaches X a (T a ) (resp X b (T b )).

3. For all t in 0; max(T a ; T b )], the machine works at full capacity under both policies, then T a = T b on the coupled path.

Proof: Consider the EQ model. De ne T and U i as in the proof of Theorem 1. We couple the service time T of the machine and the random variables U i for the policies a and b. Consider a sequence of realizations of the exponentially distributed service times:

t 1 ; t 2 ; : : : ; t n ; : : : and sequences of realizations of the discrete random variables U 1 : u 1 1 ; u 2 1 ; : : : u n 1 ; : : : where u 1 n = 0 or 1 and U 2 : u 1 2 ; u 2 2 ; : : : u n 2 ; : : : where u 2 n = 0 or 1 These realizations are common for both policies. Let T n be the time instant of the nth event. Since the machine works at full capacity, T n = P n k=1 t k , and T n is the same for both policies. We denote by n(t) the number of service completions at time t. At instant T n , the nature of the new event is then given by the next element of the sequence corresponding to u i (where i = 1 or i = 2 depending on the choice stated by the policy). Let n a i (t) be the number of elements of the sequence corresponding to u i , which policy a has chosen before the time instant t. Similarly, we can de ne n b i for policy b. From the de nition of n a i , and since the machine works at full capacity, we have for all t in 0; max(T a ; T b )],

n(t) = n a 1 (t) + n a 2 (t) = n b 1 (t) + n b 2 (t): (3) 
Let d i (t) be the number of demands for part Type i, which have occurred before the instant t. By coupling, these arrivals modify the inventory level at the same instant for both policies. A demand may then change the choice stated by the policy, but for all t in 0; max(T a ; T b )], d i (t) stays the same for a and b. Each time n a i is equal to 1, the corresponding event is a production of a part. Thus,

X a i (t) X a i (0) = n a i (t) X k=1 u k i d i (t): (4) 
Suppose now that T a < T b . From the second condition of the lemma, it follows that for i =

1 or i = 2, X b i (T b ) X b i (0) X b i (T a ) X b i (0); (5) 
and one of the inequalities is strict. Without loss of generality suppose that,

X b 1 (T b ) X b 1 (0) > X b 1 (T a ) X b 1 (0); (6) 
From the rst condition of the lemma, and from ( 5) and ( 6), we obtain,

X a 1 (T a ) X a 1 (0) > X b 1 (T a ) X b 1 (0) (7) X a 2 (T a ) X a 2 (0) X b 2 (T a ) X b 2 (0) (8) 
By combining [START_REF] Kimemia | An Algorithm for Computer Control of a Flexible Manufacturing System[END_REF] and ( 8) with (4) we obtain the following results :

n a 1 (T a ) > n b 1 (T a ) and n a 2 (T a ) n b 2 (T a ) 12 which from (3) are impossible. Using similar arguments when T a < T b , we have T a = T b .
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The previous lemma gives general conditions for two trajectories to complete the same amount of work within the same time. This result will be adapted to the class of policies de ned by hedging points and switching curves in the following two corollaries.

Corollary 1 Consider two hedging point policies a, b and two coupled trajectories X a , X b generated by these policies such that, 1. the switching curves of the policies have a common point ẑ, 2. X a and X b start at the same initial point, such that X 1 (0) ẑ1 and X 2 (0) ẑ2 , then, the trajectories reach ẑ at the same time instant.

Proof: As explained in Section 2.2, once the trajectory reaches the switching curve, it moves along it. From condition 2 above, both trajectories will reach their respective switching curve below ẑ. Thus both trajectories pass through this point.

Both policies also work at full capacity and Lemma 1 can be applied with X a (0) = X b (0) and X a (T a ) = X b (T b ) = ẑ.
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Corollary 2 Consider two hedging point policies and two coupled trajectories beginning at their respective hedging points. The inventory levels leave and reach their respective hedging points at time instants which are the same for both policies.

Proof: At the time instant of the rst arrival, both trajectories will decrease by 1 in the respective inventory level. Then, they verify the lemma 1. Thus they will reach their hedging point at the same instant, and the scenario will be repeated. 2

Stability of Hedging Point Policies

In this subsection we analyse the stability of the hedging point policies. We de ne Policy a with the hedging point z, to be stable if

lim t!1 1 t E a z X(t) 2 ] = 0 for i = 1; i = 2:
Corollary 2 enables us to relate the stability of hedging point policies to the stability of static priority policies as presented in the following lemma.

Lemma 2 A hedging point policy a is stable if

1 1 + 2 2 < 1
Proof Let z a be the hedging point of the policy a. Let Policy b, be the policy with the same hedging point z a , and the switching curve given by the straight-line x 1 = z a . From Corollary 2, Policy a is stable if and only if Policy b is stable. Policy b actually de nes a static priority policy with part type 1 having the high priority. Thus, following [START_REF] Gross | Fundementals of Queueing Theory[END_REF], Policy b is stable if 1 = 1 + 2 = 2 < 1 giving us the result.
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Remark: Note that the stability condition of hedging point policies does not depend on the hedging point or the switching curve but only on the quantity 1 = 1 + 2 = 2 < 1, which can be interpreted as the utilization rate of the machine.

Partial Characterization of the Optimal Hedging Point Policy

Consider the two-part-type system introduced in Section 2.1. Without loss of generality, let the two part types be numbered such that b 1 1 b 2 2 [START_REF] Srivatsan | Partial Characterizations of Optimal Hedging Point Policies in Unreliable Two-Part-Type Systems[END_REF] We derive in this section, a structural result for the optimal hedging point policy of the two-part-type system introduced in Section 2.1. The main idea is to relate the optimal control problem of the two-part-type system to a single-part-type system problem. Informally, we will exploit the fact that the instantaneous cost function can be expressed as: c(x 1 ; x 2 ) = c m (x 1 ) f(x 1 ; x 2 ) for x 2 0 where c m is the part of the cost that only depends on x 1 , and f is a function of x 1 and x 2 that captures the remaining part of the cost. c m is an instantaneous cost function of the form: c m (x 1 ) = 8 < : h m x 1 x 1 > 0 b m x 1 x 1 0

Intuitively, the function f should be proportional to W, the total amount of work (in units of time) embodied in the system.

De nition 3 Let the aggregate workload W(t) be de ned as:

W(t) = X 1 (t) 1 + X 2 (t) 2
We denote by W a (t), the aggregate workload under policy a. We also use the following notations W(X) = W(X(t)) = W(t). Under certain conditions, the expectation of W(t) does not depend on the policy, or di ers only by a constant. Thus, the di erence in average costs of two given policies can be resumed by the di erence in c m (x 1 ), which is the cost of a single part-type system. We are then able to give an analytical expression for the switching curve when x 2 < 0. Theorem 1 formalizes this characterization of the optimal policy. The following lemmas give the properties of the expected value of the aggregate workload mentioned above.

Lemma 3 Consider two trajectories X a and X b generated by two hedging point policies a and b, and an interval 0; T] such that for all t in 0; T] the machine works at full capacity, then for all t in 0; T] we have,

a b E W(t)] = E a W(t)] E b W(t)] = W a (0) W b (0)
Proof: Consider the EQ model. Let T n be the time instant random variable of the nth event, which can be a demand arrival or a service completion (recall that in the EQ model, a service completion does not necessarily correspond to a production completion). For a policy we denote by H n = (X 0 ; C (0) : : : X n ; C (T n )) the history of the processes until the time of the nth event, where C is the control associated (C = 1 or 2). We also denote Ê W(t)] to be equal to E W(t)jH n ], with T n 1 < t T n . We have, E W(t)] = E Ê W(t)]]: [START_REF] Veatch | Scheduling a Make-to-Stock Queue: Index Policies and Hedging Points[END_REF] Without loss of generality, we can take t such that t = T n .

Suppose then that the instant T n corresponds to a service completion. It follows for policy a when C a (T n ) = i that, Êa W(T n )] = Êa W(T n 1 ) + U

i i ] (11) 
where U i is the discrete random variable of the EQ model. From the de nition of U i (see the proof Proposition 1) we obtain that E U i ]= i = 1= . Note that this value does not depend on the part type. Thus, from [START_REF] Wein | Dynamic Scheduling of a Multiclass Make-to-Stock Queue[END_REF] we have, Êa W(T n )] = Êa W(T n 1 )] + 1 : (12) If T n corresponds to an arrival of type i, then Êa W(T n )] = Êa W(T n 1 )] 1 i (13) Similary for policy b:

Êb W(T n )] = Êb W(T n 1 )] 1 or Êb W(T n )] = Êb W(t n 1 )] 1 i ( 14 
)
Consider now realizations t i of T i for i 2 f0; : : : ; ng. As it is done in the proof of lemma 1, we couple the service times of the machine as well as the instants of demand arrivals. Thus the t i instants are the same under policy a and b. From ( 12), ( 13), (14), it follows then that: a b Ê W(T n )] = a b Ê W(T n 1 )] giving us the desired result using [START_REF] Veatch | Scheduling a Make-to-Stock Queue: Index Policies and Hedging Points[END_REF].
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Remarks: In the case where 1 = 2 , we actually have W a (t) W b (t) = W a (0) W b (0) on the coupled path.

By combining the two lemmas, we obtain a property which holds for any time instant, even when the machine is not working. Lemma 4 Consider two hedging point policies begining at their respective hedging points z a ; z b . Then, for all t, a b E W(

t)] = z a 1 1 + z a 2 2 z b 1 1 z b 2 2 :
Proof: When the policies are hedging point policies, condition 2 of Lemma 3 holds until one of the two trajectories reaches its hedging point. Using corollary 2, the property holds then for all time instants t. 2

Based on lemma 1, 3, and 4 we can now formulate the following theorem which gives an analytical expression for the switching curve in a certain region of the space.

Theorem 1 Consider a two-part-type system where (9) holds as a strict inequality. When x 2 < 0, the switching curve of the optimal hedging point policy for this system is the straight-line de ned by:

x 1 = z m 1 = b ln ( h 1 +b 2 2 1 h 1 +b 1 ) ln 1 1 c
and the optimal hedging point policy a is of the form:

C a (x) = 8 < : 1 if x 1 < z m 1 ; x 2 < 0 2 if x 1 z m 1 ; x 2 < 0
Proof: A proof of this theorem can be found in the appendix. Remark: Note that when x 2 < 0, the switching curve depends neither on the arrival process of type 2 demands, nor on the holding cost of part Type 2.

It is interesting to note that the value of z m 1 as calculated above, could be zero for certain a range of parameters. A direct calculation gives then the following property:

z m 1 = 0 () h 1 1 h 1 1 > b 1 1 b 2 2 :
This property leads to an intuitive interpretation of Theorem 1. Consider the case where z m 1 > 0 and an inventory level with z m 1 > x 1 0 and x 2 < 0. From Theorem (1), the optimal policy states to produce one unit of product 1 which increases the expected cost at rate h 1 1 h 1 1 h 2 2 . While, if the policy had stated to produce one unit of product 2, the expected cost would have increased at rate b 2 2 +b 1 1 h 2 2 . Thus, the optimal policy chooses the part to minimize this cost-change rate. This extends the result and the interpretation given by [START_REF] Ha | Optimal Dynamic Scheduling Policy for a Make-to-Stock Production System[END_REF] to justify the optimality of the "b " rule.

Numerical Results and Heuristic Policies

Numerical Results

To numerically compute optimal policies, we have used the value iteration algorithm to solve the optimality equation (2). To overcome the problem of in nite state space,
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Figure 2: Numerical results we truncated the state space and experimented with increasingly large state spaces until the increase did not cause any change.

We perform a computional experiment to provide some insights on the behavior of the optimal policy when x 2 < 0 varying the parameters of the system. The data of the di erent problems we have studied are displayed in Table I. In the two rst cases, we consider systems which only di er by their backlog costs. The ratio b 1 =b 2 increases from the rst case to the second one. In the last case, the system is also asymmetric in the arrival and service time process, such that 1 = 2 2 .

In Figure 2 which displays the optimal policy for the examples in Table I, the straight line appears clearly. The gures also verify that the experimental value of this line is equal to the theorical value given by Theorem 1, which is reported as Z m in Table I.

Table I: Data of the tested cases

Case 1 2 1 2 h 1 h 2 b 1 b 2 Z m 1 0.4 0.4 1 1 1 1 50 25 0 2 0.4 0.4 1 1 1 1 50 5 2 3 0.6 0.1 1.2 0.4 2 1 60 6 4

Let us decribe the behavior of this line (in all this discussion we assume that b 1 1 b 2 2 ). Consider rst that 1 = 2 = 1 as in cases 1 and 2. The position of the switching curve when x 2 < 0 depends then on b 1 ; b 2 and h 1 . More precisely, it depends on the relative values b 1 =h 1 , b 2 =h 1 . When h 1 tends to in nity, the line is at 0. Note however that in practice h 1 is usually less than b 1 . Suppose then for simplicity that h 1 = 1, as in the two rst cases. Z m increases in the ratio b 1 =b 2 . Thus the more the two parts are assymetric in their backlog costs, the larger the stock of part type 1 when x 2 < 0 must be. This can be seen in Figure 2. When 1 6 = 2 , the behavior of the line is the same by taking the cost rate b i i instead of b i with i = 1 or i = 2, and h 1 1 instead of h 1 .

In addition to the asymetry of the backlog cost rates, the utilisation ratio of the rst part type has a crucial impact in the position of the switching curve. Indeed, Z m increases with 1 . Particulary, in heavy tra c, the position of the line tends to in nity. In the third case, we have a straight line at Z m = 4 when 1 equals only 0:5. Here Z m is very close to the hedging point of part Type 1 (which from Figure 2 is equal to ve).

Note that for a certain set of parameters, the optimal policy can be a static priority policy. In that case, Z m is equal to the coordinate of the hedging point corresponding to the rst part type.

Thus, the position of the optimal switching curve when x 2 < 0 seems to capture at once the asymmetry of the backlog cost rate, and the utilization in isolation of the part type with the larger of these costs.

Myopic Allocation

In Section 2, we have seen that no exact solution has been found for the Dynamic Scheduling Problem (1). Consequently, e orts have been devoted to explore heuristic approaches.

For instance, a simple heuristic policy is a static priority policy with a hedging point z, which switching curve is de ned by the straight-line x 1 = z 1 . Computations can then give an approximation of the optimal hedging point z for this class of policies. These heuristics have been studied by [START_REF] Wein | Dynamic Scheduling of a Multiclass Make-to-Stock Queue[END_REF] and have been called by Peña-Perez and Zipkin (1997) the static-priority(r) Policy (with r i = z i = i ). Using Theorem 1, we can see that this kind of policy would perform e ciently in cases where the hedging point of part Type 1 is close to the position of the straight-line as it can be seen in the third case of our numerical results. However, in the more general case, the static priority will not perform well.

Thus, other more sophisticated, yet easily computable heuristics have been explored. In particular, Peña-Perez and Zipkin (1997) have developed heuristics (the "Myopic Allocation") which perform substantially better than the static-priority(r) Policy. [START_REF] Veatch | Scheduling a Make-to-Stock Queue: Index Policies and Hedging Points[END_REF] have also studied these heuristics coupled with a Brownian approximation developed by [START_REF] Wein | Dynamic Scheduling of a Multiclass Make-to-Stock Queue[END_REF]. They show that these myopic allocation policies give very good results when applied to approximate the optimal switching curve. However, the myopic allocation is based on intuitive but informal arguments. After its short presentation, we give a partial justi cation of the myopic allocation using Theorem 1.

The main idea of the myopic allocation, is to look-ahead a service time of part type i, say S i . The policy allocates then the production capacity to the part type which increases the expected instantaneous cost at the smaller rate. Let D(S i ) be the number of demands of part type i in the interval 0; S i ]. If part type i is produced and if the current inventory level is x i , g(x i ) = E c(x i +1 D(S i ))] is then the expected instantaneous cost after the completion of the service time. Thus, i g(x i ) = g(x i +1) g(x i ) is the rate at which serving this class increases the instantaneous expected cost. The myopic allocation chooses then the part type with the smaller i g(x i ). Peña and Zipkin have derived an analytical expression for this index i g(x i ). However, they suggest that, taking instead of S i the sojourn time T i in a system (where j 6 = i are omitted), the heuristic policy will perform better. Thus in that case, D(T i ) replaces D(S i ) in the computations above, where T i is exponentially distributed with rate (1 i ) i . The intuitive rational they give is that, by choosing product type i, the production requirement is to increase x i by one taking into account the demands that arrive in the mean time. The machine will then not only produce one part type i, but will also respond to the new demands until the inventory level reaches x i + 1. This "replenishment" time has actually a mean proportional to (1 i ) 1 , as has E(T i ). The improvement brought by this modi cation was veri ed by their numeric examples. Indeed, they remark that the myopic policy with T i performs better than the myopic policy with S i , which is better than the static priority rule. But they do not give any formal justi cation of these conclusions.

The following Lemma partially proves that their intuitions were well-founded. Lemma 5 The myopic allocation policy applied with the sojourn time T i is an optimal policy when x 2 < 0.

Proof: Let (x 1 ; x 2 ) be an inventory level. Without loss of generality we suppose that b 1 1 > b 2 2 . The myopic allocation policy chooses the part type with the smaller i g(x i ) (i = 1 or i = 2). Following Peña and Zipkin (1997), we have with the sojourn time T i ,

i g(x i ) = 8 < : i b i for x i < 0 i b i + i (h i + b i )(1 x i +1
i ) for x i 0 When x 1 < 0 and x 2 < 0, since b 1 1 < b 2 2 , part type 1 is produced. When x 1 0 and x 2 < 0, part type 1 is still produced as long as 1 g(x 1 ) < 2 g(x 2 ) which can be written as,

1 b 1 + 1 (h 1 + b 1 )(1 x 1 +1 1 ) <
2 b 2 : A straightfoward computation shows that the myopic allocation policy states to produce part type 1 when x 2 < 0 if and only if,

x 1 < b ln ( h 1 +b 2 2 1 h 1 +b 1 ) ln 1 1 c:
Using Theorem 1, the myopic allocation policy with T i is thus optimal when x 2 < 0. 2 This Lemma explains the good performance of the myopic allocation computed with the sojourn time. A direct calculation will show that, for the myopic allocation with the service time, the switching curve is also a straight-line when x 2 < 0 with

x 1 = b ln ( h 1 +b 2 2 1 h 1 +b 1 ) ln 1 1 + 1 c: (15)
Thus in light tra c conditions, the myopic policy with S i is close to the optimal policy when x 2 < 0. However in heavy tra c condition for part type 1, the straight-line is at x 1 = 0, while this line tends to in nity for the optimal policy. This explains in part that the myopic policy with the service time can perform poorly in contrast with the one that uses the sojourn time.

Conclusion

Using sample path comparisons for hedging point policies, we have partially characterized the switching curve that determines the production priorities for the two-class make-to-stock queue. Our results suggest that in the case where both products are backlogged, it is optimal to produce the most expensive item in terms of the backorder cost (the product with the higher b ) until its stock reaches a predetermined (non-negative) level before switching to save the less expensive product from backlog. In addition, it is shown that this safety stock level does not depend on the level of backlogs of the less expensive products and can, in certain cases, be signi cantly high depending on the cost and tra c parameters.

Similar results have been shown for an analogous continuous ow model. On the one hand, it may be considered somewhat surprising that the optimal policy should have the identical structure for the make-to-stock queue as for the two part type continuous model with an unreliable machine. On the other hand, it is relieving that the optimal policy has the same structure for two models that represent randomness in very di erent ways indicating the robustness of the structure. This strongly suggests, for instance, that for the continuous model with part type dependent breakdown rates the structure should be retained.

Our results contribute to the understanding of the control problem of the single stage multi-product system. These results could also be useful for the multi-product Let Policy b be an optimal hedging point policy with a non-negative hedging point, z = (z 1 ; z 2 ), and a switching curve which di ers from the straigth-line de ned in Theorem 1. This switching curve for Policy b has at least one point on the x 1 axis. Let p 1 be the minimum of the x 1 coordinates of these points. There are two cases to be considered depending on whether p 1 is greater than z m 1 or not.

Case 1: p 1 > z m 1 Let us construct another hedging point policy, Policy a, with the same hedging point z as Policy b, and a switching curve which is: a vertical line through (z m 1 ; 0) for x 2 < 0; the x 1 axis for x 2 = 0, z m 1 x 1 p 1 ; the same as the switching curve of Policy b elsewhere. Policies a and b are illustrated in Figure 3. Consider two trajectories, X a and X b , that start at the hedging point and evolve under Policies a and b respectively. These trajectories are the same until an arrival of type 2 causes them to enter the region x 2 < 0. Let s denote the last time instant just before the two trajectories separate. Since X a 1 (s) = X b 1 (s) < p 1 , from corollary 1, both trajectories reach the point (p 1 ; 0) at the same time instant T 1 .

By construction, Trajectories X a and X b are identical for t > T 1 until an arrival of type 2 again takes them to the region x 2 < 0 in which case the above scenario restarts.

Consider now the costs of Policies a and b over the interval s; T 1 ]: From Section 2.1, the instantaneous cost function for x 2 < 0, is given by: c

(x) = 8 < : h 1 x 1 b 2 x 2 x 1 > 0 b 1 x 1 b 2 x 2 x 1 0
This can also be expressed as: c(x 1 ; x 2 ) = c m (x 1 ) b 2 2 W(x 1 ; x 2 ) for x 2 0 where W is the aggregate workload, and c m is the instantaneous cost function given by:

c m (x 1 ) = 8 < : h m x 1 = (h 1 + b 2 2 1 )x 1 x 1 > 0 b m x 1 = (b 1 b 2 2 1 )x 1 x 1 0 Since hedging point policies are stable, it follows that, a b E x Z T 0 c(X(t))dt] = Z T 0 a b E x c(X(t))]dt = Z T 0 a b E x c m (X 1 (t))]dt b 2 2 Z T 0 a b E x W(t)]dt
At time s we have W a (s) = W b (s), and for all t in 0; T 1 ], the machine works at full capacity. Thus for t in 0; T 1 ], X a and X b verify the conditions of lemma 3 and, we obtain a b E x W(t)] = 0.

So the di erence in expectations of cost between the two trajectories in s; T] is the same as that for system where the instantaneous cost function in the non-positive x 2 region is given by c m . It can be noted that this cost function depends only on the value of the Part Type 1 surplus, x 1 .

Consider the behavior of X 1 over s; t 1 ] when X 2 < 0, under Policies a and b respectively. Under Policy a, Part Type 1 behaves as if it were following the policy given by: Using (17), and disecting the problem as did Srivatsan and Dallery (1998) in three cases (when x b 2 (t) and x a 2 (t) are both positive, when x b 2 (t) is positive and x a 2 (t) is negative, and when both are positive), a straightforward computation reveals that for all t, a b c(X 1 (t); X 2 (t)

) a b c 1 (X 1 (t)) b 2 X 2 (t)] Furthermore, a b c 1 (X 1 (t)) b 2 X 2 (t)] = a b c 1 (X 1 (t)) + 2 1 b 2 X 1 (t) b 2 2 W(t)] (18) = a b c m (X 1 (t))] b 2 2 a b W(t)] (19) 
We have a b W(0) > 0. So, from Lemma 4 and (18) it follows that a b E c(X(t))] a b E x c m (X 1 (t))] Under policy a, part Type 1 behaves as if it were following the optimal hedging point policy for the single-part-system where the arrival rate, the production rate and the function of cost are respectively, 1 , 1 and c m (see the appendix).

So we get

a b E x Z T 0 c m (X 1 (t))dt] 0
Since this is true for every renewal cycle when Trajectories X a and X b leave their hedging point, we get, lim

T!1 1 T E a x Z T 0 c m (X 1 (t))dt] lim T!1 1 T E b x Z T 0 c m (X 1 (t))dt]:
Subcase 2: The switching curve does intersect the line x 1 = z m 1 in the point ẑ = (z m 1 ; ẑ2 ). Let Policy a be a hedging point policy with the same hedging point z as policy b and whose switching curve is the vertical line x 1 = z m 1 for x 2 < ẑ2 and the same as policy b elsewhere.

Consider two trajectories X a , X b which evolve respectively under policy a and b, and that originate at the same point x at time t = 0. From Corollary 1, the trajectories pass through the point ẑ at the same time T 1 . Using the same arguments as in the proof of subcase 1, it follow that for all t in 0;

T 1 ] a b E c(X(t))] a b E c 1 (X 1 (t)) b 2 X 2 (t)] a b E c m (X 1 (t))]]
Furthermore as in case 1, the trajectories of part type 1 under policies a and b satisfy the conditions of Theorem 2 of the appendix, and Remark: In the case where 1 = 2 , we actually have in case 1 a b c(X(t)) = a b c m (X 1 (t)) for t in s; T 1 ] on the coupled path.

A.2 Results in the Single-Part-Type System

In this section, we derive results based on comparisons of the cost function of (1) for trajectories generated by two di erent policies over a given interval of time. The system considered here is a single-part-type system with exponential production and demand interarrival times, with rates and respectively. In this case, the controls associated with the policies are of the form: C a = 8 < : 0 the action is to idle 1 when the action is to produce 29 For this system a hedging point policy is optimal. Following Buzacott and Shanthikumar (93), the optimal hedging point z is given by:

x 1 = z m 1 = b ln ( h b+h ) ln c (20) 
In most of the cases considered below, neither of the two policies is a hedging point policy. But the trajectories generated by these policies satisfy conditions that are relevant in the context of the two-part-type system. This policies are admissible scheduling policies in the sense of [START_REF] Veatch | Scheduling a Make-to-Stock Queue: Index Policies and Hedging Points[END_REF]: they are functions of the state X and the time instant t, and are nonanticipating with respect to X.

Let the expected cost of policy a in the interval s; f] be denoted as J a (s; f) = Ef Z f s c(x a (t))dtjx a (s) = xg (For notational simplicity, we do not explicitly express the dependence of this cost on the initial conditions x a (s).)

The di erence in the expected costs of policies a and b in the interval s; f] is represented by J a b (s; f) = J a (s; f) J b (s; f) Let J b be the long term average cost of policy b . Let J be the optimal long average cost.

We rst show that for some speci ed initial conditions and the same nal conditions, a trajectory generated by a hedging point policy in an interval 0; T] incurs a cost no greater than that generated by any other feasible policy. Note that our result pertains to total costs incurred over a nite interval. Lemma 6 Consider two trajectories X a and X b and an interval of time 0; T] such that: X a is generated by the optimal hedging point policy and X b is generated by some other policy over 0; T] and:

1) X b (0) X a (0) z or X b (0) X a (0) z; 2) X a (T ) = X b (T ) = z. Then, J ab (0; T) 0.

Proof: Using the uniformization of Markovian processes, we can take and such that + = 1 without loss of generality. Let G be the in nitesimal generator of the From condition 3 of the lemma, we have V (x b (0)) V (x a (0)). Thus, from (25) J b (0; T) J a + V (X a (0)) V (z) = J a (0; T) over an interval 0; T], have the same initial and nal conditions, and their nal values at T are greater than the optimal hedging point value, then the cost incurred by X a is no greater than that incurred by X b .

Theorem 2 Consider two trajectories X a and X b and an interval 0; T] such that X a and X b satisfy Condition C1 over the interval and: 1) X a is generated by the optimal hedging point policy for all t 2 0; T] such that X a (t) < z;

2) X a (t) X b (t) for all t 2 0; T] such that X a (t) > z.

3)X a (0) = X b (0); 4)X b (T ) = X a (T ) z. Then, J ab (0; T) 0 Proof: We have to consider two cases.

Case 1: X a (0) = X b (0) z. Now, if X a (t) z for all t in 0; T], then from Condition 2, hz c(X a (t)) c(X b (t)) for all t in 0; T]. The more interesting case is when Trajectory X a goes below z at least once in 0; T]. De ne t i the time instant when Trajectory X a crosses z from above, for the ith time. From Condition 4, there also exists at least one time instant such that Trajectory X a crosses z from below. De ne i the time instant when Trajectory X a crosses z from below, for the ith time. By de nition we have: a b J(0; T) = a b J(0; t 1 )+ n 1 X i=1 a b J(t i ; i )+ a b J( i ; t i )]+ a b J(t n ; n )+ a b J( n ; T) (26) For all t in i ; t i ] and in n ; T], we obtain as above hz c(X a (t)) c(X b (t)). For all t in t i ; i ] and in 0; t 1 ], Trajectories X a and X b satisfy conditions of Lemma 7. Thus, we have: a b J(t i ; i ) 0 and a b J(0; t 1 ) 0: Hence, from (26) we obtain a b J(0; T) 0.

Case 2: X a (0) = X b (0) < z. From the conditions of the lemma, there exists a time instant such that X a reaches z. Let be the rst of these instants. In the interval 0; ], the trajectories satisfy the conditions of the lemma 6. Therefore, a b J 0; ] 0. In ; T], we can use the same arguments as in Case 1. Thus we have: a b J 0; T] = a b J 0; ] + a b J ; T] 0 2
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  Markov process with Policy (with = b or = a), G( )f(x) = lim h!0 E f(x(h)) f(x(0))] hwhere f is a function of the states. Using Dynkin's formula (see Karlin and Taylor (81)) in the interval 0; T], we have: f(X)dt] = E f(x(T))] f(x(0)) = f(z) f(x(0)) (21)There exists a relative value function V which veri es the following dynamic equation:J c(x) = G( )V (x) (22)Since a is the optimal policy, It follows from (22) that,G(a)V (x) = J c(x) = min (J ) c(x) = min (G( )V (x))Thus, we have :G(b)V (x) J c(x)(23)Integrating and taking the expected value, we obtain from (23): )V (X(t))dt) = J T J a (0; T)(25)Combining (21) and (24) it follows, J b (0; T) J + V (X b (0)) V (z):

multi-stage system which constitutes a major challenge both from theoretical and practical perspectives. Future research will focus on some of the issues in multiple stage production. a 1 = 8 < :

1 x a 1 < z m 1 0 x a 1 = z m 1 Thus the surplus trajectory for Part Type 1 under Policy a over the interval s; t 1 ] when X a 2 < 0 is the same as that for generated by an optimal hedging point policy for the single-part-system where the arrival rate, the production rate and the function of cost are respectively, 1 , 1 and c m . One can see that the corresponding optimal hedging value is given by z m 1 (see equation (20) of the following appendix). Also, by construction, when X a 2 (t) = 0 we have x a 1 (t) x b 1 (t) for t 2 s; T 1 ] such that x a 1 (t) > z m 1 :

Thus trajectories X a and X b satisfy conditions of Theorem 2 of the appendix from which we get

Since this is true for every renewal cycle when Trajectories X a and X b are di erent, we get, lim

Case 2: p 1 z m 1 . There are two subcases corresponding to whether the switching curve intersects the line x 1 = z m 1 or not.

Subcase 1: The switching curve does not intersect the line x 1 = z m 1 .

The policy a is now chosen such that the hedging point is z a = (z m 1 ; z 2 ), and the switching curve is de ned by the straight line x a 1 = z m 1 ; x 2 < z m 1 (see Figure 4).

Consider two trajectories X a , X b which evolve respectively under policies a and b, and originate at their respective hedging point. From Corollary 2, X a and X b leave and reach these hedging points at the same instants. Note the switching curve for policy b does not intersect the line x 1 = z m 1 , and since z 1 < z m 1 and z 2 = z m 2 , trajectories X a , X b are such that Note that the Policy a is a static priority policy that always produces Part Type 1 rst. Since initially X a 1 (0) > X b 1 (0) and X a 2 (0) = X b 2 (0), the sample path comparison yields,

2

Next, we establish a similar result for the case where the initial conditions of the two trajectories satisfy a stricter condition than in Lemma 6 but the nal conditions of the trajectories are not as restrictive as in Lemma 6. Lemma 7 Consider two trajectories X a and X b and an interval 0; T] such X a is generated by the optimal hedging point policy and X b by some other policy over 0; T] and:

1) X b (0) X a (0) z; 2) X b (T ) X a (T ) = z. Then, J ab (0; T) 0.

Proof: There are two cases to be considered. Case 1: Trajectory X b does not go below z in 0; T]. Let t m a time instant when Trajectory X b takes its minimum value in 0; T] . De ne a new trajectory X c as follows:

X c = 8 < : X b (t) (X b (t m ) z) 0 t t m z t m < t T By de nition, for all t in 0; T] X b (t) X c (t) z which gives, J b (0; T) J c (0; T). The Trajectories X a and X c satisfy the conditions of Lemma 6. Thus, J b (T ) J c (T ) J a (T )

Case 2: X b (t) < z for some t, 0 < t < T. Let t n be the last time instant such that X b crosses z from below. From condition 2 of the lemma, t n does exist. De ne a new trajectory X c as follows:

X c = 8 < : X b (t) (X b (t m ) z) 0 t t n z t n < t T Similarly as in the case 1, we obtain J b (t) J c (t) J a (t). 2

We now combine the results of Lemmas 6 and 7 to show that if we choose trajectories X a and X b and an interval 0; T] such that X a , X b satisfy speci c conditions