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A Performance Comparison of Pull Type Control Mechanisms for Multi-Stage Manufacturing Systems

With the emergence of Just-in-Time manufacturing, production control mechanisms that react rapidly to actual occurrences of demand are gaining importance. Several pull type control mechanisms have been proposed to date, but it is usually di cult to quantify how good these mechanisms are, as well as understanding the structural properties that make them desirable. By using a two stage model and an optimal control framework, we study some of these issues here. Our framework permits quantifying the performance of classical mechanisms such as base stock and kanban and more complex mechanisms such as generalized and extended kanban. We also analyze the tradeo s between single versus multiple control points and service level constraints on the backorders.

Introduction

The emergence of Just-in-Time manufacturing approach has underlined the importance of production control and coordination mechanisms that react to actual occurrences of demand 1 rather than future demand forecasts. This issue is especially important for manufacturing systems consisting of multiple stages where there is also the additional complexity of coordinating the di erent stages of production in addition to the e ort to follow the realizations of demand. Production control mechanisms that use the actual occurrences of demand rather than future demand forecasts to control the ow of material are known as pull type control mechanisms. Several control mechanisms have been proposed for pull type manufacturing.

However due to the complexity of the problem, it is di cult to quantify, in terms of cost, the advantages and disadvantages of these existing mechanisms, as well as understanding, in general, the properties of good control mechanisms. In this paper, we attempt to clarify some of these issues using a simple two stage model that admits an exact analysis.

Two of the better known pull control mechanisms are base stock and kanban (see Buzacott and Shanthikumar 3] for example). These mechanisms resolve the tradeo between unsatis ed demand and holding costs in di erent ways. The base stock system was originally proposed for production/inventory systems with in nite production capacity and uses the idea of a safety stock for nished good inventory as well as safety bu ers between stages for coordination. Kanban mechanism, on the other hand, has its emphasis on coordinating production by using a nite number of production authorization cards that transmit demand requests. Both systems are fairly simple to implement requiring the de nition of a single parameter per each stage which corresponds to safety stocks and production authorization cards respectively for base stock and kanban.

Since the base stock mechanism o ers the feature of rapid reaction to demand and the kanban mechanism achieves better coordination and controlled work in process inventories, intuitively, combining the respective merits of base stock and kanban control mechanisms would entail many potential bene ts. Buzacott 2] and Zipkin 10] initiate the rst implementation of this approach. The resulting mechanism, called the generalized kanban, borrows the idea of safety stocks from the base stock system and production authorization cards from the kanban system. As a relative drawback however, this hybrid system is de ned by two parameters per stage, one de ning the safety stocks the other de ning the number of production authorization cards.

Recently, Dallery and Liberopoulos 4] have introduced a new pull type control mechanism called extended kanban which is also a mixture of base stock and kanban. This mechanism is also de ned by two parameters per stage but is conceptually clearer than generalized kanban and is potentially easier to implement. The generalized kanban as well as the extended kanban include both the base stock and kanban systems as special cases (see 4]).

Although the two parameter per stage mechanisms such as generalized or extended kanban o er potential improvements over single parameter mechanisms, it is not obvious how these improvements translate into savings in cost and whether or not it is worth investing in a more complex mechanism. Our aim in this paper is to explicitly quantify these trade-o s albeit in a rather simpli ed framework.

The model we study is the simplest system that captures the key issues in pull type control in a multi stage production environment: we consider two single machines in tandem with a work in process inventory in between the two stages and a nished goods inventory after the second stage. Demands that arrive to the system are satis ed from the nished goods inventory whenever possible and are backordered otherwise. This system allows us to analyze the important tradeo between backorders and the cost of holding nished goods and work in process inventory that help reduce backorders. To quantify this tradeo , we consider two di erent cases. In the rst case, linear holding and backorder costs are incurred for the items that are held in stock and those that are backordered respectively. In the second case, a certain service level with respect to backordered items is required. When processing times of both machines are exponentially distributed and demands occur according to a Poisson process, these production control problems can be set as optimal control problems.

The rst case (i.e. with linear backorder costs) has been studied previously by Veatch and Wein 9] who also give some numerical examples on the performance of some of the pull type control mechanisms considered here. We use the same framework to compare the performance of many alternative pull mechanisms ranging from simpler mechanisms to more complicated ones than those considered in 9].

One interesting issue that we can analyze through our framework is single versus multiple control points in the system. When a system consisting of multiple machines in tandem is viewed as a single stage system, control mechanisms that control the system only at the point where the raw parts enter the system can be de ned. CONWIP (Spearman et al.,[START_REF] Liberopoulos | A Uni ed Framework for Pull Control Mechanisms in Multi Stage Manufacturing Systems[END_REF]) is such a mechanism where the shipment of a nished part to the customer causes a raw part to enter the system. We give theoretical and numerical results that explain some of the tradeo s in single stage versus multiple stage decompositions of the system.

It is frequently argued that in many cases linear backorder costs are not appropriate and a service level approach is more desirable. We discuss the extension of the basic model to a case with a constraint on the proportion of un lled demand and give numerical examples.

By quantifying the tradeo s between single and two parameter policies per stage and single versus two stage control, our comparisons shed further light into the desirable properties and shortcomings of a given pull control mechanism.

The outline of the paper is as follows: in section 2, we introduce the model and the corresponding control problem. We also describe the pull control mechanisms to be analyzed and provide a qualitative comparison based on the control space descriptions of the mechanisms. Single stage control mechanisms di er from multi-stage mechanisms, we describe them brie y and give a structural result. In section 3 we give numerical results on the performance of various pull control mechanisms and discuss some of the tradeo s involved.

Section 4 studies the extension of the basic model to the case with service level constraints.

Our conclusions are given in section 5. We consider two single machines in tandem which are connected by an intermediate bu er. Whenever a part is nished in the rst machine, it is placed in an intermediate bu er and whenever a part is nished in the second machine, it is placed in the nished goods inventory. The input bu er of the rst machine consists of raw material which is always available, so the rst machine is never starved. The demand that arrives to the system is satis ed from the nished goods inventory whenever possible and is backlogged otherwise.

This system is displayed in Figure 1. Holding costs are incurred for the parts held in the intermediate bu er and the nished goods inventory. Furthermore, whenever a demand is backordered, backorder costs are incurred. We are interested in controlling the release of parts from a bu er to the downstream machine so that the sum of the long run average holding and backorder costs are minimized.

To give a precise description of the model, consider the case where demands arrive to the system according to a Poisson process with rate and the machine in stage i has exponentially distributed service times with rate i (i = 1; 2). Let X 1 (t) denote the number of parts in the intermediate bu er plus the part that is currently in production in the second machine at time t and let X 2 (t) be the number of parts in the nished goods inventory at time t. Linear holding costs of h 1 proportional to X 1 (t) is incurred in the rst stage. As for the second stage, holding costs are incurred at rate h + 2 whenever the nished goods inventory is non-negative and backorder costs are incurred at rate b whenever there are backorders. To simplify the notation, we can de ne the piecewise linear cost function h 2 , such that:

h 2 (x) = 8 < : h + 2 x if x 0 bx if x < 0 (1) 
A part release control policy, determines dynamically whether the machines should be authorized to work or not. Our objective is to nd a part release policy such that the long run average cost per unit time:

lim T!1 sup E h R T 0 h 1 X 1 (t) + h 2 (X 2 (t)) dt i T (2)
is minimized.

By standard results in Markov decision processes, an optimal stationary policy exists for the above problem and can be obtained through the solution of the optimality equation:

V (x 1 ; x 2 ) + g = h 1 x 1 + h 2 (x 2 ) + V (x 1 ; x 2 1) + 1 minfV (x 1 ; x 2 ); V (x 1 + 1; x 2 )g + 2 minfV (x 1 ; x 2 ); V (x 1 1; x 2 + 1)g

where V (x 1 ; x 2 ) is the relative value function and g is the optimal cost per unit time. Note that we have set + 1 + 2 = 1 without loss of generality as well as using the convention that minfV (x 1 ; x 2 ); V (x 1 1; x 2 + 1)g = V (x 1 ; x 2 ) when x 1 = 0.

Control Mechanisms

Below, we introduce the details of the pull type control mechanisms that will be analyzed in the sequel. The development here follows closely that of Liberopoulos and Dallery 6] where more details can be found.

For ease of exposition, we represent all control mechanisms by queueing networks with synchronization stations. All the mechanisms that follow can be represented using at most ve di erent type of queues: one corresponding to nished parts in stage i (denoted by

MF 1 P 0 D 1 parts to customers customer demands raw parts D 2 P 1 P 2 D 3 I 1 I 2 MF 2
Figure 2: The base stock mechanism P i ), one corresponding to demands for production of new parts in stage i (D i ), one that corresponds to production authorizations in stage i (A i ), one corresponding to pairs of nished parts and production authorizations in stage i (P A i ) and the nal one corresponding to pairs of demands for production and production authorizations in stage i (DA i ). Note that, P 0 corresponds to the raw parts bu er which is assumed to be always non-empty. One can also de ne the queue of parts waiting to be processed in stage i, I i , for a complete description although this queue is not critical for our purpose here.

Base Stock Mechanism

The base stock mechanism is displayed in Figure 2. In the gure, D 3 corresponds to customer demands. The base stock mechanism is completely described by two parameters S 1 and S 2 corresponding to the base stock levels in stages 1 and 2 respectively. Initially, there are S 1 (S 2 ) parts in queue P 1 (P 2 ) while all other queues are empty. Whenever a customer demand arrives, it joins the queue D 3 and requests the release of a nished part from P 2 . At the same time, this demand is also transmitted to D 2 and D 1 thereby requesting a release of parts from P 0 to I 1 and P 1 to I 2 . Hereon, we use the notation TSBS(S 1 ; S 2 ) to denote the two stage base stock policy with parameters S 1 and S 2 .

Kanban Mechanism

The kanban mechanism can be seen in Figure 3. Initially, the queue PA 1 (P A 2 ) contains
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Figure 3: The kanban mechanism K 1 (K 2 ) nished parts each part with a kanban card attached on it while all the other queues are empty. Whenever a customer demand arrives to the system, it joins queue D 3 and requests the release of a nished part from queue PA 2 . If a part is available in PA 2 , it is released to the customer after having detached the kanban card attached to it. The freed kanban card then joins the queue DA 2 and requests the release of a nished part from PA 1 to I 2 . If PA 1 is not empty, this release will be performed with the kanban detached from the part transferred to DA 1 where it will cause the release of a raw part into I 1 . This way, customer demands are transmitted upstream in the system using the kanban cards. The control is exerted through the availability of a card in a given stage (if the card is not available at the time of request, demand will not be transmitted upstream until a card becomes available). Once again, the mechanism will be completely described by the initial number of kanban cards at each stage, K 1 and K 2 . We will denote this system by TSK(K 1 ; K 2 ).

Generalized Kanban Mechanism

The generalized kanban mechanism (Buzacott 2], Zipkin 10]) is displayed in Figure 4. Initially, the queue P 1 (P 2 ) contains S 1 (S 2 ) parts and the queue A 1 (A 2 ) contains K 1 (K 2 ) production authorizations while all other queues are empty. The evolution of generalized kanban is very similar to that of the kanban mechanism except for the e ects The additional kanbans in the generalized kanban system serve the purpose of relaxing this constraint. In this case, demand can be transferred upstream from a stage even in the absence of nished parts as long as a kanban card is available. We denote the two stage generalized kanban system with parameters S 1 , S 2 and K 1 , K 2 by TSGK(S 1 ; K 1 ; S 2 ; K 2 ). Note that, TSGKS(K 1 ; K 1 ; K 2 ; K 2 ) is equivalent to TSK(K 1 ; K 2 ) and TSGK(S 1 ; 1; S 2 ; 1) is equivalent to TSBS(S 1 ; S 2 ) (see 3] and 4]) .

Extended Kanban Mechanism

The extended kanban mechanism (Dallery and Liberopoulos 4]) is displayed in Figure 5. In this mechanism, there are initially S 1 (S 2 ) parts with kanbans attached to each of them in queue PA 1 (P A 2 ) and K 1 S 1 (K 2 S 2 ) free kanbans in queue A 1 (A 2 ) while all other queues are empty. Note that, this mechanism has the condition that K i S i (i = 1; 2). When a demand arrives to the system, it joins the queue D 3 as well as the queues D 2 and D 1 (as in the base stock mechanism). The demand that joins the queue D 3 requests a nished part from queue PA 2 , if there is a part available in PA 2 , it is released to the customer and the detached kanban is transferred to the queue of free kanbans A 2 . Concurrently, the demand that has joined D 2 requests the release of a nished from PA 1 .

The release is now dependent on the availability of nished parts in PA 1 as before but also
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Figure 5: The extended kanban mechanism on the availability of free kanbans in the queue A 2 . If PA 1 and A 2 are both non-empty, the release takes place, the part from moves PA 1 to I 2 while a kanban card is transferred from A 2 to A 1 . A similar type of synchronization is required for the release of raw parts from P 0 to A 1 . We denote the extended kanban system with parameters, S 1 , S 2 and K 1 , K 2 by TSEK(S 1 ; K 1 ; S 2 ; K 2 ). As in the generalized kanban system, setting the parameters K 1 and K 2 to in nity in a TSEK results in an equivalence to TSBS(S 1 ; S 2 ). On the other hand, setting K i = S i (i = 1; 2) in TSEK leads to an equivalence to TSK(K 1 ; K 2 ) (see 3]

and 4]).

A Qualitative Comparison: State Space Representations

It has been shown by Veatch and Wein 8] that optimal control policies have certain monotonicity properties. In particular, the authors show that for both machines the "produce/do not produce" regions are separated by monotone switching curves. Figure 6 displays typical switching curves and the control regions. As can be seen in the gure, machine 1 is authorized to produce when, x 1 , the level of work in process is below a decreasing (in x 2 ) switching curve. Similarly, machine 2 is authorized to produce when, x 2 , the level of nished goods inventory is below a second (increasing in x 1 ) switching curve. In fact, note that the regions where only machine 1 or machine 2 is authorized to produce are transient. Monotone control policies can be completely characterized by a pair of switching curves which de ne the region where both machines are authorized to produce. Also note that, the point where the two switching curves intersect is the hedging point of the system, the point which the control policy drives the system towards. The monotonicity properties provide interesting qualitative insights into the structure of good control policies. The implications of the monotone structure is quite intuitive; good policies must constrain the work in process levels in addition to the level of nished goods inventory. At the same time, the work-in-process levels should change depending on the level of the nished items bu er with higher levels of backlog (or lower levels of nished items) requiring higher (or equivalent) levels of work-in-process. We can qualitatively analyze the performance of the pull control mechanisms described earlier keeping these concerns in mind.

Figure 7 displays the state space representations of the base stock and kanban policies.

Note that, the second stage parameters S 2 and K 2 play identical roles with respect to the
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Figure 7: Base Stock and Kanban Policies control of the second machine. On the other hand, in the base stock mechanism the rst machine works as long as x 1 + x 2 < S 1 + S 2 whereas in the kanban mechanism the rst machine will work as long as x 1 + x 2 < K 1 + K 2 and x 1 < K 1 + K 2 . As a result, while the work in process inventory x 1 may grow unboundedly in the base stock mechanism, it is bounded by the total number of production authorization cards in the kanban mechanism.

In fact, Veatch and Wein 9] prove that the base stock mechanism can never be exactly optimal due to this drawback.

Figure 8 displays the extended and generalized kanban control mechanisms. The roles of the parameters S 1 , S 2 , K 1 and K 2 in de ning the respective switching curves can be seen on this gure. The basic di erence between these two mechanisms and the kanban mechanism is apparent from the gure. In particular, generalized and extended kanban handle the work in process constraints in a di erent way than standard kanban. While the rst switching curve of the kanban mechanism changes its slope from -1 to 1 when x 2 = 0, the other two mechanisms have further exibility in selecting the point where this change occurs. While extended kanban permits changing the slope at levels x 2 0, generalized kanban permits changing the slope at both positive and negative levels of x 2 . In fact, in the particular case of the model considered in this paper, extended kanban can be viewed as a special case of the generalized kanban mechanism. This is an interesting feature of the particular model, since in general both mechanisms have distinctly di erent behavior and properties as elaborated by Dallery and Liberopoulos 4]. The equivalence of the two mechanisms for this model can be explained as follows: although in the TSGK the parameter K 1 does not seem to play a role (see Figure 8), the de nition of the mechanism enforces setting K 1 1 as otherwise, the rst machine would never have the authorization produce. Alternatively, in Figure 8, initially K 1 seems to be a crucial parameter but a closer investigation reveals that the selection of K 1 does not really matter in itself (as long as K 1 S 1 ), since the switching curve (and thus the behaviour) is de ned by the sum K 1 + K 2 which can always be adjusted by the choice of K 2 .

Single Stage Control

In the previous sections, we discussed in detail the coordination mechanisms which control the release of material both to the rst and the second machine. An alternative approach is to view the system as consisting of a single stage which has two machines in tandem and control the release of material only to the rst machine. In this case, while the rst machine is directly controlled as before, the second machine is not directly controlled and produces whenever it can (i.e. whenever there are items completed in the rst stage and waiting to be produced). The single stage kanban system, also known as the CONWIP system (see Spearman et al. 7]) has received particular attention. However, single stage basestock, kanban, generalized kanban mechanisms can also be de ned analogous to their previously described two stage versions. It turns out that in this case generalized and extended kanban policies with identical parameters are equivalent (Liberopoulos and Dallery 5]). Hence, it
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Figure 8: Extended and Generalized Kanban Policies will su ce to consider SSGK from the point of view of performance. We use the shorthands SSBS(S), SSK(K) and SSGK(S; K) to denote these mechanisms having parameters S and K. Our framework enables us to quantify the single stage versus two-stage control tradeo s through the optimal control framework, but rst we elaborate on some qualitative issues.

Intuitively, the necessity to control the entry of material at multiple stages seems to stem from the fact that as material moves downstream in the production system some value is added to the part in process and as a result the holding costs at upstream stages can be considerably smaller than those at downstream stages. Hence, the di erence in upstream and downstream holding costs motivates keeping inventories upstream whenever possible which implies that it would be necessary to control the release of material in some intermediate stages. On the other hand, when holding costs do not change signi cantly between di erent stages of the system, it is plausible that intermediate control points are unnecessary, since in this case what matters is the total number of parts in the system regardless of their particular positions (upstream or downstream). Within our framework, we can concretize this last point by the following proposition which states that whenever holding costs are identical, the optimal policy is to always authorize the machine in the second stage to produce.

Proposition 1 When h 1 = h + 2 , the optimal control policy in the second stage is to produce whenever possible (i.e. when x 1 0).

Proof: See Appendix.

Remark: Proposition 1 can alternatively be stated as follows: one should never hold any intermediate inventory between stages 1 and 2. It should be noted that some pull control mechanisms violate this proposition by de nition of their behavior. This is the case, for instance, of the TSK, for which any positive value of K 1 , parts will be held in queue PA 1 (see Figure 3) at certain times. On the other hand, in TSBS for example, setting S 1 to zero in TSBS(S 1 ; S 2 ) results in an equivalence with SSBS(S 2 ). The same equivalence also holds true between TSGK and SSGK, as well as between TSEK and SSEK.

Performance Analysis

To analyze the performance of control mechanisms, we use the following setup. We set the demand rate to 1 without loss of generality and vary 1 and 2 as well as the cost parameters. The 18 di erent sets of data used in the following numerical experiments are displayed in Table 1. The rst three data sets have also been used by Veatch and Wein 9]. Table 1: Sets of parameters used iteration algorithm (see Bertsekas, 1] for example). We also compute the optimal policy for the given parameters by using value iteration in a truncated state space (state spaces of dimension up to 50 by 100 have been used). The comparisons are hence between the best performances that can be obtained from a given mechanism. In Table 2 below, we report the cost achieved by the optimal policy (denoted by "Opt." in the table) and the percentage suboptimality of the minimum cost achieved by each mechanism as well as the parameters of each mechanism yielding the minimum cost (given in parenthesis after the suboptimality value). The parameters are given in the order de ned in the previous sections. In displaying the parameters, we set K 1 to 1 in TSGK, since it does not play any role in our problem.

Using the parameter sets in

Consider the columns of Table 2, that correspond to single stage control mechanisms.

We observe in general that in most cases, either SSBS or SSK performs well. A more careful observation reveals that for the cases where both machines have equal production rates SSBS performs better than SSK and for the cases where the second machine is slower than the rst machine SSK performs better. In either case, SSGK is the clear winner, with a maximum error of 4.2%. One would be tempted to state that single state space policies are extremely e cient if it were not for the less than satisfactory results obtained in data Table 2: The cost of the optimal policy and the percentage suboptimality of the best policy within each pull control mechanism sets 3, 6 and 9. The common characteristics of these sets are a faster production rate in the second machine and higher holding costs in stage 2 than stage 1. The imbalance between the machines necessitates a considerable amount of safety stock in between but since the holding nished goods inventory is expensive, this safety stock should not be converted into nished goods until necessary and this can only be achieved by controlling the machine in the second stage.

The columns of Table 2 corresponding to two stage policies reveal other interesting properties. Firstly, TSBS performs better than TSK in all cases except those where the rst machine is faster than the second machine. The problem, however, is that when TSBS performs worse that TSK, it performs poorly whereas TSK seems more robust. In any case, when robustness is the issue TSGK is considerably more reliable than either TSK or TSBS.

Once again, the interesting observation here is that usually either one of TSK or TSBS performs well while TSGK always performs well since it can imitate the better system by an appropriate choice of the parameters.

Finally, note that in rows corresponding to parameter sets 10-18 of Table 2 SSKS performs better than TSKS while SSBS and SSGK perform as well as TSBS and TSGK respectively. This is not surprising in light of our previous results since this part of the data set corresponds to the the cases where the holding costs are identical in both stages of the system.

Service Level Constraints

It is frequently argued that although backordering demand is an important concern, backlog costs are di cult to quantify. An alternative approach to analyze the tradeo due to un lled demand is through service level constraints. A frequently used service level is ll rate de ned as the proportion of demands that can be satis ed from on hand inventory upon arrival.

In this section, we extend the previous discussion on qualitative properties of good control policies to systems with ll rate constraints.

Consider a ll rate constraint of the following type: the probability of ful lling an order from on hand inventory upon arrival must be at least (1 ). To make this de nition more precise, let t n be the time corresponding to the nth event (arrival of demand or service completion in either stage) in the system. Let I A () be the indicator function that corresponds to the demand arrival event, i.e. I A (t n ) = 1 if the nth event is an arrival and I A (t n ) = 0 otherwise. Furthermore, we can de ne a second indicator function, I b () that marks demand arrivals that are not satis ed from on-hand inventory. Hence:

I b (t n ) = 8 < : 1 if I A (t n ) = 1 and X 2 (t n ) 0 0 otherwise
The ll rate constraint is then:

lim n!1 E P n 0 I b (t n )] E P n 0 I A (t n )] (4) 
In other words, by setting the backorder cost b = 0, we obtain the identical objective function as in (2), however this time the minimization is subject to the constraint (4) 10% and 20 %. The "Opt." column reports the results of the minimum cost found by the Lagrangian heuristic (which is not necessarily the minimum cost that can be obtained by a stationary policy, in fact in the last row of the table the all three control mechanisms perform better than the Lagrangean heuristic.).

Table 3 is consistent with the preceding numerical results on the case with linear backorder costs. The SSGK performs signi cantly better than SSBS and SSK on the average. Furthermore, the di erence in the average performance is sharpened due to the existence of cases where single parameter policies can perform quite poorly (such as the case in the rows correspoding to parameter sets 2 and 11).

Conclusion and Future Research

Using a two stage model and an optimal control approach, we presented performance comparisons between various control mechanisms. It turns out that simple mechanisms such as kanban, base stock and even their single stage variants are very e ective for the model considered. On the other hand, these simple mechanisms have a major drawback in that under certain conditions they can perform poorly. This highlights the signi cant advantage of more complicated mechanisms such as generalized or extended kanban. These mechanisms do not necessarily perform signi cantly better than simpler ones for a given case but they are guaranteed to perform well under all circumstances.

Many interesting research issues remain unaddressed. An important problem is the optimization of the parameters of a given control mechanism. This is especially important for generalized and extended kanban mechanisms which require more parameters than the others. One of our results that could be useful from the design point of view is that good generalized (or extended) kanban policies in general tend to imitate the better of base stock and kanban policies. It seems plausible then to consider an approach where a good base stock or kanban policy is improved upon by iteratively adjusting the additional parameters to obtain a good generalized or extended kanban policy.

Another interesting and relevant extension is to consider multiple part types. This brings in the additional di culty of sharing manufacturing resources between di erent part types in addition to the decisions of whether or not to produce that were considered for the single part type case. The design of simple but e ective multi stage pull mechanisms for multiple part type systems remains as a challenging issue for future research.

V (x 1 ; x 2 ) = h 1 (x 1 ) + h 2 (x 2 ) + V (x 1 ; x 2 1) + 1 minfV (x 1 + 1; x 2 ); V (x 1 ; x 2 )g + 2 minfV (x 1 1; x 2 + 1); V (x 1 ; x 2 )g

We would like to argue through value iteration by using the fact that the optimal in nite horizon cost V (x 1 ; x 2 ) can be obtained as the limit of corresponding k-horizon cost functions as the horizon k tends to in nity. To this end let V k (x 1 ; x 2 ) denote the the minimum total cost incurred over k stages starting from state (x 1 ; x 2 ). Furthermore, let V 0 (x 1 ; x 2 ) = 0 for all x 1 and x 2 .

To obtain the necessary result, we need to show that: minfV (x 1 1; x 2 + 1); V (x 1 ; x 2 )g = V (x 1 1; x 2 + 1) [START_REF] Veatch | Monotone Control of Queueing Networks[END_REF] or equivalently V (x 1 1); x 2 + 1) V (x 1 ; x 2 ), whenever x 1 > 0.

The above property holds trivially for V 0 (x 1 ; x 2 ), now we assume that it also holds true for V k (x 1 ; x 2 ), to complete the proof we need to show that V k+1 (x 1 1); x 2 + 1) V k+1 (x 1 ; x 2 ). Note that:

V k+1 (x 1 ; x 2 ) = h 1 x 1 + h 2 (x 2 ) + V k (x 1 ; x 2 1) + 1 minfV k (x 1 + 1; x 2 ); V k (x 1 ; x 2 )g + 2 minfV k (x 1 1; x 2 + 1); V k (x 1 ; x 2 )g [START_REF] Veatch | Optimal Control of a Make-to-Stock Production System[END_REF] and V k+1 (x 1 1; x 2 + 1) = h 1 :(x 1 1) + h 2 (x 2 + 1) + V k (x 1 1; x 2 ) + 1 minfV k (x 1 ; x 2 + 1); V k (x 1 1; x 2 + 1)g + 2 minfV k (x 1 2; x 2 + 2); V k (x 1 1; x 2 + 1)g (11)

Now we will perform a term by term comparison: rstly, since h 1 = h + 2 , h 1 :(x 1 1) + h 2 (x 2 + 1) h 1 x 1 + h 2 (x 2 ). Secondly, V k (x 1 1; x 2 ) V k (x 1 ; x 2 1) by the induction assumption. By the same assumption: 2 V k (x 1 2; x 2 + 2) 2 V k (x 1 1; x 2 + 1). Hence, we are left with the terms corresponding to production in the rst stage. We concentrate on these terms by considering all 4 possible combinations of control actions: Case 1: Optimal kth stage actions are to produce in stage 1 in both (x 1 ; x 2 ) and (x 1 1; x 2 + 1). In this case, the resulting term on the right hand side of ( 10) is: V k (x 1 + 1; x 2 ) and the term on the right hand side of (11) is: V k (x 1 ; x 2 +1). By the induction assumption, we have: V k (x 1 ; x 2 + 1) V k (x 1 + 1; x 2 ).

Case 2: Optimal kth stage actions are not to produce in machine 1 in both (x 1 ; x 2 ) and (x 1 1; x 2 + 1). The desired inequality is obtained exactly as in the previous case by the induction assumption.

Case 3: Optimal kth stage actions for machine 1 are to produce in state (x 1 ; x 2 ) and not produce in state (x 1 1; x 2 +1). This case can not happen since it contradicts the monotonicity property proved in Veatch and Wein 8] which states that if it is optimal to produce in machine 1 in state (x 1 ; x 2 ), it is also optimal to produce in machine 1 is state (x 1 1; x 2 +1). Case 4: Optimal kth stage actions for machine 1 are not to produce in state (x 1 ; x 2 ) and produce in state (x 1 1; x 2 + 1). Since the optimal action in state (x 1 1; x 2 + 1) is to produce V k (x 1 ; x 2 + 1) V k (x 1 1; x 2 + 1). However, V k (x 1 1); x 2 + 1) V k (x 1 ; x 2 ) by the induction assumption giving the desired inequality.

We have proved that the desired property propagates through value iteration. To complete the proof, we note that the in nite horizon problem will also inherit the desired property by letting k ! 1. Furthermore, under standard assumptions, limits can be taken as the discounting factor approaches 1 to show that average cost per unit time problem also has the identical property.
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 1 Figure 1: The Two Stage Production System
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 4 Figure 4: The generalized kanban mechanism
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 6 Figure 6: Optimal Switching Curves
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 1 

	, we perform the following experiment: for each con-

Table 3 :

 3 Service Level Constraint Results(r) is su ciently close to the desired service level . The optimal holding cost under this policy can then be computed by xing the policy and recomputing the cost by setting r = 0.

	Set 1 2 3 10 11 12	Opt 27.46 20.66 14.95 16.73 11.72 9.36	10 % ll rate SSBS 15.48(23) 14.86(23) 14.86(23,23) 19.16 9.81 (17) 20 % ll rate SSKS SSGKCS Opt SSBS SSKS 6.58 (17) 5.85 (17,16) SSGKCS 15.00 (15) 13.02(15) 3.29 (15,6) 13.50 23.40 (11) 17.40 (11) 6.81 (11,6) 19.60(14) 19.60 (14) 19.26 (14,9) 10.20 7.94(10) 7.75 (10) 7.25(10,8) 9.56(23) 8.37 (23) 8.37(23,23) 12.01 8.91 (17) 4.08 (17) 3.08(17,16) 23.12(15) 19.54(15) 3.92(15,6) 8.13 33.21 (11) 23.25 (11) 7.38(11,6) 0.85(14) 0.85(14) 0.53(14,9) 6.08 -1.32 (10) -1.32 (10) -1.97(10,8)
	Average Suboptimality Worst Case Suboptimality	13.94 23.12	12.71 19.60	8.37 19.26	13.66 33.21	9.62 23.25	4.73 7.38

Table 3

 3 reports the optimal performance of single stage base stock, kanban and generalized kanban policies for di erent parameter sets under two di erent ll rate constraints,

If we consider truncated state spaces, we can solve the above problem exactly using a linear programming formulation. However this approach will not provide a lot of insight, since the optimal policy will be randomized and will not be easy to implement. To obtain a close to optimal non randomized solution of the above problem, we use a Lagrangian relaxation by adding the constraint to the objective function with a penalty of r. The resulting problem is referred to as the problem with un ll penalties.

To analyze the problem with un ll penalties, note that the Lagrangian leads to the following optimality equations:

once again with the convention that minfV (x 1 1; x 2 + 1); V (x 1 ; x 2 )g automatically equals V (x 1 ; x 2 ) whenever x 1 = 0.

Examining the above optimality equations, we note that the un ll penalties can be converted into equivalent backorder costs. The equivalent backorder cost function is given by:

The only di erence between the backorder cost and un ll penalty problems is the backorder cost function. This prompts the question as to whether the monotonicity properties are retained for this problem as well. Unfortunately, the new holding cost function does not satisfy the directional submodularity conditions used by Veatch and Wein 8] to prove monotonicity which rules out an inductive proof. Furthermore, there are numerical examples in which optimal switching curves are not monotone. Nevertheless, in most numerical examples the optimal switching curves seem to be monotone.

To relate the problem with un ll penalties to the one with service level constraints, note that each un ll penalty r induces an associated ll rate (r). One can then vary r until Appendix Proof of Proposition 1: Consider the case of minimizing the total discounted costs over an in nite horizon with discount factor , i.e we would like to nd the policy that minimizes: lim T!1 sup E " Z T 0 e t (h 1 X 1 (t) + h 2 (X 2 (t))) dt # [START_REF] Liberopoulos | A Uni ed Framework for Pull Control Mechanisms in Multi Stage Manufacturing Systems[END_REF] Let + 1 + 2 + = 1 without loss of generality, the corresponding optimality equations are as follows: