
HAL Id: hal-02547727
https://hal.science/hal-02547727

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Symmetry in Linear Time Temporal Logic
Model Checking: One Step Beyond

Khalil Ajami, Serge Haddad, Jean-Michel Ilié

To cite this version:
Khalil Ajami, Serge Haddad, Jean-Michel Ilié. Exploiting Symmetry in Linear Time Temporal Logic
Model Checking: One Step Beyond. [Research Report] lip6.1998.020, LIP6. 1998. �hal-02547727�

https://hal.science/hal-02547727
https://hal.archives-ouvertes.fr

Exploitation des Symétries
Dans La Vérification des Propriétés

des Systèmes Concurrents

K. Ajami* S. Haddad** J-M. Ilié*

Résumé

La vérification des propriétés des systèmes concurrents peut être effectuée par la
spécification et la vérification des formules de logique temporelle sur un graphe
états-transitions modélisant le système. Le problème connu de l’explosion com-
binatoire, en espace et en temps, nécessite le développement de techniques effi-
caces pour réduire (par rapport à certaines propriétés) la taille du graphe à
construire.

Concernant la logique temporelle, l’une des techniques les plus prometteuses fut
initiée par Emerson & al [6]. Comme en [1,12,14], elle exploite les symétries de
description existant entre les objets du système, cependant elle introduit l’idée
que les symétries ne sont pas seulement detectables dans le système mais aussi
dans toute formule décrivant une propriété de ce système.
De telles symétries sont définies par un groupe de permutations sur les objets du
système de façon à assurer la préservation de la formule et le graphe d’états-tran-
sitions du système. Une relation d’équivalence entre les états du système peut
donc être déduite, autorisant la construction de graphes quotients très réduits sur
lesquels les vérifications sont assurées. Néanmoins, cette méthode de vérification
exploite les symétries du système de façon très restrictive puisque seules les for-
mules dont les symétries forment un groupe peuvent être vérifiées avec efficacité.

Notre but est de définir et d’utiliser des symétries plus grossières afin d’obtenir
une meilleure réduction des graphes d’états-transitions représentés.

* Version étendue de l’article "Exploiting Symmetries In Linear Time Temporal Logic Model
Checking: One Step Beyond" Publié dans: TACAS’98, Lisbon, Portugal, Avril 1998, Springer-
Verlag, LNCS 1384.

* LIP6 - CNRS ERS 587
Univ. Pierre & Marie Curie,

Tour 65-66, Bureau 204,
4, place Jussieu,

75252 Paris Cedex 05

e.mail:
Khalil.Ajami@lip6.fr,

Jean-Michel.Ilie@lip6.fr

** LAMSADE - CNRS URA 825
Univ. Paris Dauphine

Pl. du Maréchal De Lattre de Tassigny,
75775 Paris

e.mail:
haddad@lamsade.dauphine.fr

-2-

L’ensemble des symétries considérées ne constitue donc pas nécessairement un
groupe mais permet d’exploiter le maximum de symétries possibles du système.

Dans notre approche nous commençons par analyser l’automate de Büchi modé-
lisant les séquences valides vis à vis d’une propriété LTL à vérifier. Nous déter-
minons l’ensemble des symétries entre les états de l’automate en considérant que
deux états sont symétriques s’ils induisent le même comportement courant et futur
à une permutation près. De la même façon nous détectons, dans le modèle repré-
sentant le système, les symétries du modèle en considérant que deux états sont sy-
métriques s’il sont égaux à une permutation près, à calculer en fonction des
valeurs courantes des variables du système.
En appliquant ces relations sur le produit synchronisé de l’automate de la formule
et du graphe qui modélise le système, nous construisons une structure quotient sur
laquelle les séquences invalidant l’automate de la formule, sont détectées.

Dans cet article, nous prouvons que la vérification utilisant cette approche est
équivalente à la vérification de la formule sur le graphe complet. Néanmoins, le
calcul général des permutations a une complexité exponentielle ce qui réduit en
quelques sorte les bénéfices réalisés par la réduction du graphe. C’est pourquoi
nous proposons une approche alternative consistant à restreindre le temps de cal-
cul des symétries à un temps polynomial en ne calculant qu’un sous ensemble des
symétries exploitables. Bien que le produit synchronisé résultant puisse être d’une
taille accrue par rapport à la structure quotient, nous prouvons qu’il possède les
même capacités de vérification et trouvons qu’elle réalise dans la plupart des cas
pratiques des réductions exponentielles.

L’article que nous présentons ici est une version étendue de celui présenté à TA-
CAS’98. En particulier, une application a été ajouté pour confirmer l’intérêt de
notre technique.

Domaine: Méthodes Formelles, Vérification.
Mots clés: Logique Temporelle, LTL, Symétries, Automates de Büchi, Vérifica-
tion, Vérification du modèle.

-3-

Exploiting Symmetry In Linear Time Temporal Logic
Model Checking: One Step Beyond

K. Ajami* S. Haddad** J-M. Ilié*

Abstract. Model checking is a useful technique to verify properties of dynamic
systems but it has to cope with the state explosion problem. By simultaneous ex-
ploitation of symmetries of both the system and the property, the model checking
can be performed on a reduced quotient structure [2,6,7]. In these techniques a
property is specified within a temporal logic formula (CTL*) and symmetries cor-
respond to permutations of objects which are obtained by either a syntactical
checking [7] or semantical one through the state of the corresponding automaton
[6]. We introduce here a more accurate method based on what we call the partial
symmetries of the formula. Such symmetries are detected within the Büchi autom-
aton of the formula and form a set of symmetries even if the fomula is not globally
symmetrical i.e. there is no group of permutation (excepting the identity) operat-
ing on the formula. We define an appropriate quotient structure for the synchro-
nized product of the Büchi automaton and the global state transition graph. We
prove that model checking can be performed over this quotient structure leading
to efficient algorithms.

Topic: Formal Methods.
Keywords: Temporal Logic, LTL, Symmetries, Büchi automata, Model Check-
ing, Verification.

1. Introduction

Checking system correctness can be performed by the specification and the verification
of temporal logic formulas over a state transition graph which models the system be-
havior. The well-known combinatorial explosion problem in space and time requires
the development of efficient techniques in order to reduce the size of the graph to be
built, with respect to some desired properties.

One of the most promising technique has been initiated by Emerson & al [6,7]. It ex-
ploits the symmetries of both the system and formula. Such a technique builds a quo-
tient graph in which each node represents an equivalent class of states. The relation is
induced by a subgroup of permutations preserving the state graph and the formula. In
practice, the permutations act on a set of system processes with identical behavior. Pre-
vious works have been already developed focusing on the safeness properties
[1,14,17,19]. Other developments include model checking algorithms [2,13], model

* LIP6 - CNRS ERS 587
Univ. Pierre & Marie Curie,

Tour 65-66, Bureau 204,
4, place Jussieu,

75252 Paris Cedex 05

e.mail: Khalil.Ajami@lip6.fr,
 Jean-Michel.Ilie@lip6.fr

** LAMSADE - CNRS URA 825
Univ. Paris Dauphine

Pl. du Maréchal De Lattre de Tassigny,
75775 Paris

e.mail: haddad@lamsade.dauphine.fr

-4-

checking under fairness constraints [8] and application to system bisimulation [16].

Looking carefully at the technique described in [6,7], it appears that currently, the CTL*
model checking can make profit from the symmetries but in a restrictive way. Roughly
speaking, the previous methods detect symmetries with respect to a subgroup of sym-

metries acting on either state formula like or temporal formulas like

 wherefi is a propositional formula involving the processi.

We generalize the previous methods by showing how these approaches are inefficient

for formulas like . Roughly speaking, formula describing such a

property is not completely asymmetrical although its group of symmetries is reduced to
the identity. However, this formula contains symmetries since it is applied on a set of
identical processes. Such symmetries are called partial symmetries.
Hence, we show how partial symmetries can be exploited inside path subformulas of a
CTL* formula. In this work, we limit the presentation to the case of LTL formulas. The
general framework for branching time model checking can be developed using the iter-
ated method of [10].
Unlike the approach presented in [6,7],the considered Büchi automaton is not neces-
sarily globally symmetric with respect to a predefined symmetry group.
The starting point of our method is the analysis of the Büchi automaton associated with
any LTL formula to be verified (see for instance [11]). Then we relate two states of the
Büchi automaton if they represent the same current and future behavior up to a permu-
tation of processes. Given a permutation, this state relation can be computed in polyno-
mial time. Similarly, in the system model, two states are related by a permutation with
respect to their current value of the system variables. By applying these relations on the
synchronized product of the Büchi automaton and the global state transition graph, we
define an appropriate quotient structure. We prove that model checking over this quo-
tient is equivalent to model checking over the synchronized product however, the gen-
eral computation of permutations wipes out the benefit of having a quotient structure
(exponential complexity of computation). Therefore, we propose an alternative ap-
proach which computes, in polynomial time, an intermediate size structure. Such a
structure has the same equivalence property as the quotient one and leads, in practical
cases, to significant savings of space (even exponential).

The next sections are organized as follows: part 2 presents the model of computation
and briefly recalls the temporal logic used to specify properties, it also presents the rep-
resentation of a linear temporal logic formula by means of a Büchi automaton; part 3
presents the definition of system symmetries while part 4 presents the symmetries re-
flected in a temporal logic formula; part 5 is the analysis of the model checking using
symmetries and the proof of its validity; part 6 contains the operational model checking
approach using symmetries; part represents a realistic application; part 7 contains our
conclusion and perspectives.

2. Model of Computation and Temporal Logic

We can apply our work on any system where symmetries are defined within a set of per-
mutations. So, let us consider a simple model of system.

f vi I∈ fi=

f vi I∈ Ffi=

f Λi j, I∈
i j<

fi U fj()=

-5-

2.1. The Model

We deal with finite state concurrent systems composed of many processes. Processes
are identified by indices. They may share global variables but differ from local ones.
The structure of such a system is defined as follows:

Definition 2.1.1: Finite State Concurrent System
We present a finite state system using the temporal structureM=(S, ∆, I, V, D, L,
S0) where:
- S is the finite set of the states; is the set of initial states;
- is the possible changes between states;
- I is the set of process indices;
- V is the set of system variables; it is composed of two distinct subsets,VG, the set
of global variables andVL the set of local variables.
- D is the definition domain of variables.
- L is the state labeling function,L: such that:

(i) L(s,vg) is the value of variablevg of VG in state s;
(ii) L(s,vl,i) is the value of variablevl of VL of processi in states.

Atomic propositions are built from the association of a value to a variable.

 Remark:
The structure of a system depends only on the value of the variables i.e. two different
states must have at least one variable with different values.

Definition 2.1.2: Global and Local Atomic propositions
A global atomic proposition, is a pair whereas a local atomic prop-

osition is a triplet that depends on a processi.

We define the set of atomic propositions built on the
global and local variables.

We definepropS: such thatprop(s) is the set of propositions associated withs.

Definition 2.1.3: Atomic propositions holding in a state
Global (respectively local) atomic propositions hold at states of S (noted|=) as fol-
lows:s |= ; (respectivelys |=).

In the following we recall some notions of temporal logic used to specify system prop-
erties.The translation of linear temporal formulas to Büchi automata is also presented.

2.2. Temporal Logic

In a propositional Temporal Logic, the non temporal portion of the logic is proposition-
al logic. Thus formulas are built up from atomic propositions, which intuitively express,
atomic facts about the underlying state of the concurrent system, truth-functional con-
nectives and the temporal operators. Furthermore, when defining a system of temporal
logic, two possible views of the system, can be considered, regarding the nature of time.

S0 S⊆
∆ S S×⊆

S VG VL I×∪()× D→

vg d,() VG D×∈

vl i d, ,() VL I D××∈

AP p p VG D× VL I× D×∪∈{ }=

S 2
AP→

vg d,() L s vg,() d=⇔ vl i d, ,() L s vl i, ,() d=⇔

-6-

One is that the course of time is linear: at each moment there is only one possible future
moment. The other is that time has a branching tree-like nature: at each moment, time
may split into alternate courses representing different possible futures. In linear time,
one reasons about sets of infinite sequences, while in branching time, one reasons about
the possible futures of the current state leading to branching tree like structure.
In our work we are mainly interested by the linear time temporal logic formulas. How-
ever, the notion of branching time temporal remains the general framework in which
our model checking can be extended. We use here two kinds of operators, temporal op-
erators presented later and path quantifiers using the two symbols, A, E, to indicate re-
spectively all or some paths.

2.2.1. Linear Temporal Logic (LTL)

A well-formed linear-time temporal logic, dealing with our system, is constructed from
the set of atomic propositionsAP, the standard boolean operators V (Or),¬ (Not), and
the temporal operators X (neXttime) and U (strong Until). Precisely, formulas are de-
fined inductively as follows: (1) Every member ofAP is a formula; (2) ifϕ andψ are
formulas then so are , Xϕ, ϕ U ψ.
An interpretation for a linear-time temporal logic formula is an infinite wordξ=x0x1...

over an alphabet2AP. For more precision, the elements of2AP are interpreted as assign-
ing truth values to the elements ofAP: elements in the set are assignedtrue, elements
not in the set are assignedfalse. We noteξi the suffix ofξ starting atxi. The semantics
of LTL is defined in the following:

- ξ |= α iff , for .
- ξ |= iff ¬(ξ |= ϕ).
- ξ |= iff (ξ |= ϕ or ξ |= ψ).
- ξ |= Xϕ iff ξ1 |= ϕ.
- ξ |= ϕ U ψ iff such thatξi |= ψ andξj |= ϕ .

As some abbreviations, one can introduce additional linear operators: theeventuality
operator F where Fϕ= true U ϕ, thealways operator G where Gϕ=¬F¬ϕ.

2.2.2. From LTL to Büchi automata

A Büchi automaton is a finite automaton which accepts infinite sequences. A sequence
is accepted if, and only if, it is recognized by the automaton and meets infinitely often
one of the accepting states (called also designated states).
It has been shown that any LTL formula can be translated to a Büchi automaton in order
to perform efficient model checking. Indeed, Büchi automata are strictly more expres-
sive than LTL formulas and equivalent to linear-time Mu-calculus [5,18,21].

Definition 2.2.3: Büchi automata
A Büchi automaton [6] is a tupleA=(AP, B,ρ, B0, PropB, F) where:

- B is a set of states. Each stateb of B is defined by the set .

- ρ: is a nondetermistic transition function.
- is a set of starting states.

- PropB: is the set of atomic propositions holding in B.
- is a set of accepting states.

ϕ¬ ϕ ψ∨,

α x0∈ α AP∈
ϕ¬

ϕ ψ∨

i∃ 0≥ 0 j∀ i<≤

Atom b() AP⊆

B 2
B→

B0 B⊆

B 2
AP→

F B⊆

-7-

3. Symmetries on Models

Given a permutationπ: on the set of process indices, we want to determine wheth-
er two states of the state transition graph are symmetric up to this permutation. Effec-
tively, a permutation is said to be a symmetry if and only if it preserves the possible
changes between states. We define the symmetries on the model represented by the
structureM=(S, ∆, I, V, D, L, S0).

Definition 3.1: Symmetry on a State Transition Graph
A permutationπ on I, is a symmetry iff:
(1) For each state , there is a unique state denotedπ(s) which satisfies:

(i) ;

(ii) .
(2) Permutationπ satisfies the following condition:

.

The group of symmetries defined onM is called the automorphisms group ofM and de-
notedAut(M).

4. Symmetries on Formulas

In [6], the symmetries of a temporal logic formula to be verified are obtained by a syn-
tactical checking while in [7], they result from the analysis of the corresponding Büchi
automaton. By looking carefully at this method, it appears that symmetries of a CTL*
formula are obtained in a restrictive way. Roughly speaking, many techniques are pro-
posed based on the detection of a group of symmetries:
(1) State symmetries obtained from (sub)formulas like wherefi is proposition-

al involving processi. Effectively, the symmetries resulting from formulas like
, constitute the groupSym(I), the group of all the

permutations between the elements ofI. Those computed for formula like
constitute the groupStab(i) (the group of all the permutation between the elements
of I \ {i}).

(2) The former approach fails to capturePath symmetries in LTL subformulas like
, . Thus, the method of [6] introduces a complementary

framework by detecting a group of symmetries acting on the states of Büchi au-
tomaton.

All these approaches are inefficient for formulas like because the

group of symmetries is reduced to the identity. However, the former formula contains
symmetries since it is applied on a set of identical processes. Such symmetries are
called partial symmetries and can be reflected in some states of its Büchi automaton.
In this section, we propose a more accurate method based on the exploitation of partial
symmetries computed for some states of the automaton. Hence, we show that the exist-
ence of a group is not required to exploit symmetries.

We compute, the symmetries on a Büchi automaton,A=(AP, B,ρ, B0, E, F). The states
equivalence can be detected using the relation defined as follows:

I I→

s S∈ s′
vg∀ VG L π s() vg,(),∈ L s vg,()=

i∀ I∈ vl∀, VL∈ L π s() vl i, ,() L s vl π i(), ,()=,

s1∀ S∈() s∀ 2 S∈() s1 s2→()(, , ∆∈ π s1() π s2()→() ∆)∈⇔

Vi I∈ fi

f EF Vi I∈ fi()= f EF Λi I∈ fi()=

f EFfi=

f Vi I∈ Ffi= f Λi I∈ Ffi=

f Λi j, I∈
i j<

fi U fj()=

-8-

Definition 4.1: Permutation on a set of atomic propositions
Let π be a permutation onI. Let AP1 be a set of atomic propositions, there is a set
AP2 denotedπ(AP1) which satisfies:
π(AP1)=AP2= ∪

Definition 4.2: Equivalence of two states of a Büchi automaton
A relationRπ is the coarsest relation that defines the equivalence of two states of a

Büchi automaton. It fulfills the following two requirements: iff:
(1) There is a permutationπ that satisfies the two conditions:

(i) ;

(ii) Atom()=π(Atom(b)).

(2) .

Generally,Rπ is not an equivalence relation. It can be computed in a polynomial time
using a fixed-point computation starting with condition (1) and by applying (2).

Example 1: Let us consider the following Büchi automaton representing the formula
 for a system of three processesP1, P2, P3, where

p1, p2, p3 are three atomic propositions.

In this automaton, the only global symmetry group acting on the states is the identity.
However, one can observe that states b7 and b10 are symmetrical with respect to defi-
nition 4.2 (permutationπ such thatπ(1)=1, π(2)=3, π(3)=2 is used). Similarly, other
symmetries can be detected between b3 and b4, b5 and b10 etc. Conversely, b7 and b6
are identically labelled but not symmetrical.

In the next section, we show how to perform an efficient model checking using the Bü-
chi automaton representation and the proposed symmetries.

 Fig. 1.Büchi automaton of the formulaf

vg d′,() vg d,()∀ Atom b() vg d′,()∃ Atom b′()where d′ d=()∈,∈{ }

vl j d′, ,() i I v l i d, ,()∀,∈∀ Atom b() j I v l j d′, ,()∃,∈∃ Atom b′()where d′ d=()∈,∈{ }

b∀ b′ V∈ bRπb′, ,

b F∈ b′ F∈⇔
b′

b1∀ b b1→[] b′1 b′ b′1→[]∃, b1Rπb′1()

f p1Up3() p2Up3()∨[] p1Up2()∧=

p1p3

p2

p1

p1

p2p3

p1p2

p1p2

p2

p3

b2

b3

b7

b6

b8

b4

b9

b1

b5

Entry State
Final State

p1b10

-9-

5. Analysis of Model Checking using symmetries

Classically, model checking is realized by (1) considering the Büchi automaton, of

the negation of formulaf to be verified; (2) building the synchronized product of this
automaton and the one which models the behavior of the system; (3) searching in the
synchronized product a sequence which has an accepting state repeated infinitely often
in order to prove that the negation of the formula holds. The meaning of such algorithm
is that one must verify that any behavior of the system validates the formula. This algo-
rithm can work in an "on-the-fly" fashion [11] so as to avoid the construction of the
whole graph of the strongly connected components.

5.1. Synchronized Product

The synchronized product ofM and is noted and is defined as follows:

Definition 5.1.1: Synchronized Product
The synchronized product ofM=(S,∆, I, V, D, L, S0) and =(AP, B,ρ, B0, E, F)

is the automaton =(AP, Θ, Γ, Θ0, Φ) defined below:

- Θ= ;

- Θ0= ;
- iff ;

- Φ = .

By means of such a product, we have to check if the required formula holds throughM.
Generally, the verification algorithm become less complex using the negation of the
formula. Effectively, we can search if there is a path in which an accepting

state is repeated infinitely often. In such an algorithm we do not have to search all the
strongly connected component to verify the formula. It is sufficient to find one of them
to prove that the negation holds and consequently the formula does not hold. We call
such a method, the on-the-fly verification fashion.
Formally, the satisfaction relation of a formula is expressed as follows:
M |= in where

such that: (1) ;
(2)

Roughly speaking, we present the pathπ as a strongly connected component using the
following equivalence: for any different indicesi,j , (mi,bi)=(mj,bj) means thati=l and
j=n .

5.2. Quotient Structure

In order to reduce the size of the synchronized product structure, we only consider ca-
nonical representatives of the symmetrical states instead of all the states.
Consequently, we build a graph of representatives with respect to a symmetry relation,
R, defined on as follows:

A f¬

A f¬ M A f¬×

A f¬

M A f¬×

s b,() s S b B propB b() propS s()⊆()∧∈∧∈{ }
s b,() Θ∈ s S0∈ b B0 propB b0() propS s0()⊆()∧∈∧{ }

si bi,() sj bj,()→() Γ∈ si sj→() ∆∈ bi bj→() ρ∈∧

s b,() Θ∈ s S b F propB b() propS s()⊆()∧∈∧∈{ }

M A f¬×

f¬ π s0 b0,()=∃ … sl bl,()… sm bm,()… sn bn,()⇔ M A f¬× l m n<≤
bm F∈

i j, I∈∀ i, j si bi,() sj bj,()= i j,{ } l n,{ }=⇔(),≠()

M A f¬×

-10-

Definition 5.2.1: Symmetry Relation,R, Defined on

 such that s|=Atom(b) and |=Atom(),

 iff such that and .

Observe thatR is an equivalence relation since it is defined on the groupAut(M). There-
fore, we can define the quotient structure of the synchronized product denoted

 as follows:

Definition 5.2.2: The Quotient Structure

The quotient structure is defined by means of the representatives of the

state orbits of . The orbit of is defined by the set:

|= .

From each orbitθ(s,b), we pick an arbitrary representative denoted .

The representative can be efficiently implemented by defining a canonical representa-
tion based on a lexicographical order [1].

5.3. Model Checking Correctness

In this section we validate our approach by showing that the model checking based on
the proposed quotient synchronized product is equivalent to the one performed by
means of the ordinary structure. Intuitively, we prove that the existence of an accepting
state repeated infinitely often in the quotient structure is equivalent to the existence of
an accepting state repeated infinitely often in the ordinary synchronized product.
Hence, we can prove the satisfaction of temporal logic formulas by using our approach
of symmetry.
We start our proof by the correspondence between both the quotient and the ordinary
structures of the synchronized product.
Let represents the structure resulting from the synchronized product of the

state transition graph and the automaton and let be its quotient

structure with respect to the relationR introduced in definition 5.2.1. For each symbolic
path in the quotient structure there is an ordinary path in the synchronized product such
that the corresponding states of the two paths are symmetrical with respect toR:

Lemma: Correspondence Lemma
 such that

Proof:
 is immediate from the definition of quotient structure.

For , we proceed by induction on,n, the length of the path:
(i) n=0, This case is very simple since for any such that

, the lemma is proved.

M A f¬×
s∀ s′ S∈ b∀ b′ V∈, , , s′ b′
s b,()R s′ b′,() π Aut M()∈∃ bRπb′ π s() s′=

M A f¬×

M A f¬× M A f¬×() R⁄=

M A f¬×
M A f¬×

M A f¬× s b,() Θ∈
θ s b,() s′ b′,(){ π∃ Aut M()∈ π s() s′=() bRπb′()where∧ s′, ,= Atom b′() }

s b,()

M A f¬×

M A f¬× M A f¬×() R⁄=

s0 b0,()∃ … sn bn,(), , M A f¬×∈ s′0 b′0,()∃ … s′n b′n,(), , M A f¬×∈⇔

0 i∀ n≤ ≤ s′i b′i,(), R si bi,()

the direction⇐
the direction⇒

s′0 b′0,()

s′0 b′0,()R s0 b0,()

-11-

(ii) We assume that the lemma is proved for a given length equal ton and we verify
that it is proved for a length equal ton+1. Let us consider in

, and let us recall that by assumption, we have in

 such that . Let us consider an edge

 of , thus, in

such that and . We have already

. So, and from the definition of the relation
R: and . Hence, there is a state and an

automaton state such that where:

 |= .

Therefore, is a state of and since, there is an arc

, the arc is an arc of the

same structure also.

From this lemma, we now prove the equivalence of the existence of paths verifying the
formula, in both the quotient and the ordinary synchronized product:

Theorem: The two following statements are equivalent:
(i) There is a path in where

such that: (1) ; (2) .

(ii) There is a path in where

 such that: (1) ; (2) .

Proof:

(1) : Let us consider the shortest path

that verifies (i1) in . From the correspondence lemma there is a corre-

sponding path in . We

prove that it verifies the following two statements:
(ii1) , effectively, symmetries built on the automaton preserve accepting states;

(ii2) Two directions have to be proved. is straightforward since

, consequently we deduce from (i2 that

{i,j}={l,n} . For , we have {i,j}={l,n} , so from (i2),

. By assumption,{i,j}={l,n}, so, from (i2). The

proof is now made by contradiction assuming that . In this

case, since their representatives are equals. Consequently,

from the correspondence lemma, we have an infinite path in which there is an in-

s0 b0,() … sn bn,(), ,

M A f¬× s′0 b′0,() … s′n b′n,(), ,
M A f¬× 0 i∀ n≤ ≤ s′i b′i,(), R si bi,()

sn bn,() sn 1+ bn 1+,()→ M A f¬× s″n b″n,()∃ s″n 1+ b″n 1+,()→ M A f¬×

s″n b″n,()R sn bn,() s″n 1+ b″n 1+,()R sn 1+ bn 1+,()

s′n b′n,()R sn bn,() s′n b′n,()R s″n b″n,()
π∃ s′n π s″n()=, b′nRπb″n s′n 1+ π s″n 1+()=

b′n 1+ b′n 1+ Rπb″n 1+

s′n 1+ π s″n 1+()= π Atom b″n 1+()() Atom b′n 1+()=

s′n 1+ b′n 1+,() M A f¬×

s″n b″n,() s″n 1+ b″n 1+,()→ s′n b′n,() s′n 1+ bn 1+,()→

s0 b0,()… sl bl,()… sm bm,()… sn bn,() M A f¬× l m n<≤

bm F∈ i j≠∀ si bi,() sj bj,()=() i j,{ } l n,{ }=()⇔,

s′0 b′0,()… s′l b′l,()… s′m b′m,()… s′n b′n,() M A f¬×

l m n<≤ bm F∈ i∀ j≠ s′i b′i,() s′j b′j,()=() i j,{ } l n,{ }=()⇔,

i() ii()⇒ s0 b0,()… sl bl,()… sm bm,()… sn bn,()

M A f¬×

s′0 b′0,() … s′l b′l,() … s′m b′m,() … s′n b′n,(), , , , , , M A f¬×

b′m F∈

The direction⇒
s′i b′i,() s′j b′j,()= si bi,() sj bj,()=()⇒

the direction⇐
si bi,() sj bj,()= sl bl,() sn bn,()=

s′l b′l,() s′m b′m,()≠

s′l b′l,()R s′m b′m,()

-12-

finite number of subpaths of the form
 wherek=0,1,... and

for . Because we deal with finite state

transition graph, this infinite path must contain a circuit. Let us consider
 the shortest path that meets twice the same

state where: and . To simplify the proof we consid-

er and we denotef(x)=x-k(n-l), f(y)=y-k(n-l) such that .

Since

we have two cases. In the first one:f(x), f(y) are from [l,m[or]m,n]. By considering

with respect to the position off(x), f(y) in the domain, we have a shortest path than
 that verifies the two conditions

(ii1) and (ii2) which is opposite to the initial assumption. In the second case:f(x)
is from [l,m[andf(y) from [m,n]. By considering the following path that verify
(ii1) and (ii2), , we

have a shortest path than which is

contradictory with the initial assumption. Consequently .

(2) : Let us consider the set of paths:

Π={(s0,b0)...(sl,bl)...(sm,bm)...(sn,bn) such that (sl,bl) R (sm,bm) and }.

 from the assumption (i1). Let us considerπ=(s0,b0)...(sn,bn) one of the

shortest path of Π. From the correspondence lemma, a

representative path where . Consequently, verifies (i1)

 and (i2) . We have to prove that,

. We suppose that

, hence, either, which is im-

possible from (ii2), or, . Hence, three cases can appear. in the

first one we have : by considering the path
(s0,b0)...(si,bi)(sj+1,bj+1)...(sn,bn) we have a shortest path thanπ belonging toΠ
which is opposite to the initial assumption. In the second case we have
i<l<j<m<n : by considering(s0,b0)...(si,bi)(sj+1,bj+1)...(sn,bn)(sl+1,bl+1)...(sj,bj)
we have a shortest path thanπ belonging toΠ which is opposite to the initial as-
sumption. In the last case we havel<j<m<j<n : by considering
(s0,b0)...(si,bi)...(sm,bm)...(sj,bj)...(sn,bn) we have also a shortest path thanπ be-
longing to Π which is contradictory for the initial assumption. Consequently,

.

s′n k n l–()+ b′n k n l–()+,()… s′n k 1+() n l–()+ b′n k 1+() n l–()+,()

l i∀ n s′i k n l–()+ b′i k n l–()+,()R s′i b′i,(),≤ ≤

s′0 b′0,() … s′x b′x,() … s′y b′y,(), , , ,

s′x b′x,() s′y b′y,()= x l≥ y n≥,

x y< f x() f y(), l n,[]∈

s′x b′x,() s′y b′y,()=() sx bx,() sy by,()=() sf x() bf x(),() sf y() bf y(),()=⇒ ⇒

s′0 b′0,() … s′l b′l,() … s′f x() b′f x(),() s′f y() 1+ b′f y() 1+,() … s′m b′m,() s′n b′n,(), , , , , , , ,

s′0 b′0,() … s′l b′l,() … s′m b′m,() s′f x() b′f x(),() s′f y() 1+ b′f y() 1+,() … s′n b′n,(), , , , , , , ,

s′0 b′0,() … s′l b′l,() … s′m b′m,() s′n b′n,(), , , , ,

s′0 b′0,() … s′f x() b′f x(),() … s′m b′m,() … s′f y() b′f y(),(), , , , , ,

s′0 b′0,() … s′l b′l,() … s′m b′m,() s′n b′n,(), , , , ,

s′l b′l,() s′m b′m,()=

ii() i()⇒
bm F∈

Π ∅≠
π∃ s′0 b′0,()… s′n b′n,()=

si bi,()R s′i b′i,() π
s′l b′l,() s′n b′n,()= b′m F∈

i j,{ }∀ l n,{ }≠ s′i b′i,() s′j b′j,()≠⇒
i j,{ }∃ l n,{ }≠ s′i b′i,() s′j b′j,()=, s′i b′i,() s′j b′j,()=

s′i b′i,()R s′j b′j,()
i j l≤<() l i j m< <≤() m i j n< < <()∨ ∨

i j,{ }∀ l n,{ }≠ s′i b′i,() s′j b′j,()≠⇒

-13-

5.4. Consistent Graph

The quotient structure is the smallest structure that can be built to perform model check-
ing using symmetries. In the worst case, {Rπ} π requires an exponential time construc-
tion therefore, we propose a new approach based on the construction of an intermediate
structure, calledconsistent graph which does not require the computation of all the re-
lations induced by the symmetries.

In such a graph, (1) reachability is preserved with respect to the ordinary synchronized
product; (2) the transition relation of the ordinary synchronized product is preserved ac-
cordingly to the symmetry relation R in the consistent graph; (3) the transition relation
of the consistent graph product is preserved accordingly to the symmetry relation R in
the ordinary synchronized. Hence, All paths are preserved with respect toR.
Such a consistent graph will be used in section to propose an efficient model checking
in polynomial time.

Definition 5.4.1: Consistent Graph
Let G= =(AP, Θ, τ, Θ0, Φ) and let we call

consistent withG iff:
(1) such that(s,b) is reachable from ,

reachable from such that .

(2) such that(s,b) is reachable from ,

reachable from such that :

if then where

such that .
(3) such that(s,b) is reachable from ,

reachable from such that :

if then where

such that .

The following lemma highlights the correspondence between the quotient structure
 and the graph consistent with .

Lemma: Consistent Graph Correspondence
 consistent with

G= such that .

Proof: It is similar to the one used for the correspondence lemma (section 5.3).

Hence, we can prove the model checking equivalence between the quotient structure
and the graph consistent with the ordinary structure using correspondence lemma of the
consistent graph.

Theorem: The two following statements are equivalent:
(i) There is a path inG= where

M A f¬× G′ AP′ Θ′ τ′ Θ′0 Φ′, , , ,()= G′

s b,()∀ Θ∈ s0 b0,() Θ0∈ s′ b′,()∃ Θ′∈
s′0 b′0,() Θ′0∈ s′ b′,()R s b,()

s b,()∀ Θ∈ s0 b0,() Θ0∈ s′ b′,()∀ Θ′∈
s′0 b′0,() Θ′0∈ s′ b′,()R s b,()

s b,() s1 b1,()→ τ∈ s′1 b′1,()∃ Θ′∈ s′1 b′1,()R s1 b1,()

s′ b′,() s′1 b′1,()→ τ′∈
s b,()∀ Θ∈ s0 b0,() Θ0∈ s′ b′,()∀ Θ′∈

s′0 b′0,() Θ′0∈ s′ b′,()R s b,()
s′ b′,() s′1 b′1,()→ τ′∈ s1 b1,()∃ Θ∈ s1 b1,()R s′1 b′1,()

s b,() s1 b1,()→ τ∈

M A f¬× M A f¬×

s0 b0,()∃ … sn bn,(), , M A f¬×∈ s′0 b′0,()∃ … s′n b′n,(), , G′∈⇔
M A f¬× 0 i∀ n≤ ≤ s′i b′i,(), R si bi,()

s0 b0,()… sl bl,()… sm bm,()… sn bn,() M A f¬×

-14-

 such that:
(1) ; (2) .

(ii) There is a path in consistent with

G= where such that:

(1) ; (2) .

Proof: This proof is similar to the one presented in the theorem of model checking
equivalence (section 5.3) using the consistent graph correspondence lemma.

6. Operational Approach

The construction of a quotient structure is performed by checking, for each node built
during the synchronized product, whether it is symmetrical with an already computed
one. For this, an equivalence test has to be performed in an exponential timeO(n!) (in
the worst case), where n is the number of processes. Clearly, this would damage the
benefit to have a condensed structure.

The following section introduces an operational approach in order to reduce the com-
plexity of the construction algorithms. Nevertheless, the resulting state transition graph
may have a larger size than the quotient structure because we compute only a reduced
subset of symmetries. However, it is a consistent structure with both the ordinary and
the former quotient structure, thus the model checking can be performed equivalently.

This section aims at presenting efficient algorithms to compute symmetries and to con-
struct the consistent graph.

6.1. ij-Symmetry on Büchi automata

We now define a set of symmetries called theij-symmetries in such a way that it repre-
sents a subset ofR.

6.1.1. ij-Symmetry Definition

Let A=(AP, B,ρ, B0, E, F). A relationRi,j is a coarse relation that defines the equiva-
lence of two states of a Büchi automaton with respect to two given processes. It fulfills
the following definition:

A relationRi,j is the relationR defined in 5.2.1 with respect to a the permutation

s=sij : such thatsij(i)=j , sij(j)=i and for eachk where .

From this definition we define a symmetry relation,Rin, (The inner symmetry relation)

with respect toI as follows: where * .

Hence, the inner symmetries presented by the relationRin constitutes a subset of the set

of symmetries presented byR such that: .

We define the function:Mij : such thatMij(bk,bl)=1 if bkRijbl otherwise
Mij(bk,bl)=1. We use boolean matrix called the ij-matix constructed on the states of the

automaton in ordre to represent the functionsMij , . Such matrix are used in the
construction of the reduced graph.

l m n<≤
bm F∈ i j≠∀ si bi,() sj bj,()=() i j,{ } l n,{ }=()⇔,

s′0 b′0,()… s′l b′l,()… s′m b′m,()… s′n b′n,() G′
M A f¬× l m n<≤

bm F∈ i∀ j≠ s′i b′i,() s′j b′j,()=() i j,{ } l n,{ }=()⇔,

I I→ k i j sij k(),,≠ k=

i∀ j I∈ b i,(), , Rin b′ j,() bRi j, b′⇔ Rin Ri j,i j,
∪

 
 =

bRinb′ bR b′⇒
B B× 0 1,{ }→

i∀ j, I∈

-15-

Example 2:
As an example we can detect the ij-symmetries defined on the automaton of figure 2. We
represent ij-symmetries by the following ij-matrix:

The computation of the inner symmetry using the transitive closure is made as follows:

. For example:

Based onRin, the next section proposes an efficient algorithm for the determination of
the symmetries which are reflected in a Büchi automaton.

6.1.2. ij-Symmetry Computation Algorithms

The computation of the inner symmetry starts from the computation of theij-symmetry
presented in the definition .
Let f be a temporal specification formula and let be the representation of its nega-

tion in terms of Büchi automaton.
(1) Firstly, we calculate, for a pair (i,j) of process indices, an initial partition of the
states of using the definition ofij-permutation. This results in a set of pairs

of state that verify theij-permutation.
(2) Secondly, we restrain the computedij-permutations toRi,j symmetry by check-
ing the preservation of the transition relation (using definition 5.2.1). For each
state, the set ofRi,j symmetries is saved.
(3) This algorithm is repeated for each pairi,j of process indices.

Let B={b1 ... bm} be the states of where|B|=m is the number of states. LetI be the

set of process indices such that|I|=n .
We construct the set of ij-matrices that represent the symmetry relation between the
states ofB. We noteMatij the matrix representing the symmetryRi,j.

R
12

M12b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
b1 1 0 0 0 0 0 0 0 0 0

b2 0 0 0 0 0 0 0 0 0 0

b3 0 0 0 0 0 0 0 0 0 0

b4 0 0 0 1 0 0 0 0 0 0

b5 0 0 0 0 0 0 0 0 0 1

b6 0 0 0 0 0 0 0 0 0 0

b7 0 0 0 0 0 0 0 0 0 0

b8 0 0 0 0 0 0 0 0 0 0

b9 0 0 0 0 0 0 0 0 0 0

b10 0 0 0 0 1 0 0 0 0 0

= R
23

M23b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
b1 0 0 0 0 0 0 0 0 0 0

b2 0 0 0 0 0 0 0 0 1 0

b3 0 0 0 1 0 0 0 0 0 0

b4 0 0 1 0 0 0 0 0 0 0

b5 0 0 0 0 0 0 0 0 0 0

b6 0 0 0 0 0 1 0 0 0 0

b7 0 0 0 0 0 0 0 0 0 1

b8 0 0 0 0 0 0 0 1 0 0

b9 0 1 0 0 0 0 0 0 0 0

b10 0 0 0 0 0 0 1 0 0 0

=,

m∀ n, I∈ Rmn, Riji j, I∈
∪

 
 2∈ k∃ I∈ R, mn⇔ Rmk Rkn×=

R
13

R
12

R
23

×

M23b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
b1 0 0 0 0 0 0 0 0 0 0

b2 0 0 0 0 0 0 0 0 0 0

b3 0 0 0 0 0 0 0 0 0 0

b4 0 0 1 0 0 0 0 0 0 0

b5 0 0 0 0 0 0 0 1 0 0

b6 0 0 0 0 0 0 0 0 0 0

b7 0 0 0 0 0 0 0 0 0 0

b8 0 0 0 0 0 0 0 0 0 0

b9 0 0 0 0 0 0 0 0 0 0

b10 0 0 0 0 0 0 0 0 0 0

= =

A f¬

A f¬

A f¬

-16-

In the following, we present the functionRij which compute theij-symmetryin the au-
tomaton. This function calls two functions:

(1) function ij-permut(b1,b2) which checks theij-permutation for two given
statesb1 and b2.
(2) The second oneRij(b1,b2) which checks if the two states,b1, b2, are ij-sym-
metrical.

Observe that The functionSucc(b) computes all the successors of a given stateb.

 Algorithm 1: Rij()
Input : The set states of the automaton
Output : The set of ij-matrix.
BEGIN

FOR each paire bd,bk from V DO Matij [bd, bk] = Rij({(bd, bk)},bd, bk);

 Algorithm 2: Rij(Path, bd, bk)
Input : Path used to collect states already visited; Two states of the automaton.
Output : Boolean Value that determines if the two states are ij-symmetrical.
BEGIN

IF ij-permut(bd,bk) THEN
BEGIN

IF (Succ(bd)= AND Succ(bk)=) Then return 1;

FOR [each in Succ(bd) and each in Succ(bk)] DO

IF (,) is not in Path THEN

BEGIN Path=Path∪ (,);
return Rij(Path,bd, bk);

END;
ELSE return 1;

END;
return 0;

END;

It worth noting that the complexity of the previous algorithm isO(m5) for a giveni,j .

Hence, the determination of all theij-symmetryhave a complexity ofO() which
means a polynomial complexity. Furthermore, the computation of * can

be restricted to have, also, a polynomial complexity.

6.2. Construction of the Consistent Graph

We compute the symmetries on the synchronized product in order to build the consis-
tent graph. Such symmetries are symmetries of the model and must be an inner symme-
tries with respect to the considered Büchi automaton.
Let be a Büchi automaton and letM be the structure of the state transition graph.
In the following, we define the symmetries of the system used to compute the reduced

∅ ∅
bd′ bk′

bd′ bk′
bd′ bk′

n
2

m
5×

Rin Ri j,i j,
∪

 
 =

A f¬

-17-

structure. They let the state of the automaton invariant in each step the product :

Definition 6.2.1: Symmetry defined on

 such thats|=Atom(b) and |=Atom(b) we have

.

The relation, , is used to build a reduced graph consistent
with =(AP, Θ, τ, Θ0, Φ). The algorithm presented in the following.

 Algorithm 3: Consistent Graph Constructor
BEGIN

/* Symmetry Computation */
- FOR each i,j from I DO Rij();
- Polynomial computation ofRin;

- FOR each equivalence class of states DO Choose a representative ;

/* Consistent Graph Construction: */

FOR each (s0,b0) fromΘ0 such that s0|= DO
BEGIN

Compute the symbolic representative using the ;

 = ∪ ;

Push();
END; /* FOR */
rs = Pop();
WHILE DO /* Stack is not empty */
BEGIN

WHILE rs in DO rs = Pop();
FOR each arc DO
BEGIN

Compute ;

IF is not in THEN
BEGIN

 = ∪ ;

Push();
END; /* IF */

 = ∪ ;
END; /* FOR */
rs = Pop();

END; /* WHILE */
END. /* ALGORITHM */

The complexity of our model checking using symmetries is strongly dependent on the
complexity of the former algorithm which have a polynomial complexity.

M A f¬×

R′ M A f¬×
s∀ s′, M∈ b∀ B∈, s′
s b,()R′ s′ b,() π Aut M()∈∃ Rπ Rin∈ b, Rπb, π s() s′=∧⇔

R′ G′ AP′ Θ′ τ′ Θ′0 Φ′, , , ,()=
M A f¬×

A f¬ b̂

b0
ˆ

s0 b0,() R′
Θ′ Θ′ s0 b0,()

s0 b0,()

rs ∅≠

Θ′
rs s b,()→() ρ∈

s b,()
s b,() Θ′

Θ′ Θ′ s b,()
s b,()

ρ′ ρ′ rs s b,()→()

-18-

7. Application: Example of ij-symmetries detected on a formula

Let us consider a set of processes such that each one may send a request for accessing
a critical section. Every process knows the other requests so as to cancel its proper re-
quest, in the case when another process reach the critical section. We model the problem
by the following three states for any process i of the system:Idlei, Requesti, Accessi (I i,
Ri, Ai respectively). We assume that the system is fair, but the request will be served
according to the minimum value of the indices. Therefore, the property to check is:

In such formula, the first of the conjuction describes the mutual exclusion property
(When a process has the access to the critical section, the other ones cannot issue a re-
quest). The second one describes the fairness property (each request of the critical sec-
tion will be served). While the last part describes the access management according the
minimum value of the indices.
Our verification procedure is based on the synchronized product between the state space
representing the system and the automaton representing the negation of the formula.
In the following we present the automaton of the previous formula in order to compute
the reduced synchronized product by means of the symmetries detected on both the
state space of the system and the automaton:

 Fig. 2.Büchi automaton of¬f

f G Λi j≠ Ci Cj∧()¬[] G Λi Ri RiUCi→()[] G Λi j< Ri Rj∧ RjUCi→()[]∧ ∧=

Τ

¬C1¬C2

¬C2¬C3

¬C1

¬C1

¬C1
¬R3

¬C1
¬R2

¬C2
¬R3

¬C3
¬R3

Τ

¬C2
¬R2

¬C1
¬R1

C3
C2

C3
C1

C2
C1

C3
C2 C1

R1 R3R2 R3R1 R2

R1

R3 R2 R2 R3

 R1 R3 R1 R2

b0

b1b2b3

b4b5b6

b10 b9 b8 b7

b11
b12b13

b14b15b16

b17b18

b19b20

b21

b22

b23
b24

b25

b26

-19-

Examples of ij-symmetries that can be detected on this automaton:

- b4 R12 b12, - b9 R12 b10, - b14R12 b16, - b17R12 b21, - b22R12 b24,
- b6 R13 b12, - b8 R13 b10, - b18R13 b21, - b20R12 b25,
- b17R23 b18, - b8 R23 b9, - b4 R23 b6, - b5 R23 b5,

In the following we present the construction of the reduced synchronized product. We
make the application on a portion of the state space presented in the following. To use
the same notation, we substitute proposition Ii meaning that processi is in Idle state by
proposition¬Ci¬Ri which means that the process is neither in the request state nor in

the critical section:

A portion of the ordinary synchronized product (without considering symmetries) is
presented in figure 4. The reduced structure obtained when using symmetries is present-
ed in the same figure but in bold lines:

 Fig. 3.A portion of the state space of the system

¬C1¬R1

¬C3¬R3

¬C2¬R2

R1

¬C3¬R3

¬C2¬R2

R2

¬C3¬R3

¬C1¬R1

R3

¬C2¬R2

¬C1¬R1
R1

R2
¬C3¬R3

R3R1

¬C2¬R2

R2 R3

¬C1¬R1

m0

m1 m2 m3

m4 m5

m6

C1

¬C2¬R2

R3

C2

¬C1¬R1

R3

C1

¬C3¬R3

R2m7 m8 m9

-20-

8. Conclusion and Perspectives

We have described two frameworks for performing efficient LTL model checking. Both
of them exploits the existence of symmetries reflected in the system and in the specifi-
cation formula to be checked. With the first one, we show how to build the most aggre-
gated structure by using the largest available symmetry relation. Such technique could
be computed using algorithms which, in the worst case, would have an exponential
complexity. The second framework computes a subset of symmetries with polynomial
complexity algorithms inducing a less condensed structure.
In comparison, the method proposed in [6,7] can be considered as a restrictive case re-
quiring the definition of a symmetry group.
Using the symmetry approach, two cases appear as the two extreme limits: the best one
where the structural symmetries of the system are entirely used, causing a maximal ag-
gregation of states and the worst case in which any set of symmetrical objects is reduced
to a singleton, leading the reduced structure to be as large as the ordinary one.
We now aim at extending our methods to deal with specifications having nothing but
partial symmetries [12]. In such specifications, runs sometimes depend on the process
identities (i.e. static priorities based on identities), and sometimes not.
The implementation of this work is derived from GreatSPN2.0 developed by Chiola &
Gaëta from the university of Torino-Italy. It will be integrated into the CPN-AMI tool
developed by the group of distributed and cooperative systems of LIP6.

 Fig. 4.an ordinary and a reduced (in bold) portion of synchronized product

(m0 , b0)

(m1 , b0) (m2 , b0) (m3 , b0)
R12 , R13 , R23

R23

R13

(m4 , b13) (m5 , b11)

(m2 , b25)

(m6 , b5)

(m1 , b19) (m1 , b20)

-21-

9. References

[1] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, “On Well-formed Colored
Nets and their Symbolic Reachability Graph”, proc. of 11th International Confer-
ence on Application and Theory of Petri Nets, Paris-France, June 1990.

[2] E. Clarke, T. Filkorne, S. Jha, “Exploiting Symmetry In Temporal Logic Model
Checking”, 5th Computer Aided Verification (CAV), June 1993.

[3] E. Clarke,O. Grumberg, D. Long,"Verification Tools for Finit-State Concurrent
Systems", "A Decade of Concurrency-Reflections and Perspectives", LNCS vol
803, 1994.

[4] C. Courcoubetis, M. Vardi, P.Wolper, M. Yannakakis, "Memory Efficient Algo-
rithms for the Verification of Temporal Properties", In proceedings of CAV’90,
North Holland, DIMACS 30. 1990.

[5] M. Dam. "Fixed points of Büchi automata", In R. Shymanasundar, editor, Founda-
tions of Software Technology and theoretical Computer Science, volume 652 of
LNCS, pages 39-50, Springer-Verlag, 1992.

[6] E.A. Emerson, A. Prasad Sistla, “Symmetry and Model Checking”, In Formal
Methods and System Design 9, pp 105-131, 1996.

[7] E.A. Emerson, A. Prasad Sistla, “Symmetry and Model Checking”, 5th conference
on Computer Aided Verification (CAV), June 1993.

[8] E.A. Emerson, A. Parsad Sistla, "Utilizing Symmetry when Model Checking un-
der Fairness Assumptions: An Automata-theoric Approach", 7th CAV, LNCS
939, pp. 309-324, Liège, Belgium, July 1995.

[9] E.A. Emerson, "Temporal and Modal Logic", HandBook of Theoretical Computer
Science, Volume B, J. van Leeuwen (eds), 1990.

[10] E.A. Emerson and Chin-Laung Lei, "Modalities for Model Checking: Branching
Time Stricks Back", In Proc of 12h Annual Symposium on Principles of Program-
ming Languages, New-Orleans, Louisiana, January 1985.

[11] R. Gerth, D. Peled, M. Vardi, P. Wolper, "Simple On-the-fly Automatic Verifica-
tion of linear Temporal Logic", Protocol Specification Testing and Verification,
1995, Warsaw, Poland.

[12] S. Haddad, JM. Ilié, B. Zouari, M. Taghelit, "Symbolic Reachability Graph and
Partial Symmetries", In Proc. of the 16th ICATPN, Torino, Italy, June 1995.

[13] J-M. Ilié, K. Ajami, "Model Checking through the Symbolic Reachability Graph",
in Proc of TapSoft’97 - CAAP, pp 213-224, Lille, France, Springer-Verlag, LNCS
1214, Avril 1997.

[14] K. Jensen, G. Rozenberg (eds), "High Level Petri Nets, Theory and Application",
Springer-Verlag, 1991.

[15] Z. Manna, A. Pnueli. "The Temporal Logic of Reactive and Concurrent Systems:
Specification", Springer-Verlag, 1992.

[16] F. Michel, P. Azéma, F. Vernadat. "Permutable Agents and Process Algebra", In
Proc. of TACAS’96, Passau, Germany, 1996, Springer-Verlag, LNCS 1055.

[17] C. Norris IP and D. Dill, "Better Verification Through Symmetry", In Formal
Methods in System Design, Vol 9, August 96, pp 41-76.

[18] D. Park,"Concurrency and Automata on Infinite Sequences", LNCS vol 114, 1984.
[19] K. Schmidt, "Symmetry Calculation", Workshop CSP Warschau 1995.
[20] M.Y. Vardi, "Alternating Automata and Program Verification", Computer Science

Today: Recent Trends and Developments.LNCS,Vol.1000, Springer-Verlag 1995.
[21] M. Y. Vardi, "An Automata-theoretic approach to linear temporal logic (banff’94),

LNCS, 1043, 1996.

