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La vérification des propriétés des systèmes concurrents peut être effectuée par la spécification et la vérification des formules de logique temporelle sur un graphe états-transitions modélisant le système. Le problème connu de l'explosion combinatoire, en espace et en temps, nécessite le développement de techniques efficaces pour réduire (par rapport à certaines propriétés) la taille du graphe à construire.

, elle exploite les symétries de description existant entre les objets du système, cependant elle introduit l'idée que les symétries ne sont pas seulement detectables dans le système mais aussi dans toute formule décrivant une propriété de ce système. De telles symétries sont définies par un groupe de permutations sur les objets du système de façon à assurer la préservation de la formule et le graphe d'états-transitions du système. Une relation d'équivalence entre les états du système peut donc être déduite, autorisant la construction de graphes quotients très réduits sur lesquels les vérifications sont assurées. Néanmoins, cette méthode de vérification exploite les symétries du système de façon très restrictive puisque seules les formules dont les symétries forment un groupe peuvent être vérifiées avec efficacité.

Notre but est de définir et d'utiliser des symétries plus grossières afin d'obtenir une meilleure réduction des graphes d'états-transitions représentés.

-2-L'ensemble des symétries considérées ne constitue donc pas nécessairement un groupe mais permet d'exploiter le maximum de symétries possibles du système.

Dans notre approche nous commençons par analyser l'automate de Büchi modélisant les séquences valides vis à vis d'une propriété LTL à vérifier. Nous déterminons l'ensemble des symétries entre les états de l'automate en considérant que deux états sont symétriques s'ils induisent le même comportement courant et futur à une permutation près. De la même façon nous détectons, dans le modèle représentant le système, les symétries du modèle en considérant que deux états sont symétriques s'il sont égaux à une permutation près, à calculer en fonction des valeurs courantes des variables du système. En appliquant ces relations sur le produit synchronisé de l'automate de la formule et du graphe qui modélise le système, nous construisons une structure quotient sur laquelle les séquences invalidant l'automate de la formule, sont détectées.

Dans cet article, nous prouvons que la vérification utilisant cette approche est équivalente à la vérification de la formule sur le graphe complet. Néanmoins, le calcul général des permutations a une complexité exponentielle ce qui réduit en quelques sorte les bénéfices réalisés par la réduction du graphe. C'est pourquoi nous proposons une approche alternative consistant à restreindre le temps de calcul des symétries à un temps polynomial en ne calculant qu'un sous ensemble des symétries exploitables. Bien que le produit synchronisé résultant puisse être d'une taille accrue par rapport à la structure quotient, nous prouvons qu'il possède les même capacités de vérification et trouvons qu'elle réalise dans la plupart des cas pratiques des réductions exponentielles. L'article que nous présentons ici est une version étendue de celui présenté à TA-CAS'98. En particulier, une application a été ajouté pour confirmer l'intérêt de notre technique. Domaine: Méthodes Formelles, Vérification. Mots clés: Logique Temporelle, LTL, Symétries, Automates de Büchi, Vérification, Vérification du modèle.

Introduction

Checking system correctness can be performed by the specification and the verification of temporal logic formulas over a state transition graph which models the system behavior. The well-known combinatorial explosion problem in space and time requires the development of efficient techniques in order to reduce the size of the graph to be built, with respect to some desired properties.

One of the most promising technique has been initiated by Emerson & al [6,[START_REF] Emerson | Symmetry and Model Checking[END_REF]. It exploits the symmetries of both the system and formula. Such a technique builds a quotient graph in which each node represents an equivalent class of states. The relation is induced by a subgroup of permutations preserving the state graph and the formula. In practice, the permutations act on a set of system processes with identical behavior. Previous works have been already developed focusing on the safeness properties [START_REF] Chiola | On Well-formed Colored Nets and their Symbolic Reachability Graph[END_REF][START_REF]High Level Petri Nets, Theory and Application[END_REF][START_REF] Norris Ip | Better Verification Through Symmetry[END_REF][START_REF] Schmidt | Symmetry Calculation[END_REF]. Other developments include model checking algorithms [START_REF] Clarke | Exploiting Symmetry In Temporal Logic Model Checking[END_REF][START_REF] Ilié | Model Checking through the Symbolic Reachability Graph[END_REF], model checking under fairness constraints [START_REF] Emerson | Utilizing Symmetry when Model Checking under Fairness Assumptions: An Automata-theoric Approach[END_REF] and application to system bisimulation [START_REF] Michel | Permutable Agents and Process Algebra[END_REF].

Looking carefully at the technique described in [START_REF] Emerson | Symmetry and Model Checking[END_REF][START_REF] Emerson | Symmetry and Model Checking[END_REF], it appears that currently, the CTL* model checking can make profit from the symmetries but in a restrictive way. Roughly speaking, the previous methods detect symmetries with respect to a subgroup of symmetries acting on either state formula like or temporal formulas like where f i is a propositional formula involving the process i.

We generalize the previous methods by showing how these approaches are inefficient for formulas like . Roughly speaking, formula describing such a property is not completely asymmetrical although its group of symmetries is reduced to the identity. However, this formula contains symmetries since it is applied on a set of identical processes. Such symmetries are called partial symmetries. Hence, we show how partial symmetries can be exploited inside path subformulas of a CTL* formula. In this work, we limit the presentation to the case of LTL formulas. The general framework for branching time model checking can be developed using the iterated method of [START_REF] Emerson | Modalities for Model Checking: Branching Time Stricks Back[END_REF].

Unlike the approach presented in [START_REF] Emerson | Symmetry and Model Checking[END_REF][START_REF] Emerson | Symmetry and Model Checking[END_REF], the considered Büchi automaton is not necessarily globally symmetric with respect to a predefined symmetry group.

The starting point of our method is the analysis of the Büchi automaton associated with any LTL formula to be verified (see for instance [START_REF] Gerth | Simple On-the-fly Automatic Verification of linear Temporal Logic[END_REF]). Then we relate two states of the Büchi automaton if they represent the same current and future behavior up to a permutation of processes. Given a permutation, this state relation can be computed in polynomial time. Similarly, in the system model, two states are related by a permutation with respect to their current value of the system variables. By applying these relations on the synchronized product of the Büchi automaton and the global state transition graph, we define an appropriate quotient structure. We prove that model checking over this quotient is equivalent to model checking over the synchronized product however, the general computation of permutations wipes out the benefit of having a quotient structure (exponential complexity of computation). Therefore, we propose an alternative approach which computes, in polynomial time, an intermediate size structure. Such a structure has the same equivalence property as the quotient one and leads, in practical cases, to significant savings of space (even exponential).

The next sections are organized as follows: part 2 presents the model of computation and briefly recalls the temporal logic used to specify properties, it also presents the representation of a linear temporal logic formula by means of a Büchi automaton; part 3 presents the definition of system symmetries while part 4 presents the symmetries reflected in a temporal logic formula; part 5 is the analysis of the model checking using symmetries and the proof of its validity; part 6 contains the operational model checking approach using symmetries; part represents a realistic application; part 7 contains our conclusion and perspectives.

Model of Computation and Temporal Logic

We can apply our work on any system where symmetries are defined within a set of permutations. So, let us consider a simple model of system.

f v i I ∈ f i = f v i I ∈ Ff i = f Λ i j , I ∈ i j < f i U f j ( ) = -5-

The Model

We deal with finite state concurrent systems composed of many processes. Processes are identified by indices. They may share global variables but differ from local ones. The structure of such a system is defined as follows:

Definition 2.1.1: Finite State Concurrent System

We present a finite state system using the temporal structure M=(S, ∆, I, V, D, L, S 0 ) where: -S is the finite set of the states;

is the set of initial states; -is the possible changes between states; -I is the set of process indices; -V is the set of system variables; it is composed of two distinct subsets, V G , the set of global variables and V L the set of local variables.

-D is the definition domain of variables.

-L is the state labeling function, L: such that:

(i) L(s,v g ) is the value of variable v g of V G in state s; (ii) L(s,v l ,i) is the value of variable v l of V L of process i in state s.
Atomic propositions are built from the association of a value to a variable.

Remark:

The structure of a system depends only on the value of the variables i. ).

In the following we recall some notions of temporal logic used to specify system properties.The translation of linear temporal formulas to Büchi automata is also presented.

Temporal Logic

In a propositional Temporal Logic, the non temporal portion of the logic is propositional logic. Thus formulas are built up from atomic propositions, which intuitively express, atomic facts about the underlying state of the concurrent system, truth-functional connectives and the temporal operators. Furthermore, when defining a system of temporal logic, two possible views of the system, can be considered, regarding the nature of time.

S 0 S ⊆ ∆ S S × ⊆ S V G V L I × ∪ ( ) × D → v g d , (
)

V G D × ∈ v l i d , , ( ) V L I D × × ∈ AP p p V G D × V L I × D × ∪ ∈ { } = S 2 AP → v g d , (
)

L s v g , ( ) d = ⇔ v l i d , , ( ) L s v l i , , ( ) d = ⇔ -6-
One is that the course of time is linear: at each moment there is only one possible future moment. The other is that time has a branching tree-like nature: at each moment, time may split into alternate courses representing different possible futures. In linear time, one reasons about sets of infinite sequences, while in branching time, one reasons about the possible futures of the current state leading to branching tree like structure. In our work we are mainly interested by the linear time temporal logic formulas. However, the notion of branching time temporal remains the general framework in which our model checking can be extended. We use here two kinds of operators, temporal operators presented later and path quantifiers using the two symbols, A, E, to indicate respectively all or some paths.

Linear Temporal Logic (LTL)

A well-formed linear-time temporal logic, dealing with our system, is constructed from the set of atomic propositions AP, the standard boolean operators V (Or), ¬ (Not), and the temporal operators X (neXttime) and U (strong Until). Precisely, formulas are defined inductively as follows: (1) Every member of AP is a formula; (2) if ϕ and ψ are formulas then so are , Xϕ, ϕ U ψ. An interpretation for a linear-time temporal logic formula is an infinite word ξ=x 0 x 1 ... over an alphabet 2 AP . For more precision, the elements of 2 AP are interpreted as assigning truth values to the elements of AP: elements in the set are assigned true, elements not in the set are assigned false. We note ξ i the suffix of ξ starting at x i . The semantics of LTL is defined in the following:

-

ξ | = α iff , for . -ξ | = iff ¬(ξ |= ϕ). -ξ | = iff (ξ |= ϕ or ξ | = ψ). -ξ | = Xϕ iff ξ 1 | = ϕ. -ξ | = ϕ U ψ iff such that ξ i | = ψ and ξ j | = ϕ .
As some abbreviations, one can introduce additional linear operators: the eventuality operator F where Fϕ= true U ϕ, the always operator G where Gϕ=¬F¬ϕ.

From LTL to Büchi automata

A Büchi automaton is a finite automaton which accepts infinite sequences. A sequence is accepted if, and only if, it is recognized by the automaton and meets infinitely often one of the accepting states (called also designated states). It has been shown that any LTL formula can be translated to a Büchi automaton in order to perform efficient model checking. Indeed, Büchi automata are strictly more expressive than LTL formulas and equivalent to linear-time Mu-calculus [START_REF] Dam | Fixed points of Büchi automata[END_REF][START_REF] Park | Concurrency and Automata on Infinite Sequences[END_REF][START_REF] Vardi | An Automata-theoretic approach to linear temporal logic (banff'94)[END_REF].

Definition 2.2.3: Büchi automata

A Büchi automaton [START_REF] Emerson | Symmetry and Model Checking[END_REF] is a tuple A=(AP, B, ρ, B 0 , Prop B , F) where: -B is a set of states. Each state b of B is defined by the set .

ρ: is a nondetermistic transition function. -is a set of starting states.

-Prop B : is the set of atomic propositions holding in B. -is a set of accepting states.

ϕ ¬ ϕ ψ ∨ , α x 0 ∈ α AP ∈ ϕ ¬ ϕ ψ ∨ i ∃ 0 ≥ 0 j ∀ i < ≤ Atom b ( ) AP ⊆ B 2 B → B 0 B ⊆ B 2 AP → F B ⊆ -7-

Symmetries on Models

Given a permutation π: on the set of process indices, we want to determine whether two states of the state transition graph are symmetric up to this permutation. Effectively, a permutation is said to be a symmetry if and only if it preserves the possible changes between states. We define the symmetries on the model represented by the structure M=(S, ∆, I, V, D, L, S 0 ).

Definition 3.1: Symmetry on a State Transition Graph

A permutation π on I, is a symmetry iff:

(1) For each state , there is a unique state denoted π(s) which satisfies: (i) ;

(ii) . ( 2) Permutation π satisfies the following condition: .

The group of symmetries defined on M is called the automorphisms group of M and denoted Aut(M).

Symmetries on Formulas

In [START_REF] Emerson | Symmetry and Model Checking[END_REF], the symmetries of a temporal logic formula to be verified are obtained by a syntactical checking while in [START_REF] Emerson | Symmetry and Model Checking[END_REF], they result from the analysis of the corresponding Büchi automaton. By looking carefully at this method, it appears that symmetries of a CTL* formula are obtained in a restrictive way. Roughly speaking, many techniques are proposed based on the detection of a group of symmetries:

(1) State symmetries obtained from (sub)formulas like where f i is propositional involving process i. Effectively, the symmetries resulting from formulas like , constitute the group Sym(I), the group of all the permutations between the elements of I. Those computed for formula like constitute the group Stab(i) (the group of all the permutation between the elements of I \ {i}).

(2) The former approach fails to capture Path symmetries in LTL subformulas like , . Thus, the method of [START_REF] Emerson | Symmetry and Model Checking[END_REF] introduces a complementary framework by detecting a group of symmetries acting on the states of Büchi automaton.

All these approaches are inefficient for formulas like because the group of symmetries is reduced to the identity. However, the former formula contains symmetries since it is applied on a set of identical processes. Such symmetries are called partial symmetries and can be reflected in some states of its Büchi automaton.

In this section, we propose a more accurate method based on the exploitation of partial symmetries computed for some states of the automaton. Hence, we show that the existence of a group is not required to exploit symmetries.

We compute, the symmetries on a Büchi automaton, A=(AP, B, ρ, B 0 , E, F). The states equivalence can be detected using the relation defined as follows: (2) .

I I → s S ∈ s′ v g ∀ V G L π s ( ) v g , ( ) , ∈ L s v g , ( ) = i ∀ I ∈ v l ∀ , V L ∈ L π s ( ) v l i , , ( ) L s v l π i ( ) , , ( ) = , s 1 ∀ S ∈ ( ) s ∀ 2 S ∈ ( ) s 1 s 2 → ( ) ( , , ∆ ∈ π s 1 ( ) π s 2 ( ) → ( ) ∆ ) ∈ ⇔ V i I ∈ f i f EF V i I ∈ f i ( ) = f EF Λ i I ∈ f i ( ) = f EFf i = f V i I ∈ Ff i = f Λ i I ∈ Ff i = f Λ i j , I ∈ i j < f i U f j ( ) = -8-
Generally, R π is not an equivalence relation. It can be computed in a polynomial time using a fixed-point computation starting with condition (1) and by applying [START_REF] Clarke | Exploiting Symmetry In Temporal Logic Model Checking[END_REF].

Example 1: Let us consider the following Büchi automaton representing the formula for a system of three processes P 1 , P 2 , P 3 , where p 1 , p 2 , p 3 are three atomic propositions.

In this automaton, the only global symmetry group acting on the states is the identity. However, one can observe that states b 7 and b 10 are symmetrical with respect to definition 4.2 (permutation π such that π(1)=1, π(2)=3, π(3)=2 is used). Similarly, other symmetries can be detected between b 3 and b 4 , b 5 and b 10 etc. Conversely, b 7 and b 6 are identically labelled but not symmetrical.

In the next section, we show how to perform an efficient model checking using the Büchi automaton representation and the proposed symmetries. ) 

v g d , ( ) ∀ Atom b ( ) v g d′ , ( ) ∃ Atom b′ ( ) where d′ d = ( ) ∈ , ∈ { } v l j d′ , , ( ) i I v l i d , , ( ) ∀ , ∈ ∀ Atom b ( ) j I v l j d′ , , ( ) ∃ , ∈ ∃ Atom b′ ( ) where d′ d = ( ) ∈ , ∈ { } b ∀ b′ V ∈ bR π b′ , , b F ∈ b′ F ∈ ⇔ b′ b 1 ∀ b b 1 → [ ] b′ 1 b′ b′ 1 → [ ] ∃ , b 1 R π b′ 1 ( ) f p 1 Up 3 ( ) p 2 Up 3 ( ) ∨ [ ] p 1 Up 2 ( ) ∧ =

Analysis of Model Checking using symmetries

Classically, model checking is realized by (1) considering the Büchi automaton, of the negation of formula f to be verified; (2) building the synchronized product of this automaton and the one which models the behavior of the system; (3) searching in the synchronized product a sequence which has an accepting state repeated infinitely often in order to prove that the negation of the formula holds. The meaning of such algorithm is that one must verify that any behavior of the system validates the formula. This algorithm can work in an "on-the-fly" fashion [START_REF] Gerth | Simple On-the-fly Automatic Verification of linear Temporal Logic[END_REF] so as to avoid the construction of the whole graph of the strongly connected components.

Synchronized Product

The synchronized product of M and is noted and is defined as follows: is the automaton =(AP, Θ, Γ, Θ 0 , Φ) defined below:

-Θ= ;

-Θ 0 = ; - iff ; -Φ = .
By means of such a product, we have to check if the required formula holds through M. Generally, the verification algorithm become less complex using the negation of the formula. Effectively, we can search if there is a path in which an accepting state is repeated infinitely often. In such an algorithm we do not have to search all the strongly connected component to verify the formula. It is sufficient to find one of them to prove that the negation holds and consequently the formula does not hold. We call such a method, the on-the-fly verification fashion. Formally, the satisfaction relation of a formula is expressed as follows: M | = in where such that:

(1) ; (2) Roughly speaking, we present the path π as a strongly connected component using the following equivalence: for any different indices i,j, (m i ,b i )=(m j ,b j ) means that i=l and j=n.

Quotient Structure

In order to reduce the size of the synchronized product structure, we only consider canonical representatives of the symmetrical states instead of all the states. Consequently, we build a graph of representatives with respect to a symmetry relation, R, defined on as follows:

A f ¬ A f ¬ M A f ¬ × A f ¬ M A f ¬ × s b , ( ) s S b B prop B b ( ) prop S s ( ) ⊆ ( ) ∧ ∈ ∧ ∈ { } s b , ( ) Θ ∈ s S 0 ∈ b B 0 prop B b 0 ( ) prop S s 0 ( ) ⊆ ( ) ∧ ∈ ∧ { } s i b i , (
)

s j b j , ( ) → ( ) Γ ∈ s i s j → ( ) ∆ ∈ b i b j → ( ) ρ ∈ ∧ s b , ( ) Θ ∈ s S b F prop B b ( ) prop S s ( ) ⊆ ( ) ∧ ∈ ∧ ∈ { } M A f ¬ × f ¬ π s 0 b 0 , ( ) = ∃ … s l b l , ( ) … s m b m , ( ) … s n b n , ( ) ⇔ M A f ¬ × l m n < ≤ b m F ∈ i j , I ∈ ∀ i , j s i b i , (
) The representative can be efficiently implemented by defining a canonical representation based on a lexicographical order [START_REF] Chiola | On Well-formed Colored Nets and their Symbolic Reachability Graph[END_REF].

s j b j , ( ) = i j , { } l n , { } = ⇔ ( ) , ≠ ( ) M A f ¬ × -10-

Model Checking Correctness

In this section we validate our approach by showing that the model checking based on the proposed quotient synchronized product is equivalent to the one performed by means of the ordinary structure. Intuitively, we prove that the existence of an accepting state repeated infinitely often in the quotient structure is equivalent to the existence of an accepting state repeated infinitely often in the ordinary synchronized product. Hence, we can prove the satisfaction of temporal logic formulas by using our approach of symmetry. We start our proof by the correspondence between both the quotient and the ordinary structures of the synchronized product. Let represents the structure resulting from the synchronized product of the state transition graph and the automaton and let be its quotient structure with respect to the relation R introduced in definition 5.2.1. For each symbolic path in the quotient structure there is an ordinary path in the synchronized product such that the corresponding states of the two paths are symmetrical with respect to R:

Lemma: Correspondence Lemma such that

Proof: is immediate from the definition of quotient structure. For , we proceed by induction on, n, the length of the path: (i) n=0, This case is very simple since for any such that , the lemma is proved.

M A f ¬ × s ∀ s′ S ∈ b ∀ b′ V ∈ , , , s′ b′ s b , ( ) R s′ b′ , ( ) π Aut M ( ) ∈ ∃ bR π b′ π s ( ) s′ = M A f ¬ × M A f ¬ × M A f ¬ × ( ) R ⁄ = M A f ¬ × M A f ¬ × M A f ¬ × s b , ( ) Θ ∈ θ s b , ( ) s′ b′ , ( ) { π ∃ Aut M ( ) ∈ π s ( ) s′ = ( ) bR π b′ ( ) where ∧ s′ , , = Atom b′ ( ) } s b , ( ) M A f ¬ × M A f ¬ × M A f ¬ × ( ) R ⁄ = s 0 b 0 , ( ) ∃ … s n b n , ( ) , , M A f ¬ × ∈ s′ 0 b′ 0 , ( ) ∃ … s′ n b′ n , ( ) , , M A f ¬ × ∈ ⇔ 0 i ∀ n ≤ ≤ s′ i b′ i , ( ) , R s i b i , (
) 

the direction ⇐ the direction ⇒ s′ 0 b′ 0 , ( ) 
s′ 0 b′ 0 , ( ) R s 0 b 0 , ( ) -11- 
= .
Therefore, is a state of and since, there is an arc , the arc is an arc of the same structure also.

From this lemma, we now prove the equivalence of the existence of paths verifying the formula, in both the quotient and the ordinary synchronized product:

Theorem: The two following statements are equivalent:

(i) There is a path in where such that:

(1) ; ( 2) .

(ii) There is a path in where such that: (1) ; [START_REF] Clarke | Exploiting Symmetry In Temporal Logic Model Checking[END_REF] .

Proof:

(1) : Let us consider the shortest path that verifies (i1) in . From the correspondence lemma there is a corresponding path in . We prove that it verifies the following two statements: (ii1)

, effectively, symmetries built on the automaton preserve accepting states;

(ii2) Two directions have to be proved. is straightforward since , consequently we deduce from (i2 that {i,j}={l,n}. For , we have {i,j}={l,n}, so from (i2), . By assumption, {i,j}={l,n}, so, from (i2). The proof is now made by contradiction assuming that . In this case, since their representatives are equals. Consequently, from the correspondence lemma, we have an infinite path in which there is an in-

s 0 b 0 , ( ) … s n b n , ( ) , , M A f ¬ × s′ 0 b′ 0 , ( ) … s′ n b′ n , ( ) , , M A f ¬ × 0 i ∀ n ≤ ≤ s′ i b′ i , ( ) , R s i b i , (
)

s n b n , ( ) s n 1 + b n 1 + , ( ) → M A f ¬ × s″ n b″ n , ( ) ∃ s″ n 1 + b″ n 1 + , ( ) → M A f ¬ × s″ n b″ n , ( ) R s n b n , ( ) s″ n 1 + b″ n 1 + , ( ) R s n 1 + b n 1 + , (
)

s′ n b′ n , ( ) R s n b n , ( ) s′ n b′ n , ( ) R s″ n b″ n , ( ) π ∃ s′ n π s″ n ( ) = , b′ n R π b″ n s′ n 1 + π s″ n 1 + ( ) = b′ n 1 + b′ n 1 + R π b″ n 1 + s′ n 1 + π s″ n 1 + ( ) = π Atom b″ n 1 + ( ) ( ) Atom b′ n 1 + ( ) = s′ n 1 + b′ n 1 + , ( ) M A f ¬ × s″ n b″ n , ( ) s″ n 1 + b″ n 1 + , ( ) → s′ n b′ n , ( ) s′ n 1 + b n 1 + , ( ) → s 0 b 0 , ( ) … s l b l , ( ) … s m b m , ( ) … s n b n , ( ) M A f ¬ × l m n < ≤ b m F ∈ i j ≠ ∀ s i b i , (
)

s j b j , ( ) = ( ) i j , { } l n , { } = ( ) ⇔ , s′ 0 b′ 0 , ( ) … s′ l b′ l , ( ) … s′ m b′ m , ( ) … s′ n b′ n , ( ) M A f ¬ × l m n < ≤ b m F ∈ i ∀ j ≠ s′ i b′ i , (
)

s′ j b′ j , ( ) = ( ) i j , { } l n , { } = ( ) ⇔ , i ( ) ii ( ) ⇒ s 0 b 0 , ( ) … s l b l , ( ) … s m b m , ( ) … s n b n , ( ) 
M A f ¬ × s′ 0 b′ 0 , ( ) … s′ l b′ l , ( ) … s′ m b′ m , ( ) … s′ n b′ n , ( ) , , , , , , M A f ¬ × b′ m F ∈ The direction ⇒ s′ i b′ i , (
)

s′ j b′ j , ( ) = s i b i , (
)

s j b j , ( ) = ( ) ⇒ the direction ⇐ s i b i , (
)

s j b j , ( ) = s l b l , ( ) s n b n , ( ) = s′ l b′ l , (
)

s′ m b′ m , ( ) ≠ s′ l b′ l , (
) R s′ m b′ m , ( )

Consistent Graph

The quotient structure is the smallest structure that can be built to perform model checking using symmetries. In the worst case, {R π } π requires an exponential time construction therefore, we propose a new approach based on the construction of an intermediate structure, called consistent graph which does not require the computation of all the relations induced by the symmetries.

In such a graph, (1) reachability is preserved with respect to the ordinary synchronized product; [START_REF] Clarke | Exploiting Symmetry In Temporal Logic Model Checking[END_REF] The following lemma highlights the correspondence between the quotient structure and the graph consistent with .

Lemma: Consistent Graph Correspondence

consistent with G= such that .

Proof: It is similar to the one used for the correspondence lemma (section 5.3).

Hence, we can prove the model checking equivalence between the quotient structure and the graph consistent with the ordinary structure using correspondence lemma of the consistent graph.

Theorem: The two following statements are equivalent:

(i) There is a path in G= where

M A f ¬ × G′ AP′ Θ′ τ′ Θ′ 0 Φ′ , , , , ( ) = G′ s b , ( ) ∀ Θ ∈ s 0 b 0 , ( ) Θ 0 ∈ s′ b′ , ( ) ∃ Θ′ ∈ s′ 0 b′ 0 , ( ) Θ′ 0 ∈ s′ b′ , ( ) R s b , ( ) s b , ( ) ∀ Θ ∈ s 0 b 0 , ( ) Θ 0 ∈ s′ b′ , ( ) ∀ Θ′ ∈ s′ 0 b′ 0 , ( ) Θ′ 0 ∈ s′ b′ , ( ) R s b , ( ) s b , ( ) s 1 b 1 , ( ) → τ ∈ s′ 1 b′ 1 , ( ) ∃ Θ′ ∈ s′ 1 b′ 1 , ( ) R s 1 b 1 , ( ) s′ b′ , (
)

s′ 1 b′ 1 , ( ) → τ′ ∈ s b , ( ) ∀ Θ ∈ s 0 b 0 , ( ) Θ 0 ∈ s′ b′ , ( ) ∀ Θ′ ∈ s′ 0 b′ 0 , ( ) Θ′ 0 ∈ s′ b′ , ( ) R s b , ( ) s′ b′ , (
)

s′ 1 b′ 1 , ( ) → τ′ ∈ s 1 b 1 , ( ) ∃ Θ ∈ s 1 b 1 , ( ) R s′ 1 b′ 1 , ( ) 
s b , ( ) s 1 b 1 , ( ) → τ ∈ M A f ¬ × M A f ¬ × s 0 b 0 , ( ) ∃ … s n b n , ( ) , , M A f ¬ × ∈ s′ 0 b′ 0 , ( ) ∃ … s′ n b′ n , ( ) , , G′ ∈ ⇔ M A f ¬ × 0 i ∀ n ≤ ≤ s′ i b′ i , ( ) , R s i b i , ( ) 
s 0 b 0 , ( ) … s l b l , ( ) … s m b m , ( ) … s n b n , ( ) M A f ¬ × -14- such that: (1) ; (2) . 
(ii) There is a path in consistent with G= where such that:

(

.

Proof: This proof is similar to the one presented in the theorem of model checking equivalence (section 5.3) using the consistent graph correspondence lemma.

Operational Approach

The construction of a quotient structure is performed by checking, for each node built during the synchronized product, whether it is symmetrical with an already computed one. For this, an equivalence test has to be performed in an exponential time O(n!) (in the worst case), where n is the number of processes. Clearly, this would damage the benefit to have a condensed structure.

The following section introduces an operational approach in order to reduce the complexity of the construction algorithms. Nevertheless, the resulting state transition graph may have a larger size than the quotient structure because we compute only a reduced subset of symmetries. However, it is a consistent structure with both the ordinary and the former quotient structure, thus the model checking can be performed equivalently.

This section aims at presenting efficient algorithms to compute symmetries and to construct the consistent graph.

ij-Symmetry on Büchi automata

We now define a set of symmetries called the ij-symmetries in such a way that it represents a subset of R.

ij-Symmetry Definition

Let A=(AP, B, ρ, B 0 , E, F). A relation R i,j is a coarse relation that defines the equivalence of two states of a Büchi automaton with respect to two given processes. It fulfills the following definition: A relation R i,j is the relation R defined in 5.2.1 with respect to a the permutation s=s ij : such that s ij (i)=j, s ij (j)=i and for each k where .

From this definition we define a symmetry relation, R in , (The inner symmetry relation) with respect to I as follows: where * .

Hence, the inner symmetries presented by the relation R in constitutes a subset of the set of symmetries presented by R such that: . We define the function:

M ij : such that M ij (b k ,b l )=1 if b k R ij b l otherwise M ij (b k ,b l )=1.
We use boolean matrix called the ij-matix constructed on the states of the automaton in ordre to represent the functions M ij , . Such matrix are used in the construction of the reduced graph.

l m n < ≤ b m F ∈ i j ≠ ∀ s i b i , (
)

s j b j , ( ) = ( ) i j , { } l n , { } = ( ) ⇔ , s′ 0 b′ 0 , ( ) … s′ l b′ l , ( ) … s′ m b′ m , ( ) … s′ n b′ n , ( ) G′ M A f ¬ × l m n < ≤ b m F ∈ i ∀ j ≠ s′ i b′ i , (
)

s′ j b′ j , ( ) = ( ) i j , { } l n , { } = ( ) ⇔ , I I → k i j s ij k ( ) , , ≠ k = i ∀ j I ∈ b i , ( ) , , R in b′ j , ( ) bR i j , b′ ⇔ R in R i j , i j , ∪     = bR in b′ bR b′ ⇒ B B × 0 1 , { } → i ∀ j , I ∈ -15-

Example 2:

As an example we can detect the ij-symmetries defined on the automaton of figure 2. We represent ij-symmetries by the following ij-matrix:

The computation of the inner symmetry using the transitive closure is made as follows:

. For example:

Based on R in , the next section proposes an efficient algorithm for the determination of the symmetries which are reflected in a Büchi automaton.

ij-Symmetry Computation Algorithms

The computation of the inner symmetry starts from the computation of the ij-symmetry presented in the definition .

Let f be a temporal specification formula and let be the representation of its negation in terms of Büchi automaton.

(1) Firstly, we calculate, for a pair (i,j) of process indices, an initial partition of the states of using the definition of ij-permutation. This results in a set of pairs of state that verify the ij-permutation.

(2) Secondly, we restrain the computed ij-permutations to R i,j symmetry by checking the preservation of the transition relation (using definition 5.2.1). For each state, the set of R i,j symmetries is saved.

(3) This algorithm is repeated for each pair i,j of process indices. Let B={b 1 ... b m } be the states of where |B|=m is the number of states. Let I be the set of process indices such that |I|=n. We construct the set of ij-matrices that represent the symmetry relation between the states of B. We note Mat ij the matrix representing the symmetry R i,j . It worth noting that the complexity of the previous algorithm is O(m 5 ) for a given i,j.

= , m ∀ n , I ∈ R mn , R ij i j , I ∈ ∪     2 ∈ k ∃ I ∈ R , mn ⇔ R mk R kn × = R 13 R 12 R 23 × M
Hence, the determination of all the ij-symmetry have a complexity of O( ) which means a polynomial complexity. Furthermore, the computation of * can be restricted to have, also, a polynomial complexity.

Construction of the Consistent Graph

We compute the symmetries on the synchronized product in order to build the consistent graph. Such symmetries are symmetries of the model and must be an inner symmetries with respect to the considered Büchi automaton. Let be a Büchi automaton and let M be the structure of the state transition graph. In the following, we define the symmetries of the system used to compute the reduced The complexity of our model checking using symmetries is strongly dependent on the complexity of the former algorithm which have a polynomial complexity.

∅ ∅ b d ′ b k ′ b d ′ b k ′ b d ′ b k ′ n 2 m 5 × R in R i j , i j , ∪     = A f ¬ -17-
M A f ¬ × R′ M A f ¬ × s ∀ s′ , M ∈ b ∀ B ∈ , s′ s b , ( ) R′ s′ b , ( ) π Aut M ( ) ∈ ∃ R π R in ∈ b , R π b , π s ( ) s′ = ∧ ⇔ R′ G′ AP′ Θ′ τ′ Θ′ 0 Φ′ , , , , ( ) = M A f ¬ × A f ¬ b b0 ˆs0 b 0 , ( ) R′ Θ′ Θ′ s 0 b 0 , ( ) 
s 0 b 0 , ( ) 
rs ∅ ≠ Θ′ rs s b , ( ) → ( ) ρ ∈ s b , ( ) s b , ( ) Θ′ Θ′ Θ′ s b , ( ) s b , ( ) ρ′ ρ′ rs s b , ( ) → ( )

Application: Example of ij-symmetries detected on a formula

Let us consider a set of processes such that each one may send a request for accessing a critical section. Every process knows the other requests so as to cancel its proper request, in the case when another process reach the critical section. We model the problem by the following three states for any process i of the system: Idle i , Request i , Access i (I i , R i , A i respectively). We assume that the system is fair, but the request will be served according to the minimum value of the indices. Therefore, the property to check is:

In such formula, the first of the conjuction describes the mutual exclusion property (When a process has the access to the critical section, the other ones cannot issue a request). The second one describes the fairness property (each request of the critical section will be served). While the last part describes the access management according the minimum value of the indices. Our verification procedure is based on the synchronized product between the state space representing the system and the automaton representing the negation of the formula.

In the following we present the automaton of the previous formula in order to compute the reduced synchronized product by means of the symmetries detected on both the state space of the system and the automaton: In the following we present the construction of the reduced synchronized product. We make the application on a portion of the state space presented in the following. To use the same notation, we substitute proposition I i meaning that process i is in Idle state by proposition ¬C i ¬R i which means that the process is neither in the request state nor in the critical section:

Fig. 2. Büchi automaton of ¬f f G Λ i j ≠ C i C j ∧ ( ) ¬ [ ] G Λ i R i R i UC i → ( ) [ ] G Λ i j < R i R j ∧ R j UC i → ( ) [ ] ∧ ∧ = Τ ¬C 1 ¬C 2 ¬C 2 ¬C 3 ¬C 1 ¬C 1 ¬C 1 ¬R 3 ¬C 1 ¬R 2 ¬C 2 ¬R 3 ¬C 3 ¬R 3 Τ ¬C 2 ¬R 2 ¬C 1 ¬R 1 C 3 C 2 C 3 C 1 C 2 C 1 C 3 C 2 C 1 R 1 R 3 R 2 R 3 R 1 R 2 R 1 R 3 R 2 R 2 R 3 R 1 R 3 R 1 R
A portion of the ordinary synchronized product (without considering symmetries) is presented in figure 4. The reduced structure obtained when using symmetries is presented in the same figure but in bold lines: Fig. 3. A portion of the state space of the system

¬C 1 ¬R 1 ¬C 3 ¬R 3 ¬C 2 ¬R 2 R 1 ¬C 3 ¬R 3 ¬C 2 ¬R 2 R 2 ¬C 3 ¬R 3 ¬C 1 ¬R 1 R 3 ¬C 2 ¬R 2 ¬C 1 ¬R 1 R 1 R 2 ¬C 3 ¬R 3 R 3 R 1 ¬C 2 ¬R 2 R 2 R 3 ¬C 1 ¬R 1 m 0 m 1 m 2 m 3 m 4 m 5 m 6 C 1 ¬C 2 ¬R 2 R 3 C 2 ¬C 1 ¬R 1 R 3 C 1 ¬C 3 ¬R 3 R 2 m 7 m 8 m 9
-20-

Conclusion and Perspectives

We have described two frameworks for performing efficient LTL model checking. Both of them exploits the existence of symmetries reflected in the system and in the specification formula to be checked. With the first one, we show how to build the most aggregated structure by using the largest available symmetry relation. Such technique could be computed using algorithms which, in the worst case, would have an exponential complexity. The second framework computes a subset of symmetries with polynomial complexity algorithms inducing a less condensed structure. In comparison, the method proposed in [START_REF] Emerson | Symmetry and Model Checking[END_REF][START_REF] Emerson | Symmetry and Model Checking[END_REF] can be considered as a restrictive case requiring the definition of a symmetry group. Using the symmetry approach, two cases appear as the two extreme limits: the best one where the structural symmetries of the system are entirely used, causing a maximal aggregation of states and the worst case in which any set of symmetrical objects is reduced to a singleton, leading the reduced structure to be as large as the ordinary one.

We now aim at extending our methods to deal with specifications having nothing but partial symmetries [START_REF] Haddad | Symbolic Reachability Graph and Partial Symmetries[END_REF]. In such specifications, runs sometimes depend on the process identities (i.e. static priorities based on identities), and sometimes not. The implementation of this work is derived from GreatSPN2.0 developed by Chiola & Gaëta from the university of Torino-Italy. It will be integrated into the CPN-AMI tool developed by the group of distributed and cooperative systems of LIP6. 

Definition 4 . 1 :Definition 4 . 2 :

 4142 Permutation on a set of atomic propositionsLet π be a permutation on I. Let AP 1 be a set of atomic propositions, there is a set AP 2 denoted π(AP 1 ) which satisfies:π(AP 1 )=AP 2 =∪ Equivalence of two states of a Büchi automaton A relation R π is the coarsest relation that defines the equivalence of two states of a Büchi automaton. It fulfills the following two requirements: iff: (1) There is a permutation π that satisfies the two conditions:(i) ; (ii) Atom( )=π(Atom(b)).

Fig. 1 .

 1 Fig. 1. Büchi automaton of the formula f

Definition 5 . 1 . 1 :

 511 Synchronized ProductThe synchronized product of M=(S, ∆, I, V, D, L, S 0 ) and =(AP, B, ρ, B 0 , E, F)

Definition 5 . 2 . 1 :Definition 5 . 2 . 2 :

 521522 Symmetry Relation, R, Defined on such that s| =Atom(b) and | =Atom( ), iff such that and .Observe that R is an equivalence relation since it is defined on the group Aut(M). Therefore, we can define the quotient structure of the synchronized product denoted as follows: The Quotient StructureThe quotient structure is defined by means of the representatives of the state orbits of . The orbit of is defined by the set: | = . From each orbit θ(s,b), we pick an arbitrary representative denoted .

16 -

 16 In the following, we present the function R ij which compute the ij-symmetry in the automaton. This function calls two functions:(1) function ij-permut(b 1 ,b 2 ) which checks the ij-permutation for two given states b 1 and b 2 . (2) The second one R ij (b 1 ,b 2 ) which checks if the two states, b 1 , b 2 , are ij-symmetrical. Observe that The function Succ(b) computes all the successors of a given state b. Algorithm 1: R ij () Input : The set states of the automaton Output : The set of ij-matrix. BEGIN FOR each paire b d ,b k from V DO Mat ij [b d , b k ] = R ij ({(b d , b k )},b d , b k ); Algorithm 2: R ij (Path, b d , b k ) Input : Path used to collect states already visited; Two states of the automaton. Output : Boolean Value that determines if the two states are ij-symmetrical. BEGIN IF ij-permut(b d ,b k ) THEN BEGIN IF (Succ(b d )= AND Succ(b k )= ) Then return 1; FOR [each in Succ(b d ) and each in Succ(b k )] DO IF ( , ) is not in Path THEN BEGIN Path=Path ∪ ( , ); return R ij (Path,b d , b k );

  Examples of ij-symmetries that can be detected on this automaton: -b 4 R 12 b 12 , -b 9 R 12 b 10 , -b 14 R 12 b 16 , -b 17 R 12 b 21 , -b 22 R 12 b 24 , .... -b 6 R 13 b 12 , -b 8 R 13 b 10 , -b 18 R 13 b 21 , -b 20 R 12 b 25 , .... -b 17 R 23 b 18 , -b 8 R 23 b 9 , -b 4 R 23 b 6 , -b 5 R 23 b 5 , ....

Fig. 4 .

 4 Fig. 4. an ordinary and a reduced (in bold) portion of synchronized product

Definition 2.1.2: Global and Local Atomic propositions

  e. two different states must have at least one variable with different values.

	A global atomic proposition, is a pair	whereas a local atomic prop-
	osition is a triplet	that depends on a process i.
	We define		the set of atomic propositions built on the
	global and local variables.	
	We define prop S :	such that prop(s)

is the set of propositions associated with s. Definition 2.1.3: Atomic propositions holding in a state Global

  

	(respectively local) atomic propositions hold at state s of S (noted | =) as fol-
	lows: s |=	; (respectively s |=

  the transition relation of the ordinary synchronized product is preserved accordingly to the symmetry relation R in the consistent graph; (3) the transition relation of the consistent graph product is preserved accordingly to the symmetry relation R in the ordinary synchronized. Hence, All paths are preserved with respect to R. Such a consistent graph will be used in section to propose an efficient model checking in polynomial time.

	Definition 5.4.1: Consistent Graph	
	Let G=	=(AP, Θ, τ, Θ 0 , Φ) and let	we call
	consistent with G iff:	
	(1)	such that (s,b) is reachable from	,
	reachable from	such that	.
	(2)	such that (s,b) is reachable from	,
	reachable from	such that	:
	if	then		where
	such that	.
	(3)	such that (s,b) is reachable from	,
	reachable from	such that	:
	if	then	where
	such that	.

  structure. They let the state of the automaton invariant in each step the product :

	Definition 6.2.1: Symmetry defined on
			such that s|=Atom(b) and |=Atom(b) we have
				.
	The relation, , is used to build a reduced graph	consistent
	with	=(AP, Θ, τ, Θ 0 , Φ). The algorithm presented in the following.
	Algorithm 3: Consistent Graph Constructor BEGIN
		/* Symmetry Computation */
		-FOR each i,j from I DO Rij();
		-Polynomial computation of R in ;
		-FOR each equivalence class of	states DO Choose a representative ;
		/* Consistent Graph Construction: */
		FOR each (s 0 ,b 0 ) from Θ 0 such that s 0 |= DO
		BEGIN	
		Compute the symbolic representative	using the ;
		=	∪	;
		Push(	);
		END; /* FOR */
		rs = Pop();	
		WHILE	DO /* Stack is not empty */
		BEGIN	
		WHILE rs in	DO rs = Pop();
		FOR each arc	DO
		BEGIN	
		Compute	;
		IF	is not in	THEN
		BEGIN
				=	∪	;
			Push(	);
		END; /* IF */
			= ∪	;
		END; /* FOR */
		rs = Pop();
		END; /* WHILE */
	END. /* ALGORITHM */

 (s n ,b n) we have also a shortest path than π belonging to Π which is contradictory for the initial assumption. Consequently, .
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