N
N

N

HAL

open science

Testing Prototypes Validity to Enhance Code Reuse

Didier Buchs, Alioune Diagne, Fabrice Kordon

» To cite this version:

Didier Buchs, Alioune Diagne, Fabrice Kordon. Testing Prototypes Validity to Enhance Code Reuse.
[Research Report] 1ip6.1998.017, LIP6. 1998. hal-02547723

HAL Id: hal-02547723
https://hal.science/hal-02547723
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02547723
https://hal.archives-ouvertes.fr

Testing Prototypes Validity to Enhance Code Reuset

Didier Buchg, Alioune Diagne & Fabrice Kordoh

T
Swiss Federal Institute of Technology LIP6, Université P. & M. Curie,
1015 Lausanne - Switzerland 4 place Jussieu ,75252 Paris - France

E-mail: Didier.Buchs@di.epfl.ch, Alioune.Diagne@Iip6.fr, Fabrice.Kordon@lip6.fr

Abstract 1) what they guarantee to other components i.e. what
The complexity of distributed systems is a problem when are their locaproperties,
designers want to evaluate their safety and liveness. Often 2) what they require from the other components i.e.
they are built by integration of existing components with what are theiexpectations,
newly developed one&ctually, it is valuable to handle the 3) the means (methods operations)oy which orrect
integration of external pieces of software in the spewifi interactions with the environment are handled, i.e.
tion and testing activities. However, it is difficult to vali- theinternals.
date them formally unless doingeverse-engineering These internals do not need to be known for reused com-
(which is a heavy procedure). ponents at the specification phase. The behadicuch

This paper proposes to use structured formal spetifins elements can be abstracted through their expectations and
to generate a reasonable set of tests that evaluate behaviopropertiesto enable verification of the systds]. For ins-

of software components in order to get an answer to bothtance, one kind of expectation we consider is the sequences
questions. of operation invocations that can be safely and reliably sup-
To do so, we use the description of components’ externalPorted by the external pieces of software. Properties and ex-
behavior and express it using the OF-Class formalism (an pectations define a “formal signature” for the components.
encapsulation of Colored Petri Nets). Test patterns ar Code may then be derived from newly developed compo-
generated using an appropriate formalism, HML logic, nents and itegated with existing parts. Such an approach
and exploit various hypotheses corresponding to users’ raises two questions :

testing procedure 1) are stated properties and expectations of all dne-c
) ponents verified at the different stages of the life-
1. Introduction cycle? This enforces traceability of a component

from specification downto implementation,

The complexity of distributed systems is a problem 5 \what happens when stated properties and expecta-
when designers want to evaluate their safety and liveness tions are not verified? It is a robustness criteria for

Sotheir expectednoperties(basic ones like deadlock free- the component (see section 2.).

ness or domain dependent ones) must be known and veri - £qma) verificationand tuned tests generation provide
fied during the specification of the solution and traced to o answer to questiorL) above.Then, we may not care
the implementation by means of tests. about questior?) if the systenstructurally avoids such un-

_ Formal description techniques like Petri nets are a poten-yerified expectations (e.g. closed system built once for all).
tial solution to this problem. Structuration rules and/or as- However, the reuse of an external part may not meet all its
sociationwith structured representations compensate for expectationsThe behavior of a component in case of ex-
their lack of structuratiof3, 10, 2]. They have also been pectation violatiomeeds therefore to be known. It comes
proved to be valuable basis for testiayy In the remainder 31ong as a characterization that caratteched to the com-

of the paper, we consider Petri nets associated with ObleCt'ponent as well as the test cases for its evaluation.

oriented concepts for specification and an object-oriented” p,;g paper proposes to use structured formal specifica-

layout for implementation. _ _ _ tions to generate a reasonable set of tests that evaluate be-
Often, distributed systems are built by integration of payiorof software components in order to get an answer to

existing components with newly developed oregually, both questions.

it is valuable to handle the integration of external pieces of st \we identifies key problems in our testing approach

softwarein the specification and testing actigi. Howe- before a description of the context of our study. Then, we

ver, itis difficult to validate them formally unless doing re- yresent our solution and apply it to a small example before
verse-engineering (which is a heavy procedure). a short conclusion.

Components of a distributed system terformally des-

cribed by the following characteristics : 2. Key Problems
+ This work has been jointly performed during an exchange between the) . L . .
Swiss Federal Institute @echnology in Lausanne and the Université In this paper, we consider the verification, validation and

P. & M. Curie.

tests for distributed systems where newly developed com-g4

X : o e We noteProp the set of properties attached to a com-
ponents are integrated with existing ones. A specification of P prop

a system is valid if all the components are able to guaranteeponent'

their properties while handling the interactions with their <y m>
environment as long as their expectations are met. This open
means thatnothing bad would happen in the systesnt <f> > <f,u,W>

whenever the environment respects the expectations. It is
the nominal behavior. Once these expectations are no lon
ger met, the system or its components have two possible <fum>

behaviors : <f dscALL> c_desc \ 5 o_desc

read
[m=R] I%I*<f,u,m>

"everything good and expected will eventually happen” /’ create

1) detect that the expectations have been violated anc C F DSC) open_dsc
raise somesxception.This means that it isobust - <f,um> /’
against illegal behavior from the environment, [m=W] £—<f,u,m>
2) go out of the nominal behavior so tHabmething write
bad happead" or "some expected other thing never close
happens! <f>—c—<<fum
For existing components, we require an external descrip- delete
tion basically consisting of : O ass <f> *:<<f\'/l;;m>
* how to use the availablerimitives i.e. what are the f dscis1.64; m in mode;
sequences allowed (expectations), usr is 1..100; - fin f_dsc;
*what are the guarantee when using these primitivesgfrf;'ﬁ IR uinusr,
according to the expectations (properties). open_dsc is <f_dsc,usr,mode>;
No information at all is provided about the way primiti- Figure 1 : External description of the simple filesystem
ves are implemented, as explained in the next section. The component by means of a Petri net.

supplied information is valuable to check if the component In the example of Figurk what happens if an applica-

is proper|y manipu|ated by other Components of the Systemtion opens more than 64 files ? or if it writes in a file that is

[12]. not yet Qpened ? In those cases, the component should si-
This is necessary to take into consideration importation 9Nl an improper use exactly when the problem occurs. It

of software components that are already implemented. Themeans that the component also remain at least safe and pe-

external description (what it does and how to use it) of a 'haps reliable when :

component is basically an automata that can be expresse client f Exp
using Petri nets. If Prop U Exp can be formally verified using a forma-
Figurel describes the behavior of a simple dilstem lism like Petri nets, automatic generation of tests are useful
component which can run either in reaaly or write-only to check if the corresponding implementation also has simi-
mode.This component offers six operations (open, create, lar characteristicsEvaluation otlient - Exp enforces to
read, write and close) for which a possible coressicu- specifically verify unexpected behaviotdere, automatic
tion is described by the following : generation of tests is also valuable to know how the compo-
(create & & (write)* || open & & ((read)*||(write)*)) nent implementation behaves when its requirements are
&& (close||delete) violated. ' o
The number of initial tokens in place desc corres- It is quite easy, based on a behavior specification like the
ponds to the available file descriptors in the system (i.e. theOne of Figurel, to generate many primitive invocation se-
maximum number of files to be opened). guences that either respect or violate expectations regarding

A specification like the one of Figueallows a system & software component. However, it is of interest to obtain a
designer to state the way a component runs. Such prerequif@sonably sized benchmarkich ensures a good covera-

sites must be respected by any element that use the specifgel,Of potential prfobl'tlelms. Hereafter are some validimnd
cation component through its implementation. We call Valid sequences for illustration.

thoseexpectationsf the system. WeateExp a set of such client | <open><read><close>
expectations. It means that a client must satisfy the fol- client # <read><open><close>
lowing relation: Under the hypothesis that the environment sttokthe
client E Exp expectations of a component, this one (natEderhereaf- _
Based on such a description, we can gtedpertiesof ter) should support the expectations and guarantee its
the system. In the example of Figdreproperties arerlfo properties :
more than 64 files can be simarieously openetior "it is server | Exp and server = (Exp [Prop)

impossible to read in a write-only opened file and vice-ver- ~ The first equation means that the specification of the
component is compliant with its expectations and the se-
(1) && stands for sequence and || for alternative. cond one means that under these expectations, it guarantees

its properties.
3. Context of the Study

The work presented in this papelieson the MARS
methodology7]. MARS is a multi-formalism approacte-
signed to offer a suitabtepresentatiofor each description
stage(from conception to verification and prototyping) of a
distributed system.

3.1. Overview of the MARS M ethodol ogy

The MARS methodology proposes a frame to specify,
evaluate and implement distributed applicationslefines
a track that leads a system designer fromcthreceptual
description (specification) to theoperational description
(implementation) from which programs are automatically
generated.

The conceptual level is dedicated to the explicit defini-
tion and verification of safety and liveness properties. The
operational level is more likely dedicated to implicit pro-
perties addressing the optimization and automatic produc-
tion of the generated prototype.

Figure? illustrates steps of the MARS methodology. It
relies on three formalisms :

» Well-formed Petri netf4] fit all the formal needs. It is a
potential target used to verify and compute properties of
the system model;

» OF-Class (Object Formalism Cla$5) provides a con-
ceptual description of the system. It contains informa-
tion about the association of components, the way they
behave and how they should be used. It may be trans-
formed into a formal description;

* H-COSTAM (Hierarchical COmmunicating $\¥e
Machine Model)[9] allows the designer to deal with
operational aspects of his system. Such a description
may be derived from the conceptual description by
addition of information. It can also be transformed into
a formal description and enables code generation.

From OO requirements External
components
Conceptual '
descrlptlo Test
(OF Class) :
Formal descrlptlon
(Petri nets)

Operatlonal
descrlptlon Executable

(H- COSTAM) prototype

Figure2: Overview of the MARS methodology.

Three operations between these representations are che

racterized:
e Two transformations from respectively OF-Class into
Petri nets (Tv in Figurg) and H-COSTAM into Petri
nets (To in Figur@) enable the link with the formal

representation. These transformations areferdint
while they do preserve discrete properties. The result is
a Petri net that express either functional relations (to
extract conceptual properties of the system) or an ope-
rational description (to extract implementation charac-
teristics). Transformation Tv aims to provide
information about the safety and liveness of the system
while transformatiorTo focuses on the computation of
characteristics for optimization purpose;

Elicitation of the system is the transformation of a con-
ceptual description into an operational one (E in
Figure2). This step should not be automatic like the
two other ones. It should be performed once when the
system attains a satisfactory level of confidence whith
respect to expected properties. It can be considered as a
list of questions that gradually clarify all the points of
the implementation.

Code generation is performed from the operational des-
cription (Gp in Figure2). It may compute and use ope-
rational properties to optimize code generation. In the
context of distributed systems, this operation must pro-
duce both a compilable program and a location propo-
sal. In our methaalogy, a prototype is made of parts
generated from the operational description pkiernal
componentghat correspond to already existing pieces
of software.

In MARS, any component description must identifiy its
internal behavior (how it evolves) and its external descrip-
tion (how it must be us@dFor components mobk and
evaluated at the conceptual level, the two descriptions are
required. Only the external description has to be provided
for external components.

3.2. External Description of a Software
Component

External description of a component is described at the
conceptual level while its verification is performed at this
stage of the methodology.

It is expressed using a structured language that declares
operations organize them intoservicesand provids a
usage patterrior each service.

An operation is a procedure (with its input and output
parameters) that appears to be atomic from a user’s point of
view. A service is a way to classify operations and logically
group them. Services may share operations. The usage ma-
nual of a service defines how operations in the service
should be operated.

The small file manager component (presented in
Section2.) contains five operations that are distributed over
two services :

* read-only groups operationepen read, close delete
and has oper&&(read)*&&(close||delete for usage
manual

e write-only groups operationscreate write, close
deleteand hascreate®&(write)*&&(close||delet for
usage manual.

The Petri net of Figur# is derived from such a specifi- 3.4.1. TheTheory of Testing
cation. It is usefuto define abehaviorhsignature of the o o
software component. It can be used as well to generate tes The theory of testing is elaborated on specifications

ting sequences. Spec, programsProg and testsTest, and on adequate
compatible satisfaction relationships between programs
3.3. Introducing Testing Techniquesin MARS and specificationgs, and between programs and tejsts,
This is defined by the following equation:
We introduce testing techniques in order to evaluate (PEoTsp = P E SP).
both validity and robustness of software componesstsed The equivalence relationship is satisfied when the
from formal specifications. This concerns : test sefls; is pertinent, i.e. valid (any incorrect program is
* External components to check if they correspond to discarded) and unbiased (it rejects no correct prog@m).
their external description; course, the exhaustive test set is pertinent.

» Newly developed components to verify that implemen- However, a pertinent test Skf» can only be used to test
tation choices introduced during the elicitation proce- a progran® if T has a "reasonable" finite size. Limiting
dure (E in Figure 2) have not altered their robustness. the size of a test sets is performed by sampling. In our theo-
The extension of the MARS method we describe in this ry, sampling is performed by applying hypotheses on the

paper corresponds to the gray part Figurgets of testsare programP, making assumptions that the program react in
generated (Gt in Figur® from the formal description of the same way for some inputs.

selected components and applied (O in Fi@yen the cor- Assuming that hypotheseshave been made on the pro-

responding software implementation. As we will explain in gramP, the following formula has to be verified for any se-

Section4., we mainly exploit the information contained in lected test seffgp,:

the external description of components. (P satisfies H) => (P o Tsp = P | SP).
3.4. Theoretical Grounds on Testing 3.4.2. Practicable Test Context and Hypotheses
In the following sectios, we will shortly describe the Thus, the test selection problem is reduced to applying

theory of the test selection techniques for object oriented hypotheses to a program until a test set of reasonable size
software. Integsted readers can find more informatiam 0 can be selected. For that purpose, we build a test context,
those techniques ii] and[11]. called practicable because it can be effectively applied to
Functional testing is an approach to find errors in a pro- the oracle: Given a specificati@P, a practicable test con-
gram by verifying its functionalities, without analyzing the text(H, T), is defined by a set of hypothedéson a pro-
details of its code, but by using the specification of the sys- gram under tef?, a test set of "reasonable” finite size and
tem only. The goal is to find cases where a program doesan oracleO defined for each element ©f
not satisfy its specification. It can be summarized as the The selection of a pertinent test Jebf "reasonable”

equation: size is made by successive refinements of a possibly not
PHo T = PRSP practicable initial test context,, T,)o Which has a perti-
i.e. that the test s@tapplied on a prograi® will reveal nent test seT, (but not of "reasonable" size), until obtai-
that the prograr® does not implement correctly the speci- ning a practicable test contekt, T)o:
fication SP. (This observation is performed through the (Hoy To)o < ... (Hy, T)o < (H, To - £ (H, To.
help of an oracle, formally denoted py,). Of course, the 0
goal in selectindr is to uncover the cases where the pro- L .
gram does not satisfy the tests, and thus reveal errors witr APPlication [\ E , Reductior
respect to the specification. h of / H NN\ T] of the tes
S ypothese A - set
Test selection is based on the knowledge of the proper- / i\ Ti /
ties of the specification language, which must be theoreti- / \ \ - /
cally well founded. Usually, specification languages have a
notion of formula representing properties that all desired [H N \T/
implementations satisfy. Tests can be expressed using ¢ Figure 3: Iterative refinement of the test context

common language, however it is not necessary to have the At each step, the preorder refinement confielytT;)o <
same language to express both specification properties an(H;, Tj)o is such that:
tests. The most interesting solution is to have a specifica- « The hypothesell, are stronger than the hypothesgs
tion language well adapted to the expression of properties H, =>H,.
from an user point of view, and @ther language to descri- » The test s€T; is included in the test s&t
be test cases that can be easily applied to an oracle, as lor « |f p satisfiesH, then (H,, T))o detects no more errors
as there is a full agreement between these two languages. than(H;, T),

* If P satisfiesH; then(H;, T;)o detects as many errors

than(H;, T)o

Therefore, ifT; is pertinent thef; is pertinent. the reduction of the level of abstraction of f by constraining
Since the exhaustive test set is pertinent, we can use ithe instantiation of its variables. The various techniques
for the initial contexiT . that can be applied could not be described here, they can be

found in[1] and[11].
4. Proposal and Example
4.1.3. Operational Test Selection
Our proposal integrates testing techniques in the MARS
methoddogy according to the objectives identified in The concrete implementation of the test selection can be
Section3.3.1n this section, we describe the mechanisms of performed by means of a logic programming engine if a
our technique and then applyemto the small example complete axiomatization of the specification language can

presented Section 3.1. be given inHorn clauses. In the test selection t@Mmodi-

_ _ o fied resolution mechanism based on random choice of the
4.1. Testing Behaviorsand Propertiesin OF-Class resolvant clause is used.
4.1.1. Expressing Testswith HML Formulae 4.14. TheOracle

For the specification language, the tests can be ex- Once atest set has been selected, its elements are execu:
pressed with the HML Logic introduced by Hennessy-Mil- ted on the program under test. Then the results collected
ner [8]. HML formulae built using the operators Next from this execution are analyzed. It is the role of the oracle
(<_>), And (), Not (-), T (always true constant), and the to perform the analysis, i.e. to decide the success or the
events Event (SP) of the specification[$SBpec, are noted failure of the test set.

HML g An advantage of this approach is to have an obser- The oracleO is a partial decision predicate of a formula
vational description of the valid implementation through in a progranP. The problem is that the oracle is not always
the tests. A test is a formula which is valid, invalid or raise able to compare all the necessary elements to determine the
an exception (failure). It must be experimented in the pro- success or the failure of a test; these elements are said to be
gram (i.e. a correct implementation behaves similarly to the non-observable. This problem is solved using the oracle hy-

specifications and detects usage problems). pothesed$i, which are part of the possible hypotheses and
An elementary test for a program under tesi Prog collect all power limiting constraints imposed by its imple-
and a specification SB Spec can be defined as a couple mentation.
<Formula, Result> where: The failure result (see Sectidril.1) has been elabora-
e Formulal HML gp: (ground) temporal logic formula. ted to detect a component failure during execution time. At

« Result O {true, false, failure}: value showing whether the oracle level, it corresponds to no response : the compo-

the expected result of the evaluation of Formula (from a nentis out and can event not answer to signal a problem. At
given initial state) is true, false or generates a compo- the specification level, we consider its a deadlock state (i.e.

nent failure. without successor).

A test <Formula, Result> is successful if Result reflects
the validity of Formula in the labeled transition system mo-
deling the expected behavior of P. In all other cases, a tes
<Formula, Result> is a fail. It is important to note that the
test definition will allow the test procedure to verify that a
non-acceptable scenario cannot be produced by the pro
gram (for instance, to read in a file that is not opened). For
tests expressed using HMH_we can define the exhaustive
test set Exhaust ,,,0 Test such that:

Exhausip o = {<Formula, Result>d HML¢p x {true,
false, failure} | (SH= Formula and Result = true) or ($2 4.2. Example
Formula and no exception are raised and Result = false) ol

4.1.5. Thelncremental Test Selection Process

We use the structure of the depenzdes among classes
to determine a test selection process in which the whole
specification is tested class by class. In case of mutual de-
pendegies, a linearization is proposed in order to determi-
ne sequence of test application. Previously tested classes
require less care, so stronger hypothesis can be considered
while the class of interest need weaker hypothesis.

(SP | Formula and an exception is raised and Result = | et us come back to tHidesystem example sketched in
failure)}. Section2. which models a basic file system speoations

) (create, open, read, write close atelete) Hereafter, we
4.1.2. Test Selection provide a partial description expressed using our spaeifi

tion model : OF-Class.

Expectations are stated in the interface by means of of-
ed services. They allow to define coherent viewpoints on
the component involving just the appropriate part of the
operations. For instances tteader s offered service defe

the behavior allowed for components accessing the file in

From a practical point of view, the reduction process is
implemented as a selection process: to each reduction hyfer
pothesis on the program corresponds a constraint on the tes
set. Indeed, the exhaustive test set can be defined as a co!
ple <f, r > where f is a HM{; formula with variables uni-
versally quantified. The aim of the test selection becomes

read-only mode. This enables the definition of cliecltss- as follows:

sesand thus the use of a component in discretaextswi- Thus the constrair@ [0 CONSTRAINEp x is the predica-
thout facing its whole complexity. te:nb-eventgf) = k

In this simple file system, we have two kinds of proof Strategy The strategy used to solve the former cons-
obligations : traint C generates all the HMbys formulae with a number

1) basic properties like reliability for servers. The com- of events equal to k, without redundancy. With this strate-
ponent must ensure that each request to one of itsgy, only skeletons are generated and nothing is imposed by
operations is eventually followed by a result the specification. Later, free variables are supposed to be

2) the second one is domain-dependent. The numbers oinstantiated to events based on environment’s operations.

file-descriptors should always be less than 64. For instance, the constrainb-events (fx 2 produces the
The properties depicted id)(are implicit and always four following tests:
verified. They ensure the cortaess of the specification. TO: <(not <VO>T) and (not <V1>T),result>
The reader can refer [6] for more information about such TL<(not<V0> T)and (<V1>T), result>
implicit basic properties and the specification model in ge- T2:<(<V0> T)and (<V1>T), result>
neral. The properties ir2) are explicily stated in the spe- T3:< <V0><V1>T, result>

cification and verified. where the variablego andVv1 are of type event.

filesystem ISA OFCLASS 2 .
DyECLARATION{ 4.2.2. Event Based Constraints
type f_dsc is 1..64;

MACRO-LEVEL Another way to reduce the size of the test sets is to cons-

EXPORTS {
service readers
operations {
f_dsc : open (char name);
char :read (f_dsc fd);
void : close (f_dsc fd);

manual {
open && (read)* && (close || delete)}
#definition of service writers (omitted)

}
MICRO-LEVEL
RESOURCES {
#local resources declaration (omitted);

}
INSTANCES {
instl ;

}
OPERATIONS {
here are defined a part of the internals
i.e. the algorithms for the operations
void : close (f_dsc fd)

actions to close the file (omitted)

}
ENSURES { # invariant to be respected
Alw(card(files)+card(opened_files)=64)

ENDOFCLASS

train the number of occurrences of a given operation in each
test.

Hypothesisif a test 4, r> is successful for all instances
of f having a number of occurrences of a given operation
equal to a bounH, then it is successful for all possible ins-
tances of.

The number of occurrences of a given operation m is re-
cursively computed with the function

nb-occurrencesHMLSP, xsx Operations— IN,
which is defined like the functiomb-events

The constrain€ O Constraind is the predicate nb-oc-
currences (f, m) = k.

Strategy The strategy used to solve the former cons-
traint C generates all the HMbys formulae with a number
of events based on the operation m equal to kekample,
let us consider a filesystefinon which we assume:

nb-occurrencegf, oper) = 1 (one occurrence afpen)
which leads to this kind of tests :

T:i<<f ;<fl.open(<str>)><c <flread(<f ,>)>
<c,<flread(<f 3>)>T, result>

where variables str is a string, variafdeand ¢ charac-
ters and variables,ff, and { file descriptors.

Free variables should be instanciated in order to produce

4.21. Structural Constraints the finite set of applicable testdniformity hypothesisan

As said beforetest selection consists in applying suc- D€ used for that goal, producing for instance :
cessive constraints in order to implement strateigies- T:<<2 <flopen(xx)><c ,<fl.read(<3>)>
ded to implement hypothesis on the programs undr te <Cp<flread(<4>)>T, result>

For our example we are going to illustrate the possible tests TNis test is obviously unsatisfied (it means tresult
that can be selected for the filesystem class. We will first Should be false). Selecting tests in this way lead to bad co-

use general hypothesis not related to the example and the verage of the different specification cases.
instanciate them to it.

Hypothesisif a test<f, r> is successful for all instances
of f having a number of events equal to a bokirttlen it is A better way to proceed is to first decompose the diffe-
succesgful for all pOSS|bIe_ mstanpesf.oﬂ'he number of rent tests by performing a so calleab-domain decompo-
events is computed recursively with the functidmevents sition leading to two cases:

« satisfiable test

4.2.3. Subdomain Decomposition

@ Lines beginning with a # are comments

T:<<f ;<flopen(<str>)><c
<c,<flread(<f >)>T, true>

p<flread(<f ;>)>

lism (HML logic) and exploit various hypothescorres-
ponding to users’ testing procedure. We generate setts

« exception case due to the fact that we are testing expecfor both nominal behavior of components and violation of

tations

T:<<f ;<fl.open(<str>)><c <flread(<f ,>)>
<c,<flread(f ,>)>T, false> 6.
with f; # f,

The n&t step is to apply the previously memtéa uni- [1]

formity hypothesis for correctly instantiating variables.

4.2.4. Other Hypothesis 2]
More hypotheses can be imagined from the above pre-

sented one. It must be noted that they are designed to reflec

the usual test practices. Inésted reader can consfdi]

which explains a set of intesting hypotheses as well as

how to implement them by a suitable logic programming [3]

engine.

4.2.5. Testing Expectations and Properties

The idea of differentiating expectation and propeiites [4]
taken into account by havirdiscreteinterpretatios of the
unsatisfiable formulae (satisfiable formulae are interpreted
in the same way for both kinds of specifications):

* Expectationsmust produce exceptions when applied [5]

(result= false)

* Propertiesmust produce unsatisfiable behavicesilt

= false).

For instance, another kind of test can be derived from
properties :

Ti<<f j<flopen(<str >)>f ,<fl.open(<str
o es<flopen(<str g5>)>T, false>

Where the following constraint is verified i, j
0 [1..65] with i}, f; # f;. This test checks that the filesystem
component rejects the opening of more than 64 files at a ti-[8]
me.

In both cases (expectations or properties), it is expected
to the component to signal a bad usage through the oraclel®]
If it does not failure detected by the oracle), we consider it
has crashed and thus, is not reliable.

[6]

2>

[7]

5. Conclusion

In this paper, we have proposed to enrich MARS, a Petri
net based design and prototyping methodology for distribu-
ted systems. The enrichment introduces a way to evaluate
the corresporeice between specifications and generated
prototypes. One of our gaais to check their robustness.
Robust software components should be able to detmat
propriate use by other components and signal it.

To do so, we use the external description of components
that describe their external behavior and express it using the
OF-Class formalism. In this formalism, users may express
a usage protocol by means of atomic operations (called ex-
pectations). They may also express properties on the sys
tem’s components.

Testpatterns are generated using an appropriate forma-

their expectations.

References

S.Barbey D. Buchs, and C. Péraire, "A Theory of
Speciftation-based Testing for Object-Oriented
Software", In Proceedings of EDCC2, LNC3$50,
pages 303-320, Taormina, Italy, Oct. 1996.

O. Biberstein, D. Buchs, and N. Guelfi, "Object-
oriented nets with algebraic specifications: The CO-
OPNJ/2 formalism", In G. Agha and F. De Cindio, edi-
tors, Advances in Petri Nets on Object-Orientation,
volume to appear of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

P. Buchholz, "Hierarchical High Level Petri Nets for
Complex System Analysis", Proceedings of the 15th
International Conference on Application afdeory

of Petri Nets (LNCS, spinge¥erlag), Zaragoza,
Spain, June 1994, LNCS vol. 815 PP. 119-138.

G. Chiola, C. Dutheillet, G. Franceschini & S. Had-
dad, "OnWell-Formed Colored Nets and their Sym-
bolic Reachability Graph", High Level Petri Nets.
Theory and Application. Edited by K. Jensen
G.Rozenberg, Springer Verlag 1991

A. Diagne & P. Estraillier, "Formal Specification and
Design of Distributed Systems", Internatiolébrks-
hop FMOODS'96, Paris, Mars 1996

A. Diagne & P. Estraillier, "A Component-based Fra-
mework for for the Specificationverification and
Validation of Open Distributed Systemdechnical
Report of the LIP6 Laboratory #1997/037.

A.Diagne & F.Kordon, "From Formal Specification to
Optimized Implementation of Distributed Systemas :
Multi-Formalism Approach"Technical Report of the
LIP6 Laboratory #97/039, December 1997.

M. Hennessy & R. Milner, "Algebraic laws for non-
determinism and concurrency”, Journal of £@M,
32(1):137-161, January 1985.

F. Kordon &W. El Kaim, "H-COSRAM : a Hierarchi-
cal Communicating State-machine Model for Generic
Prototyping”, Proceedings of the 6th International
Workshop on Rapid System Prototyping, N. Kano-
poulos Ed, IEEE comp. Soc. Press 95CS8078, pp
131-138, Triangle Park Institute, June 1995

[10] C.A. Lakos, "From Colored Petri Nets to Object Petri

Nets", Proceedings of the 16th International Coenfer
ence on Application and Theory of Petri Nets (LNCS,
spingerVerlag), Torino, Italy, June 1995, LNCS vol.
935, PP 278-297

[11] C. Péraire, SBarbey and D. Buchs, "Test Selection

for Object-Oriented Software Based on Formal Speci-
fication", In Proceedings of PROCOMET98, N.Y
USA, 8-12 June. 1998.

[12] J. Sa, J. A. Keane & B. @Varboys, "Software Pro-

cess in a Concurrent, Formally-based Framework", In
Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, Beijing, China, Octo-
ber 1996, pages 1580-1585

