
HAL Id: hal-02547721
https://hal.science/hal-02547721

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Active Objects to Autonomous Agents
Zahia Guessoum, Jean-Pierre Briot

To cite this version:
Zahia Guessoum, Jean-Pierre Briot. From Active Objects to Autonomous Agents. [Research Report]
lip6.1998.015, LIP6. 1998. �hal-02547721�

https://hal.science/hal-02547721
https://hal.archives-ouvertes.fr

From Active Objects to Autonomous AgentsZahia Guessoum and Jean-Pierre BriotTh�eme Objets et Agents pour Syst�emes d'Information et de Simulation(OASIS)Laboratoire d'Informatique de Paris 6 (LIP6), Case 169, 4 place Jussieu, 75252 PARIS Cedex 05e-mail : fZahia.Guessoum, ean-Pierre.Briotg@lip6.frhttp://www-poleia.lip6.fr/ fguessoum,briotgAbstractThis paper studies how to extend the concept of active object into a structure ofagent. It �rst discusses the requirements for autonomous agents that are not covered bysimple active objects. We propose then the extension of the single behavior of an activeobject into a set of behaviors with a meta-behavior scheduling their activities. To make aconcrete proposal based on these ideas we describe how we extended a platform of activeobjects, named Actalk, into a generic multi-agent platform, named DIMA. We discusshow this extension has been implemented. We �nally report on the application of DIMAto model economic agent evolution.1 IntroductionObject-oriented concurrent programming (OOCP) is the most appropriate and promisingtechnology to implement agents. The concept of active object may be considered as thebasic structure for building agents. Further-more, the combination of the agent concept andthe object paradigm leads to the notion of \agent-oriented programming" [23] [24], which isthe context of the present paper. The uniformity of communication mechanism of objectsprovides facilities to implement communicating agents and the concept of encapsulation ofobjects enables combination of various granularities of agents. Further-more, the inheritancemechanism enables specialization and factorization of knowledge.An agent is easily implemented by an active object. Although the concept of an activeobject provides some degree of autonomy, in that it does not rely on some external resources tobe activated, its behavior still remains procedural in reaction to message requests. To achieveautonomy, several researchers have proposed to add to this active object some function tocontrol the messages reception and processing by considering its internal state (see for example[4] [18]). Therefore the agent activity is not limited to receiving and sending messages. Moregenerally, we consider that, to be autonomous, agents must be able to perform a number offunctions or activities without external intervention, over extended time periods.The basic questions to build a bridge between: 1) the implementation and modelisationrequirements of DAI systems [6] [7] [12] and 2) the implementation and modelisation facilitiesand techniques provided by OOCP [13] are:- what is the most appropriate and the most generic structure to de�ne the main featuresof an autonomous agent?- how to accommodate the highly-structured OOCP representation machinery into somerelatively generic DAI implementation structure [13]?

This paper is an attempt to give answers to these two questions. It deals with 1) themodelisation requirements of DAI systems by providing a generic and modular agent archi-tecture and 2) the extension of the implementation and modelisation facilities of OOCP. Wewould like to make OOCP more relevant to DAI problems by incorporating into OOCP spe-ci�c representations and computing structures driven by DAI needs. The paper presents animplementation structure that supports DAI applications and enables to model the activitiesof an autonomous agent in a multi-agent world. Agents may range from simple processingentities to complex \intelligent "entities [8]. More concretely, in this paper we will describehow to extend a model of active object (named the Actalk platform) [3] [4], towards a genericand modular model of agent (named the DIMA platform).The paper is structured as follows. Section 2 presents briey active objects, the platformActalk, some limitations of these objects to represent agents and some requirements to build ageneric agent structure. Section 3 describes the proposed generic agent architecture. Section 4describes this architecture implementation with Actalk. Section 5 reports on the applicationof the proposed autonomous agents architecture to modelisation of economic agents evolution.Finally, we discuss the advantages of our architecture to design and implement multi-agentsystems and we describe some future work.2 Active ObjectsThe concept of active object (also named actor) has been introduced by C. Hewitt [17]to describe a set of entities which cooperate and communicate by message passing. Thisconcept brings the bene�ts of object orientation (modularity) to distributed environmentsand it provides object-oriented languages with some of the characteristics of open systems[1]. Based on these characteristics several languages have been proposed (see for instance in[28]).2.1 Actalk
(nextMessage)

selection

process

activity

actual computation

(performMessage:)

message

(a MailBox)

(a Message/Invocation)

behavior
(an ActiveObject)

address
(an Address)

reception

(an Activity)

(receiveMessage:)

address

Figure 1: Components of an Actalk active object.Actalk is a platform implementing various kinds of active object models [28] into a singleprogramming environment based on Smalltalk. Asynchronism, a basic principle of active-object languages, is implemented by enqueuing the received messages into a mail box, thusdissociating message reception from its interpretation. In Actalk, an active object is composedof three components (see Figure 1): 2

- an instance of class Address represents the mail box of the active object. It de�nes theway messages will be received and enqueued for later interpretation;- an instance of class Activity represents the internal activity of the active object.It provides autonomy to the actor. It owns a Smalltalk process which continuouslyremoves messages from the mail box and launches their interpretation by the behaviorcomponent;- an instance of class ActiveObject represents the behavior of the active object, i.e. theway individual messages will be interpreted.To build an active object with Actalk, one has to describe its behavior as a standard Smalltalkobject. The active object using that behavior is created by sending the message active tothe behavior.active"Creates an active object by activating its behavior"^self activity: self activityClass address: self addressClassMethods activityClass and addressClass represent the default component classes for cre-ating the activity and address components.
Activity

EnabledSetsActivity ConcurrentActivity

SynchroConcurrentActivity

CountersActivity

GenericInvocationsCountersActivity

EnabledSetsGenericInvocationsCountersActivity

EnabledSetsCountersActivity

GuardsActivity

AlwaysEnabledSetsActivity

FullGenericInvocationsCountersActivityFigure 2: Hierarchy of the activity/synchronization classes.Customizing Actalk means de�ning subclasses of the three component classes: Address,Activity and ActiveObject. This allows to de�ne speci�c models of active objects, e.g.various communication protocols as subclasses of class Address, various models of activityand synchronization as subclasses of class Activity (see Figure 2).2.2 Limitations of Active Object to Build a Generic Agent StructureOOCP provides us with powerful foundations for modeling and implementing agents. How-ever, these powerful and useful foundations do not really provide a generic agent structure.Active objects are monolithic and they have a procedural behavior. In spite of their commu-nicating subjects appearance, active objects do not reason about their behavior, about theirrelations and on their interactions with other active objects. Also if an active object does notreceive messages from other objects, it stays inactive. To cope with these limitations, severalresearchers have enriched the concept of active object to de�ne a generic agent structure:3

- T. Maruichi proposed concepts to add, to active objects in order to provide autonomousagents [18]. He introduced a message interpreter to realize autonomy and the notion ofenvironment to form groups of agents.- T. Bouron added a speech-act theory to improve the communication between activeobjects [2].- Y. Shoham introduced mental states to have an interaction-based behavior [23] [24].- etc.These are very interesting proposals, however they do not o�er a generic agent structurewhich matches the whole spectrum of DAI requirements [13]. To make this more clear wewill quickly summarize some needed agent properties [27] which are not provided by activeobjects:- An agent is an autonomous entity. It operates without direct intervention of humansor other agents. It must have some kind of control over its actions and internal state[5] [6] [8]. The autonomy notion needs the resolution of several problems: 1) how to"understand" and "adapt itself" to "reality"? 2) how to elaborate action plans? and3) how to deal with perturbations in the perception and actions on the environment?To be autonomous each agent needs a self-control mechanism to manage its behaviorin accordance with its internal state and its external universe one.- An agent is a pro-active entity. It does not simply act in response to the receivedmessages from the other agents. For example, it interacts with its environment andreasons to determine the most appropriate action in the current context.- An agent is a reactive entity. It scans asynchronously and concurrently its environmentto perceive data and responds in real time to these changes.- An agent is a sociable entity. It interacts with other agents by exchanging messages.It handles the other agents requests and generates adequate responses to these requests.In the following section, we present a generic architecture of agent that addresses suchrequirements.3 A Generic Agent Architecture

 Knowledge-based Module

Procedural Module
Rule-BaseDomain Objects

MetabaseControl Objects

.state 1

state i

Supervision Module

ATN (states, Transitions)

state n

Procedural Module

Control

InteractionFigure 3: The proposed architecture.In attempts to de�ne a generic architecture which owns the main properties of an agent, wepropose the extension of the single behavior of an active object into a set of behaviors. This4

architecture (see Figure 3) relies on a �rst layer made up of interactive modules that candescribe procedural behaviors and/or knowledge-based behaviors. These modules representthe di�erent concurrent agent behaviors such as communicating, reasoning and acting. Theyprovide the agent with the properties described in Section 2.2. For example, the communica-tion module manages the interaction between the agent and some other agents of the system.Therefore, it makes the agent sociable and the perception modules makes its reactive.A higher level supervision module represents the agent meta-behavior. It allows the agentto elaborate the di�erent behaviors activation plan.The �rst layer modules interact directly without the intervention of the supervision mod-ule. However, the activation of these modules is supervised by the latter.3.1 The Agent BehaviorsTo model complex systems, agents need to combine cognitive abilities to reason about complexsituations, and reactive abilities to meet deadlines. So, an agent may have two kinds ofbehaviors: stimulus-response and deliberative behaviors. These two kinds will be calledrespectively procedural and knowledge-based behaviors.In this section, we give three examples of modules: the perception module (proceduralbehavior), the reasoning module (knowledge-based behavior) and the communication module(which can be either procedural or knowledge-based by using, e.g. speech acts).- The perception module manages the interactions between the agent and its environ-ment. It monitors sensors and translates sensed data to de�ne a set of believes whichcan represent a model of the agent universe (the other agents and the environment).The obtained universe model (believes) is used by the deliberation module to reasonabout the other agents.- The deliberation module represents beliefs, intentions and knowledge of the agent.It is responsible for generating adequate responses to the messages transmitted by thecommunication module, or to the changes detected by the perception module. To dothis it relies on two kinds of abilities: know-how (operative abilities) and/or knowledge(cognitive abilities). The �rst one is represented by the standard behavior of the associ-ated objects (example: calculation of the new budget), and the second one is embodiedin a production system [15] [21](example: the decision process which chooses a strategyin a given context).- The communication module de�nes the mail box of the agent. It de�nes the way themessages are received and enqueued for later interpretation. It can reuse the low-levelcommunication mechanism of the active-object model [4]. In this case, it is reactive.However, agents often use high-level communication mechanism such as those based onspeech acts [25]. So, the communication module can be deliberative.These three modules seem su�cient to several application domains (see, for example, section5). Moreover, the use of a modular approach facilitates the integration of new modules suchas a learning module.3.2 The Agent Meta-BehaviorTo be autonomous, each agent needs a self-control mechanism to elaborate activities in ac-cordance to its internal state and its external universe one. The �rst level modules de�ne5

the agent internal state, the other agents states and the environment one. So, an agent staterelies on the �rst layer modules states.In the agent architecture that we propose, the self-control is managed by the supervisionmodule. This module is a generic scheduler of the agent activities which are de�ned in the�rst-layer modules. It allows the agent to dynamically adapt its behaviors to its universechanges. Usually, the modules which describe the interactions between the agent and itsuniverse, are reactive. So, the separation between deliberative behaviors (such as reasoning)and reactive behaviors (such as perception), as well as the use of concurrent processes torepresent these behaviors provide reactivity to the de�ned agents.The supervision module relies on two fundamental notions: states and transitions whichnaturally build up an Augmented Transition Network (ATN [26]).States qualify the context as perceived by some �rst-layer modules. Each module hasits own state. The combination of these states de�nes the global agent state. Changes inthe context are reected as transitions between states. Each transition links an input statewith an output state. The various signals received by the agent's modules (urgent messagereception, perception of new data, ...) represent the conditions of transition. The actionsof transition are the activation of the �rst layer behaviors (activate reasoning, terminatereasoning, read mail box, scan the environment, ...).At each transition, the ATN-based supervision module evaluates the conditions of tran-sitions (representing new events) to determine the most appropriate behaviors. When theseconditions are veri�ed, the transition actions are executed and the agent state is modi�ed.Indeed, at each transition, the agent can adapt its deliberative behaviors to the reactiveones, so to say, it adapts its behaviors to its universe changes (An example of ATN is givenin section 5).4 ImplementationTo implement the proposed agent architecture, the Actalk kernel (see Section 2.1) has beenreused.We have enriched this kernel to implement the proposed generic agent architecture. Inthis architecture, an agent is de�ned by a meta-behavior and a set of behaviors. In the agent-oriented programming [23] [24], the cycle of knowledge inference is merged with the cycle ofmessage acceptance. In our implementation, the cycle of agent activity is merged with theagent behaviors activation described by the ATN.Moreover, we dissociate the declarative part of the agent meta-behavior (ATN statesand transitions) from its procedural part (ATN interpreter). This declarative representationmakes the implementation more exible.Therefore, the agent architecture is composed of:- an object (instance of AgentActivity sub-class of Activity) which implements theATN interpreter,- an object (instance of Meta-Behavior-ATN sub-class of ActiveObject) which imple-ments the ATN declarative part,- a set of objects describing the agent behaviors. They implement the di�erent modulesof the �rst layer (perception, reasoning, communication/action, ...). These objects arede�ned as instance variables in the class Meta-Behavior-ATN.6

4.1 Agent ActivityIn Actalk, an object Activity manages and transmits the received messages which are inter-preted by another object describing the active object behavior.The instance method body used by createProcess creates a process to take out contin-uously the messages present in the active-object mail box.!Activity methodsFor: 'activity setting'!body[true] WhileTrue: [self acceptNextMessage]createProcess[self body] newProcessIn our architecture, the agent activity is described by an ATN which schedules the di�erentbehaviors (perception, reasoning, communication, etc.).!AgentActivity methodsFor: 'activity setting'!bodyself atnInterpreter!AgentActivity methodsFor: 'atn'!atnInterpreter"The agent engine"|atn state|atn := self metaBehavior atn.state := atn initialState.state = atn finalState whileFalse:[state := atn transitionAt: state]4.2 Implementation of the Agent Behavior and Meta-BehaviorTo build intelligent control systems for real-life applications (control of mechanical ventilation,manufacturing process, etc.), we need to design agents which range from simple entities tocomplex entities. These entities own deliberative abilities to reason about complex situationsand reactive abilities to meet deadlines.The use of an active object language brings the bene�t of the inheritance mechanism.Thus, we have de�ned several hierarchies of classes to describe the agent meta-behavior andbehaviors.Figure 4 gives an example of hierarchy of meta-behaviors. We have considered three be-haviors: perception, deliberation and communication. CommunicatingPerceivingDelibera-tingAgent supervises the three behaviors.At each class is associated an ATN to de�ne the meta-behavior. Each class implements:- the conditions and actions of the ATN transitions,- one or several methods for creating agents.Figure 5 gives an example of hierarchy of behavior. KnowledgeBasedBehavior uses a rulebase implemented with the rules based-framework N�eOpus.The class describing the communication module has a function to control message execu-tion while considering the agent internal state. It has a variety of operations which allow tomodel the notion of group as proposed by [18]. Each group is rei�ed as a simple agent. Itsmain function is to forward messages to the related agents.7

ActiveObject

(name, anATN)

DeliberatingAgent

CommunicatingDeliberatingAgent PerceivingDeliberatingAgent

Meta-Behavior

Cognitive Agents

Hybrid Agents

(aDeliberationBehavior)

(aCommunicationBehavior) (aPerceptionBehavior)

CommunicatingPerceivingDeliberatingAgent

Reactive Agents

Figure 4: Examples of classes describing agent meta-behavior.
CommunicationBehavior PerceptionBehavior

ProceduralBehavior

KQMLCommunicationBehavior KnowledgeBasedBehavior

ReasoningBehavior

CaseBasedReasoningBehaviorRealTimeReasoningBehavior

DeliberationBehaviorFigure 5: Examples of classes describing the agent behaviors.4.3 Use of DIMA to Implement Multi-Agent SystemsIn DIMA, a multi-agent system (MAS) is a set of agents and also possibly a set of objectsrepresenting the agents environment. To implement a MAS, one has to implement the objects,which are simple Smalltalk objects, and then to implement the agents.The main steps to implement an agent are the followings:1. Determination of the agent class, so to say, the choice of the class describing the agentmeta-behavior (see Figure 4).2. Implementation of the class describing its behaviors by sub-classing or using existingclasses (see Figure 4),3. Implementation of the agent ATN by instantiating the class ATN.4. Creation of the agent by using a method de�ned in the class selected in the �rst step.Example of method:PerceivingDeliberatingAgent newAgent: aNameDeliberationBehavior: aDeliberationBehaviorPerceptionBehavior: aPerceptionBehavioratn: anATN.5. Activation of this agent by using the method resume.8

5 ExperimentsTo validate the operational platform (DIMA), we have developed several applications [9] [14][15]. In this section, we report on some application to model the evolution economic agents.The economic model that we chose is the result of an extensive research [10] which wasconducted on a representative sample of the French manufacturing �rms. The database iscollected by the Bank of France and contains information on almost 3000 �rms.This economic model is based upon a twofold conception [20]. First, it de�nes a �rm byits intrinsic assets. A �rm is a collection of resources. Second, it introduces some dynamicsamong competitors. It contends that the path followed by a �rm depends on its past trajecto-ries. These paths are the strategic choices made by the �rm, either technological investmentsor market commitments. Thus, the resource endowment of a �rm is not a random variable.It is both constrained and constraining.In this application, we consider a set of economic agents in completion with each otherin a market. The economic agents have two behaviors: perception and deliberation. Theperception behavior allows the �rm to observe the market and to build a competition modelwhich is updated in real-time.5.1 The Firm Deliberation BehaviorA �rm is mainly de�ned by the following properties:- The state variables (X vector) represent the di�erent levels of resource owned by the�rm;- The Y variables represent the performances of the �rm. They are directly inuencedby the X vector.- A period of action (p) indicates the rhythm of the decision process of the �rm;- The capital (K) gives the �rm size and the means it can allocate to investment;- The budget of investment (B) is the amount of money a �rm allocates to improve itsX vector;- Finally, a �rm is characterized by the strategy it follows. In our model, a strategy isan order of priority for modi�cation of the X values. For instance, the cost strategyconcentrates on the X variables related to the production resources.Figure 6 describes the �rm deliberation behavior. At each period, the �rm computesthe value V which is an expression combining the �rm performances indicators and thecompetition performances. This value estimates the past strategy. It then calculates itscapitalization K, how much it can invest in B, and how to allocate the money according to achosen strategy.
Internal Parameters Modification

Strategy Choice and Application

Modification of Parameters

Competition Model

Calculate V
Y

X

Send the New Parameters
to Transaction ZoneFigure 6: A �rm decision process.To choose a strategy, we have two kinds of decision:- simple decision : the �rm uses a �xed decision table,9

- case-based decision : the �rm uses case-base reasoning [22] to choose a strategy byadapting solutions that were used and that have shown good performance. A case is aset of the �rm parameters and a set of the competition parameters. The latter de�nesthe competition model which is built by the �rm perception module. In the case base,each case has some additional information such as the chosen strategy and the obtainedperformances.These modi�cations of the X vector imply new performances Y, which are sent to themarket area.5.2 The Firm Meta-Behavior
wait

activateDecision

decisionTerminated/
suspendDecision and

activateDecision
andDecisionSuspended/

terminalCondition/
kill

State 3

updateCompetitionModel

updateCompetitionModel

noChangeInMarket/

changeInMarket/
noImportantChangeInMarket

importantChange/

State 1 State 2Figure 7: Example of ATN.The �rm meta-behavior is instance of the class PerceivingDeliberatingAgent. Figure 7gives the associated ATN. The latter manages two �rst-level modules (perception and delib-eration). This ATN gives priority to important data. In state 1, the condition "changeInMar-ket" leads to the action "updateCompetitionModel" and to stay in state 1. The condition"importantChange" leads to the actions "suspendDecision" and \updateCompetitionModel"whatever the state may be.5.3 The Simulation ExperimentsIn a �rst sample version of the economics agent model the main goal of the autonomousagents (�rms) is to win over their competitors.5.3.1 Firm Population Evolution
Figure 8: Performance evolution.In the �rst series of simulation, we considered three �rms (incumbent1, incumbent2, incum-bent3) with the same capital and the same initial resource sets. We have tested the e�ects10

of entry on a market. Three new �rms have entered the simulation. In this experimentation,the �rst entrant is as rapid as incumbent1, and the last entrant is as slow as incumbent3.We present the comparison of the performances of the six �rms. It appears that the slower�rms were the worst performers. incumbent3 was obliged to exit, and entrant3 arrived at thelast position. entrant3 has the smaller budget, and the worst performances of the survivors.Reciprocally, incumbent1 and entrant1, the best reactive �rms, lead market. They exhibitthe best performances, just followed by entrant2.5.3.2 LearningIn these second series of simulation, we enriched �rms with a case-base reasoning mechanism.So, we de�ned two kinds of agents :- Agents with a �xed decision process which is implemented as a knowledge base. So, thedeliberation behavior of these agent is instance of the class KnowledgeBasedBehavior(see Figure 5).- Agents which build their rule base by studying the evolutionary paths and even-tually modify the their strategy set by introducing a new strategy or deleting anexisting one. So, the deliberation behavior of these agent is instance of the classCaseBasedReasoningBehavior (see Figure 5).We consider a set of three �rms (Firm 4, Firm 5 and Firm 6) with a �xed decision process,and three other �rms (Firm 1, Firm 2 and Firm 3) with the same initial characteristics butwith learning abilities. These simulations show that the most e�cient �rm is often a �rmwith learning abilities (see an example of simulation in Figure 9).
Figure 9: performances evolution of �rms with learning abilities.5.3.3 DiscussionDIMA provides the user with several facilities to implement multi-agent systems. Thesefacilities improve the development time. For example, the economic agents system was im-plemented in a few days. The number of agents is �xed at the beginning by the user. However,agents may leave and new agents are created dynamically.Further-more, the use of the inheritance mechanism enables specialization of existingclasses to introduce new behaviors. For example, to implement agents with learning abilities,we have reused the class ReasoningBehavior describing simple decision (see Figure 5). Inthe introduced class (CaseBasedReasoning), we have de�ned the method which implementsthe simple decision. The new method uses case-based reasoning. The implementation of theagents with learning abilitiesdecision has not required any other change. For instance, theATN of the new agents is the same as the old one (see Figure 7).11

6 ConclusionSeveral hybrid architectures were proposed (see [11] and [19]) to build agents out of two ormore components which can be either deliberative or reactive. The reactive component isgiven some kind of precedence over the deliberative one. A key problem in such architectureis what kind of control can be used to manage the interactions between these fundamentallydi�erent components.Our architecture proposes a meta-behavior to decompose the behavior of an agent into anorganization of behaviors and it uses a meta-behavior to manage the interaction between thesedi�erent (reactive or deliberative) behaviors. This architecture provides the main propertyof an agent: autonomy, pro-activity, reactivity and sociability.The paper presented an extension of active objects to implement a structure of au-tonomous agents. The developed platform (DIMA) includes di�erent frameworks. In ad-dition to the active-object framework (Actalk), it uses the rule-based framework N�eOpusto implement the agent knowledge bases. It also uses the discrete-event simulation frame-work to represent and to manage the temporal evolution of the implemented agents. On theother hand, the use of a modular architecture and the inheritance mechanism facilitates theintroduction of new classes to describe new behaviors.We validated the platform DIMA on several applications: manufacturing process simula-tor [14]; N�eoGanDi [15]: a multi-agent system to control mechanical ventilation [9]; Meveco[16]: a multi-agent system to model economic agents evolution, etc.DIMA o�ers an interesting framework for studying multi-agent problems. For example,the implemented agents are mainly characterized by reactivity and adaptability to changes oftheir environment. To have real-time agents, we are currently studying an anytime reasoningtechnique [29]. The realized experiments [15] o�ers promising results. However, we havelimited our study of real-time aspects to the agent level. Real-time agents are necessary tomost real-life applications but they are not su�cient to build real-time multi-agent systems.It seems very interesting to study how the agents society cooperate to solve a global problemin real-time.References[1] G. Agha and C. Hewitt. Concurrent programmingusing actors: Exploiting large scale parallelism.In 5th Conference On Foundations of Software Technology & Theoretical Computer Science, pages19{41, 1985.[2] T. Bouron. Structures de communication et d'organisation pour la coop�eration dans un universmulti-agents. PhD thesis, Paris-6, Laforia, 1992.[3] J.-P. Briot. Actalk: a testbed for classifying and designing actor languages in the Smalltalk-80environment. In ECOOP'89, 1989.[4] J.-P. Briot. An experiment in classi�cation and specialization of synchronization schemes. InSpringer-Verlag LNCS, editor, 2nd International Symposium on Object Technologies for AdvancedSoftware (ISOTAS'96), pages 227{249, 1996.[5] C. Castelfranchi. Decentralized AI, chapter A Point Missed in Multi-Agent, DAI and HCI, pages49{62. Elsevier, Amsterdam, 1990.[6] C. Castelfranchi. Guarantees for autonomy in cognitive agent architecture. In Intelligent Agents:Theories, Architectures and Languages, LNAI Volume 890, pages 56{70, 1995.[7] P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Arti�cial Intelligence,42(1):225{253, 1990. 12

[8] Y. Demazeau and J.-P. M�uller. Decentralized AI. Elsevier, 1990.[9] M. Dojat and C. Sayettat. N�eoGanesh: an extensible knowledge-based system for the control ofmechanical ventilation. In 14th IEEE-EMBS, pages 997{1004, 1992.[10] R. Durand. Management Strat�egique des ressources et analyse de la performance. PhD thesis,HEC, Paris, 1997.[11] I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents. PhDthesis, University of Cambridge, Clare Hal, 1992.[12] L. Gasser. An Overview of DAI. Kluwer Academic Publisher, Boston, 1992.[13] L. Gasser and J.-P. Briot. Distributed Arti�cial Intelligence: Theory and Praxis, chapter Object-Oriented Concurrent Programming and Distributed Arti�cial Intelligence, pages 81{108. KluwerAcademic Publisher, 1992.[14] Z. Guessoum and P. Deguenon. A multi-agent approach for distributed discrete-event simulation.In DISMAS'95, pages 183{190, Poland, November 1995.[15] Z. Guessoum and M. Dojat. A real-time agent model in an asynchronous object environment. InMAAMAW'96, pages 190{203, Eindhoven, The Netherlands, January 1996. Springer Verlag.[16] Z. Guessoum and R. Durand. Un syst�eme multi-agents pour la mod�elisation de l'�evolution�economique. In J.-P. Muller et J. Quinqueton, editor, JFIADSMA'96, pages 47{57. Herm�es,1996.[17] C. Hewitt. Viewing control structures as patterns of passing messages. Arti�cial Intelligence,8(3):323{364, 1977.[18] T. Maruichi, M. Ichikawa and M. Tokoro. Decentralized AI, chapter Modeling AutonomousAgents and their Groups, pages 215{134. Elsevier Science, 1990.[19] J.-P. M�uller and M. Pischel. Modelling reactive behaviour in vertically layered agent architectures.In ECAI'94, pages 709{713, Amsterdam, (NL), 1994.[20] R. R. Nelson and S. Winter. An evolutionary theory of economic change. Harvard UniversityPress, Cambridge, 1982.[21] F. Pachet. On the embeddability of production rules in object-oriented languages. Journal ofObject-Oriented Programming 8(4), pages 19{24, 1995.[22] C. K. Riesbeck and R. C. Shank. Inside Case-Base Reasoning. Lawrence Erlbaum Associates,NY, 1989.[23] Y. Shoham. Agent0: An agent-oriented programming language and its interpreter. In AAAI-91,pages 704{709, 1991.[24] Y. Shoham. Agent-oriented programming. AI, 60(1):139{159, 1993.[25] D. McKay T. Finin, R. Fritzson and R. McEntire. KQML as an agent communication language. InACM Press, editor, Third international conference on information and knowledge management,November 1994.[26] W. Woods. Transition network grammar for natural language analysis. Communication of As-sociation of Computing Machinery, 10(13):591{606, 1970.[27] M. J. Wooldridge and N. R. Jennings. Agent theories, architectures, and languages: A survey.Knowledge Engineering Review, 10(2), june 1995.[28] A. Yonezawa and M. Tokoro. Object-Oriented Concurrent Programming. The MIT Press, 1987.[29] S. Zilberstein and S. Russel. Optimal composition of real-time systems. AI, 82(1-2):181{213,1996. 13

