Zahia Guessoum
email: fzahia.guessoum@lip6.fr

Jean-Pierre Briot
email: ean-pierre.briotg@lip6.fr

From Active Objects to Autonomous Agents

This paper studies how to extend the concept of active object into a structure of agent. It rst discusses the requirements for autonomous agents that are not covered by simple active objects. We propose then the extension of the single behavior of an active object into a set of behaviors with a meta-behavior scheduling their activities. To make a concrete proposal based on these ideas we describe how we extended a platform of active objects, named Actalk, into a generic multi-agent platform, named DIMA. We discuss how this extension has been implemented. We nally report on the application of DIMA to model economic agent evolution.

Introduction

Object-oriented concurrent programming (OOCP) is the most appropriate and promising technology to implement agents. The concept of active object may be considered as the basic structure for building agents. Further-more, the combination of the agent concept and the object paradigm leads to the notion of \agent-oriented programming" 23] 24], which is the context of the present paper. The uniformity of communication mechanism of objects provides facilities to implement communicating agents and the concept of encapsulation of objects enables combination of various granularities of agents. Further-more, the inheritance mechanism enables specialization and factorization of knowledge.

An agent is easily implemented by an active object. Although the concept of an active object provides some degree of autonomy, in that it does not rely on some external resources to be activated, its behavior still remains procedural in reaction to message requests. To achieve autonomy, several researchers have proposed to add to this active object some function to control the messages reception and processing by considering its internal state (see for example 4] 18]). Therefore the agent activity is not limited to receiving and sending messages. More generally, we consider that, to be autonomous, agents must be able to perform a number of functions or activities without external intervention, over extended time periods.

The basic questions to build a bridge between: 1) the implementation and modelisation requirements of DAI systems 6] 7] 12] and 2) the implementation and modelisation facilities and techniques provided by OOCP 13] are: -what is the most appropriate and the most generic structure to de ne the main features of an autonomous agent? -how to accommodate the highly-structured OOCP representation machinery into some relatively generic DAI implementation structure 13]?

This paper is an attempt to give answers to these two questions. It deals with 1) the modelisation requirements of DAI systems by providing a generic and modular agent architecture and 2) the extension of the implementation and modelisation facilities of OOCP. We would like to make OOCP more relevant to DAI problems by incorporating into OOCP speci c representations and computing structures driven by DAI needs. The paper presents an implementation structure that supports DAI applications and enables to model the activities of an autonomous agent in a multi-agent world. Agents may range from simple processing entities to complex \intelligent "entities 8]. More concretely, in this paper we will describe how to extend a model of active object (named the Actalk platform) 3] 4], towards a generic and modular model of agent (named the DIMA platform).

The paper is structured as follows. Section 2 presents brie y active objects, the platform Actalk, some limitations of these objects to represent agents and some requirements to build a generic agent structure. Section 3 describes the proposed generic agent architecture. Section 4 describes this architecture implementation with Actalk. Section 5 reports on the application of the proposed autonomous agents architecture to modelisation of economic agents evolution. Finally, we discuss the advantages of our architecture to design and implement multi-agent systems and we describe some future work.

Active Objects

The concept of active object (also named actor) has been introduced by C. Hewitt 17] to describe a set of entities which cooperate and communicate by message passing. This concept brings the bene ts of object orientation (modularity) to distributed environments and it provides object-oriented languages with some of the characteristics of open systems 1]. Based on these characteristics several languages have been proposed (see for instance in 28]). Actalk is a platform implementing various kinds of active object models 28] into a single programming environment based on Smalltalk. Asynchronism, a basic principle of activeobject languages, is implemented by enqueuing the received messages into a mail box, thus dissociating message reception from its interpretation. In Actalk, an active object is composed of three components (see Figure 1):

Actalk

-an instance of class Address represents the mail box of the active object. It de nes the way messages will be received and enqueued for later interpretation; -an instance of class Activity represents the internal activity of the active object.

It provides autonomy to the actor. It owns a Smalltalk process which continuously removes messages from the mail box and launches their interpretation by the behavior component; -an instance of class ActiveObject represents the behavior of the active object, i.e. the way individual messages will be interpreted. To build an active object with Actalk, one has to describe its behavior as a standard Smalltalk object. The active object using that behavior is created by sending the message active to the behavior. Customizing Actalk means de ning subclasses of the three component classes: Address, Activity and ActiveObject. This allows to de ne speci c models of active objects, e.g. various communication protocols as subclasses of class Address, various models of activity and synchronization as subclasses of class Activity (see Figure 2).

Limitations of Active Object to Build a Generic Agent Structure

OOCP provides us with powerful foundations for modeling and implementing agents. However, these powerful and useful foundations do not really provide a generic agent structure. Active objects are monolithic and they have a procedural behavior. In spite of their communicating subjects appearance, active objects do not reason about their behavior, about their relations and on their interactions with other active objects. Also if an active object does not receive messages from other objects, it stays inactive. To cope with these limitations, several researchers have enriched the concept of active object to de ne a generic agent structure:

-T. Maruichi proposed concepts to add, to active objects in order to provide autonomous agents 18]. He introduced a message interpreter to realize autonomy and the notion of environment to form groups of agents. -T. Bouron added a speech-act theory to improve the communication between active objects 2]. -Y. Shoham introduced mental states to have an interaction-based behavior 23] 24]. -etc. These are very interesting proposals, however they do not o er a generic agent structure which matches the whole spectrum of DAI requirements 13]. To make this more clear we will quickly summarize some needed agent properties 27] which are not provided by active objects:

-An agent is an autonomous entity. It operates without direct intervention of humans or other agents. It must have some kind of control over its actions and internal state 5] 6] 8]. The autonomy notion needs the resolution of several problems: 1) how to "understand" and "adapt itself" to "reality"? 2) how to elaborate action plans? and 3) how to deal with perturbations in the perception and actions on the environment? To be autonomous each agent needs a self-control mechanism to manage its behavior in accordance with its internal state and its external universe one.

-An agent is a pro-active entity. It does not simply act in response to the received messages from the other agents. For example, it interacts with its environment and reasons to determine the most appropriate action in the current context.

-An agent is a reactive entity. It scans asynchronously and concurrently its environment to perceive data and responds in real time to these changes.

-An agent is a sociable entity. It interacts with other agents by exchanging messages.

It handles the other agents requests and generates adequate responses to these requests.

In the following section, we present a generic architecture of agent that addresses such requirements. In attempts to de ne a generic architecture which owns the main properties of an agent, we propose the extension of the single behavior of an active object into a set of behaviors. This architecture (see Figure 3) relies on a rst layer made up of interactive modules that can describe procedural behaviors and/or knowledge-based behaviors. These modules represent the di erent concurrent agent behaviors such as communicating, reasoning and acting. They provide the agent with the properties described in Section 2.2. For example, the communication module manages the interaction between the agent and some other agents of the system. Therefore, it makes the agent sociable and the perception modules makes its reactive. A higher level supervision module represents the agent meta-behavior. It allows the agent to elaborate the di erent behaviors activation plan.

A Generic Agent Architecture

The rst layer modules interact directly without the intervention of the supervision module. However, the activation of these modules is supervised by the latter.

The Agent Behaviors

To model complex systems, agents need to combine cognitive abilities to reason about complex situations, and reactive abilities to meet deadlines. So, an agent may have two kinds of behaviors: stimulus-response and deliberative behaviors. These two kinds will be called respectively procedural and knowledge-based behaviors.

In this section, we give three examples of modules: the perception module (procedural behavior), the reasoning module (knowledge-based behavior) and the communication module (which can be either procedural or knowledge-based by using, e.g. speech acts).

-The perception module manages the interactions between the agent and its environment. It monitors sensors and translates sensed data to de ne a set of believes which can represent a model of the agent universe (the other agents and the environment). The obtained universe model (believes) is used by the deliberation module to reason about the other agents.

-The deliberation module represents beliefs, intentions and knowledge of the agent.

It is responsible for generating adequate responses to the messages transmitted by the communication module, or to the changes detected by the perception module. To do this it relies on two kinds of abilities: know-how (operative abilities) and/or knowledge (cognitive abilities). The rst one is represented by the standard behavior of the associated objects (example: calculation of the new budget), and the second one is embodied in a production system 15] 21](example: the decision process which chooses a strategy in a given context).

-The communication module de nes the mail box of the agent. It de nes the way the messages are received and enqueued for later interpretation. It can reuse the low-level communication mechanism of the active-object model 4]. In this case, it is reactive. However, agents often use high-level communication mechanism such as those based on speech acts 25]. So, the communication module can be deliberative.

These three modules seem su cient to several application domains (see, for example, section 5). Moreover, the use of a modular approach facilitates the integration of new modules such as a learning module.

The Agent Meta-Behavior

To be autonomous, each agent needs a self-control mechanism to elaborate activities in accordance to its internal state and its external universe one. The rst level modules de ne the agent internal state, the other agents states and the environment one. So, an agent state relies on the rst layer modules states.

In the agent architecture that we propose, the self-control is managed by the supervision module. This module is a generic scheduler of the agent activities which are de ned in the rst-layer modules. It allows the agent to dynamically adapt its behaviors to its universe changes. Usually, the modules which describe the interactions between the agent and its universe, are reactive. So, the separation between deliberative behaviors (such as reasoning) and reactive behaviors (such as perception), as well as the use of concurrent processes to represent these behaviors provide reactivity to the de ned agents.

The supervision module relies on two fundamental notions: states and transitions which naturally build up an Augmented Transition Network (ATN 26]).

States qualify the context as perceived by some rst-layer modules. Each module has its own state. The combination of these states de nes the global agent state. Changes in the context are re ected as transitions between states. Each transition links an input state with an output state. The various signals received by the agent's modules (urgent message reception, perception of new data, ...) represent the conditions of transition. The actions of transition are the activation of the rst layer behaviors (activate reasoning, terminate reasoning, read mail box, scan the environment, ...).

At each transition, the ATN-based supervision module evaluates the conditions of transitions (representing new events) to determine the most appropriate behaviors. When these conditions are veri ed, the transition actions are executed and the agent state is modi ed.

Indeed, at each transition, the agent can adapt its deliberative behaviors to the reactive ones, so to say, it adapts its behaviors to its universe changes (An example of ATN is given in section 5).

Implementation

To implement the proposed agent architecture, the Actalk kernel (see Section 2.1) has been reused.

We have enriched this kernel to implement the proposed generic agent architecture. In this architecture, an agent is de ned by a meta-behavior and a set of behaviors. In the agentoriented programming 23] 24], the cycle of knowledge inference is merged with the cycle of message acceptance. In our implementation, the cycle of agent activity is merged with the agent behaviors activation described by the ATN.

Moreover, we dissociate the declarative part of the agent meta-behavior (ATN states and transitions) from its procedural part (ATN interpreter). This declarative representation makes the implementation more exible.

Therefore, the agent architecture is composed of: -an object (instance of AgentActivity sub-class of Activity) which implements the ATN interpreter, -an object (instance of Meta-Behavior-ATN sub-class of ActiveObject) which implements the ATN declarative part, -a set of objects describing the agent behaviors. They implement the di erent modules of the rst layer (perception, reasoning, communication/action, ...). These objects are de ned as instance variables in the class Meta-Behavior-ATN.

Agent Activity

In Actalk, an object Activity manages and transmits the received messages which are interpreted by another object describing the active object behavior.

The instance method body used by createProcess creates a process to take out continuously the messages present in the active-object mail box.

!Activity methodsFor: 'activity setting'! body true] WhileTrue: self acceptNextMessage] createProcess self body] newProcess

In our architecture, the agent activity is described by an ATN which schedules the di erent behaviors (perception, reasoning, communication, etc.).

Implementation of the Agent Behavior and Meta-Behavior

To build intelligent control systems for real-life applications (control of mechanical ventilation, manufacturing process, etc.), we need to design agents which range from simple entities to complex entities. These entities own deliberative abilities to reason about complex situations and reactive abilities to meet deadlines.

The use of an active object language brings the bene t of the inheritance mechanism. Thus, we have de ned several hierarchies of classes to describe the agent meta-behavior and behaviors. Figure 4 gives an example of hierarchy of meta-behaviors. We have considered three behaviors: perception, deliberation and communication. CommunicatingPerceivingDelibera-tingAgent supervises the three behaviors.

At each class is associated an ATN to de ne the meta-behavior. Each class implements:

-the conditions and actions of the ATN transitions, -one or several methods for creating agents. Figure 5 gives an example of hierarchy of behavior. KnowledgeBasedBehavior uses a rule base implemented with the rules based-framework N eOpus.

The class describing the communication module has a function to control message execution while considering the agent internal state. It has a variety of operations which allow to model the notion of group as proposed by 18]. Each group is rei ed as a simple agent. Its main function is to forward messages to the related agents.

Use of DIMA to Implement Multi-Agent Systems

In DIMA, a multi-agent system (MAS) is a set of agents and also possibly a set of objects representing the agents environment. To implement a MAS, one has to implement the objects, which are simple Smalltalk objects, and then to implement the agents.

The main steps to implement an agent are the followings: 1. Determination of the agent class, so to say, the choice of the class describing the agent meta-behavior (see Figure 4). 2. Implementation of the class describing its behaviors by sub-classing or using existing classes (see Figure 4), 3. Implementation of the agent ATN by instantiating the class ATN. [START_REF] Briot | Actalk: a testbed for classifying and designing actor languages in the Smalltalk-80 environment[END_REF]. Creation of the agent by using a method de ned in the class selected in the rst step.

Example of method:

PerceivingDeliberatingAgent newAgent: aName DeliberationBehavior: aDeliberationBehavior PerceptionBehavior: aPerceptionBehavior atn: anATN.

5. Activation of this agent by using the method resume.

Experiments

To validate the operational platform (DIMA), we have developed several applications 9] 14] 15]. In this section, we report on some application to model the evolution economic agents.

The economic model that we chose is the result of an extensive research 10] which was conducted on a representative sample of the French manufacturing rms. The database is collected by the Bank of France and contains information on almost 3000 rms. This economic model is based upon a twofold conception 20]. First, it de nes a rm by its intrinsic assets. A rm is a collection of resources. Second, it introduces some dynamics among competitors. It contends that the path followed by a rm depends on its past trajectories. These paths are the strategic choices made by the rm, either technological investments or market commitments. Thus, the resource endowment of a rm is not a random variable. It is both constrained and constraining.

In this application, we consider a set of economic agents in completion with each other in a market. The economic agents have two behaviors: perception and deliberation. The perception behavior allows the rm to observe the market and to build a competition model which is updated in real-time.

The Firm Deliberation Behavior

A rm is mainly de ned by the following properties:

-The state variables (X vector) represent the di erent levels of resource owned by the rm; -The Y variables represent the performances of the rm. They are directly in uenced by the X vector. -A period of action (p) indicates the rhythm of the decision process of the rm; -The capital (K) gives the rm size and the means it can allocate to investment; -The budget of investment (B) is the amount of money a rm allocates to improve its X vector; -Finally, a rm is characterized by the strategy it follows. In our model, a strategy is an order of priority for modi cation of the X values. For instance, the cost strategy concentrates on the X variables related to the production resources. Figure 6 describes the rm deliberation behavior. At each period, the rm computes the value V which is an expression combining the rm performances indicators and the competition performances. This value estimates the past strategy. It then calculates its capitalization K, how much it can invest in B, and how to allocate the money according to a chosen strategy. To choose a strategy, we have two kinds of decision: simple decision : the rm uses a xed decision table, case-based decision : the rm uses case-base reasoning 22] to choose a strategy by adapting solutions that were used and that have shown good performance. A case is a set of the rm parameters and a set of the competition parameters. The latter de nes the competition model which is built by the rm perception module. In the case base, each case has some additional information such as the chosen strategy and the obtained performances. These modi cations of the X vector imply new performances Y, which are sent to the market area. The rm meta-behavior is instance of the class PerceivingDeliberatingAgent. Figure 7 gives the associated ATN. The latter manages two rst-level modules (perception and deliberation). This ATN gives priority to important data. In state 1, the condition "changeInMarket" leads to the action "updateCompetitionModel" and to stay in state 1. The condition "importantChange" leads to the actions "suspendDecision" and \updateCompetitionModel" whatever the state may be.

The Firm Meta-Behavior

The Simulation Experiments

In a rst sample version of the economics agent model the main goal of the autonomous agents (rms) is to win over their competitors. In the rst series of simulation, we considered three rms (incumbent1, incumbent2, incum-bent3) with the same capital and the same initial resource sets. We have tested the e ects of entry on a market. Three new rms have entered the simulation. In this experimentation, the rst entrant is as rapid as incumbent1, and the last entrant is as slow as incumbent3.

Firm Population Evolution

We present the comparison of the performances of the six rms. It appears that the slower rms were the worst performers. incumbent3 was obliged to exit, and entrant3 arrived at the last position. entrant3 has the smaller budget, and the worst performances of the survivors. Reciprocally, incumbent1 and entrant1, the best reactive rms, lead market. They exhibit the best performances, just followed by entrant2.

Learning

In these second series of simulation, we enriched rms with a case-base reasoning mechanism. So, we de ned two kinds of agents :

-Agents with a xed decision process which is implemented as a knowledge base. So, the deliberation behavior of these agent is instance of the class KnowledgeBasedBehavior (see Figure 5). -Agents which build their rule base by studying the evolutionary paths and eventually modify the their strategy set by introducing a new strategy or deleting an existing one. So, the deliberation behavior of these agent is instance of the class CaseBasedReasoningBehavior (see Figure 5). We consider a set of three rms (Firm 4, Firm 5 and Firm 6) with a xed decision process, and three other rms (Firm 1, Firm 2 and Firm 3) with the same initial characteristics but with learning abilities. These simulations show that the most e cient rm is often a rm with learning abilities (see an example of simulation in Figure 9).

Discussion

DIMA provides the user with several facilities to implement multi-agent systems. These facilities improve the development time. For example, the economic agents system was implemented in a few days. The number of agents is xed at the beginning by the user. However, agents may leave and new agents are created dynamically.

Further-more, the use of the inheritance mechanism enables specialization of existing classes to introduce new behaviors. For example, to implement agents with learning abilities, we have reused the class ReasoningBehavior describing simple decision (see Figure 5). In the introduced class (CaseBasedReasoning), we have de ned the method which implements the simple decision. The new method uses case-based reasoning. The implementation of the agents with learning abilitiesdecision has not required any other change. For instance, the ATN of the new agents is the same as the old one (see Figure 7).

Conclusion

Several hybrid architectures were proposed (see 11] and 19]) to build agents out of two or more components which can be either deliberative or reactive. The reactive component is given some kind of precedence over the deliberative one. A key problem in such architecture is what kind of control can be used to manage the interactions between these fundamentally di erent components.

Our architecture proposes a meta-behavior to decompose the behavior of an agent into an organization of behaviors and it uses a meta-behavior to manage the interaction between these di erent (reactive or deliberative) behaviors. This architecture provides the main property of an agent: autonomy, pro-activity, reactivity and sociability.

The paper presented an extension of active objects to implement a structure of autonomous agents. The developed platform (DIMA) includes di erent frameworks. In addition to the active-object framework (Actalk), it uses the rule-based framework N eOpus to implement the agent knowledge bases. It also uses the discrete-event simulation framework to represent and to manage the temporal evolution of the implemented agents. On the other hand, the use of a modular architecture and the inheritance mechanism facilitates the introduction of new classes to describe new behaviors.

We validated the platform DIMA on several applications: manufacturing process simulator 14]; N eoGanDi 15]: a multi-agent system to control mechanical ventilation 9]; Meveco 16]: a multi-agent system to model economic agents evolution, etc.

DIMA o ers an interesting framework for studying multi-agent problems. For example, the implemented agents are mainly characterized by reactivity and adaptability to changes of their environment. To have real-time agents, we are currently studying an anytime reasoning technique 29]. The realized experiments 15] o ers promising results. However, we have limited our study of real-time aspects to the agent level. Real-time agents are necessary to most real-life applications but they are not su cient to build real-time multi-agent systems. It seems very interesting to study how the agents society cooperate to solve a global problem in real-time.

Figure 1 :

 1 Figure 1: Components of an Actalk active object.

active"Figure 2 :

 2 Figure 2: Hierarchy of the activity/synchronization classes.

Figure 3 :

 3 Figure 3: The proposed architecture.

Figure 4 :Figure 5 :

 45 Figure 4: Examples of classes describing agent meta-behavior.

Figure 6 :

 6 Figure 6: A rm decision process.

Figure 7 :

 7 Figure 7: Example of ATN.

Figure 8 :

 8 Figure 8: Performance evolution.

Figure 9 :

 9 Figure 9: performances evolution of rms with learning abilities.