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Feature Selection with Neural Networks

Philippe LERAY and Patrick GALLINARI

Abstract

Features gathered from the observation of a phenomenon are not all equally

informative: some of them may be noisy, correlated or irrelevant. Feature

selection aims at selecting a feature set that is relevant for a given task. This

problem is complex and remains an important issue in many domains. In the field

of neural networks, feature selection has been studied for the last ten years and

classical as well as original methods have been employed. This paper is a review

of neural network approaches to feature selection. We first briefly introduce

baseline statistical methods used in regression and classification. We then

describe families of methods which have been developed specifically for neural

networks. Representative methods are then compared on different test problems.
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Sélection de Variables et Réseaux de Neurones

Philippe LERAY et Patrick GALLINARI

Résumé

Les données collectées lors de l'observation d'un phénomène ou mesurées sur un

système physique ne sont pas toutes aussi informatives: certaines variables

peuvent correspondre à du bruit, être peu significatives, corrélées ou non

pertinentes pour la tâche à réaliser. La sélection de variables est donc un problème

complexe et fait l'objet de recherches dans de nombreuses disciplines. Dans le

domaine des réseaux de neurones, la sélection de variables est étudiée depuis une

dizaine d'années et un certain nombre de méthodes, plus ou moins proches des

méthodes classiques, ont émergé. Ce rapport est une revue des approches

connexionnistes pour la sélection de variables. Nous présentons tout d'abord les

différents éléments constituant une méthode de sélection de variables. Nous

évoquons ensuite brièvement les méthodes statistiques utilisées en régression et

en classification. Nous passons enfin en revue les principales méthodes

développées spécialement pour les réseaux de neurones. Plusieurs méthodes

représentatives de sélection de variables sont alors comparées sur différents

problèmes.

Mots Clés

Sélection de Variables, Sélection de Caractéristiques, Pertinence d'une Variable,

Recherche Séquentielle
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Feature Selection with Neural Networks

Philippe LERAY and Patrick GALLINARI

1. Introduction

Learning systems primary source of information is data. For numerical systems

like Neural Networks (NNs), data are usually represented as vectors in a

subspace of Rk whose components - or features - may correspond for example to

measurements performed on a physical system or to information gathered from

the observation of a phenomenon. Usually all features are not equally

informative: some of them may be noisy, meaningless, correlated or irrelevant for

the task. Feature selection aims at selecting a subset of the features which is

relevant for a given problem. It is most often an important issue: the amount of

data to gather or process may be reduced, training may be easier, better estimates

will be obtained when using relevant features in the case of small data sets, more

sophisticated processing methods may be used on smaller dimensional spaces

than on the original measure space, performances may increase when non

relevant information do not interfere, etc.

Feature selection has been the subject of intensive researches in statistics and in

application domains like pattern recognition, process identification, time series

modelling or econometrics. It has recently began to be investigated in the machine

learning community which has developed its own methods. Whatever the domain

is, feature selection remains a difficult problem. Most of the time this is a non

monotonous problem, i.e. the best subset of p variables does not always contain

the best subset of q variables (q < p). Also, the best subset of variables depends

on the model which will be further used to process the data - usually, the two

steps are treated sequentially. Most methods for variable selection rely on

heuristics which perform a limited exploration on the whole set of variable

combinations.

In the field of NNs, feature selection has been studied for the last ten years and

classical as well as original methods have been employed. We discuss here the

problem of feature selection specifically for NNs and review original methods
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which have been developed in this field. We will certainly not be exhaustive since

the literature in the domain is already important, but the main ideas which have

been proposed are described.

We describe in sections 2 and 3 the basic ingredients of feature selection methods

and the notations. We then briefly present, in section 4, statistical methods used

in regression and classification. They will be used as baseline techniques. We

describe, in section 5, families of methods which have been developed

specifically for neural networks and may be easily implemented either for

regression or classification tasks. Representative methods are then compared on

different test problems in section 6.

2. Basic ingredients of feature selection methods.

A feature selection technique typically requires the following ingredients:

• a feature evaluation criterion to compare variable subsets, it will be

used to select one of these subsets,

• a search procedure, to explore a (sub)space of possible variable

combinations,

• a stop criterion or a model selection strategy.

2.1.1 Feature evaluation

Depending on the task (e.g. prediction or classification) and on the model (linear,

logistic, neural networks...), several evaluation criteria, based either on statistical

grounds or heuristics, have been proposed for measuring the importance of a

variable subset. For classification, classical criteria use probabilistic distances or

entropy measures, often replaced in practice by simple interclass distance

measures. For regression, classical candidates are prediction error measures. A

survey of classical statistical methods may be found in (Thomson 1978) for

regression and (McLachlan 1992) for classification.

Some methods rely only on the data for computing relevant variables and do not

take into consideration the model which will then be used for processing these

data after the selection step. They may rely on hypothesis about the data

distribution (parametric methods) or not (non parametric methods). Other
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methods take into account simultaneously the model and the data - this is usually

the case for NN variable selection.

2.1.2 Search

In general, since evaluation criteria are non monotonous, comparison of feature

subsets amounts to a combinatorial problem (there are 2k -1 possible subsets for

k variables), which rapidly becomes computationally unfeasible, even for

moderate input size. Branch and Bound exploration (Narendra and Fukunaga

1977) allows to reduce the search for monotonous criteria, however the

complexity of these procedures is still prohibitive in most cases. Due to these

limitations, most algorithms are based upon heuristic performance measures for

the evaluation and sub-optimal search. Most sub-optimal search methods follow

one of the following sequential search techniques (see e.g. Kittler, 1986) :

• start with an empty set of variables and add variables to the already

selected variable set (forward methods)

• start with the full set of variables and eliminate variables from the

selected variable set (backward methods)

• start with an empty set and alternate forward and backward steps

(stepwise methods). The Plus l - Take away r algorithm is a

generalisation of the basic stepwise method which alternates l

forward selections and r backward deletions.

2.1.3 Subset selection - Stopping criterion

Let be given a feature subset evaluation criterion and a search procedure. Several

methods examine all the subsets provided by the search (e.g. 2k-1 for an

exhaustive search or k for a simple backward search) and select the most relevant

according to the evaluation criterion.

When the empirical distribution of the evaluation measure or of related statistics is

known, tests may be performed for the (ir)relevance hypothesis of an input

variable. Classical sequential selection procedures use a stop criterion: they

examine the variables sequentially and stop as soon as a variable is found

irrelevant according to a statistical test. For classical parametric methods,

distribution characteristics (e.g. estimates of the evaluation measure variance) are

easily derived (see sections 4.1 and 4.2). For non parametric or flexible methods
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like NNs, these distributions are more difficult to obtain. Confidence intervals

which would allow to perform significance testing might be computed via monte

carlo simulations or bootstrapping. This is extremely prohibitive and of no

practical use except for very particular cases (e.g. Baxt and White 1996).

Hypothesis testing is thus seldom used with these models. Many authors use

instead heuristic stop criteria.

A better methodology, whose complexity is still reasonable in most applications,

is to compute for the successive variable subsets provided by the search

algorithm an estimate of the generalization error (or prediction risk) obtained with

this subset. The selected variables will be those giving the best performances.

The generalization error estimate may be computed using a validation set or

cross-validation or algebraic methods although the latter are not easy to obtain

with non linear models. Note that this strategy involves retraining a NN for each

subset.

3. Notations

We will denote ( , )x y ∈ℜ × ℜk g the realization of a random variable pair (X,Y)

with probability distribution P. xi will be the ith component of x and xl the lth

pattern in a given data set D of cardinality N. In the following, we will restrict

ourselves to one hidden layer NNs, the number of input and output units will be

denoted respectively by k and g. The transfer function of the network will be

denoted f. Training will be performed here according to a Mean Squared Error

criterion (MSE) although this is not restrictive. We will consider, in the

following, selection methods for classification and regression tasks.

4. Model independent Feature Selection

We introduce below some methods which perform the selection and the

classification or regression steps sequentially, i.e. which do not take into account

the classification or regression model during selection. These methods are not

NN oriented and are used here for the experimental comparison with NN specific

selection techniques (section 6). The first two are basic statistical techniques
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aimed respectively at regression and classification. These methods are not well

fitted for NNs since the hypothesis they rely on do not correspond to situations

where NNs might be useful. However since most NN specific methods are

heuristics they should be used for a baseline comparison. The third one has been

developed more recently and is a general selection technique which is data

hypothesis free and might be used for any system either for regression or

classification. It is based on a probabilistic dependence measure between two sets

of variables.

4.1 Feature selection for linear regression

We will consider only linear regression, but the approach described below may

be trivially extended for multiple regression. Let x1, x2, ... xk and y be real

variables which will be supposed centered. Let us denote:

f( p)(x) = bi xi
i=1

p

∑ (4.1.1)

the current approximation of y with p selected variables (the xi are renumbered so

that the p first selected variables correspond to numbers 1 to p). The residuals
e f yp p( ) ( ) ( )= −x  are assumed identically and independently distributed.

Let us denote:

SST yl

l

N

=
=
∑( )2

1

SSRp = f( p)
2 (xl )

l =1

N

∑  (4.1.2)

For forward selection, the choice of the pth variable is usually based on Rp2, the

partial correlation coefficient (table 1) between y and regressor f(p), or on an

adjusted coefficient1. This coefficient represents the proportion of y total variance

explained by the regressor f(p). The pth variable to select is the one for which

f(p) maximizes this coefficient. The importance of a new variable is usually

measured via a Fisher test (Thompson, 1978) which compares the models with

p-1 and p variables (Fs(p)forward in table 1). Selection is stopped  if

1 The adjusted coefficientR
N R p

N pp
p2
2

=
∗ −

−
is often used instead of Rp

2 .
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Fs(p)forward < F(1,N-p,α)  the Fisher statistics with (1,N-p) degrees of

freedom for a confidence level of α.

Choice Stop

Forward Rp
2 =

SSRp
SST

=
f( p)

2 (xl )1
N∑

(yl )21
N∑

Fs(p) forward =
SSRp−SSRp−1

(SST− SSRp) /(N − p)

Backward SSRp−1 = f( p−1)(x
l )2

l =1

N

∑ Fs(p)backward =
SSRp−1 − SSRp

(SST− SSRp )/(N − p)

Table 1: Choice and Stop criteria used with statistical forward and backward
methods.

Note that FS could also be used in place of Rp2 as a choice criterion:

Fs p
R R

R N p
forward

p p

p
( )

/( )
=

−

−
−

2
1

2

2 (4.1.3)

When p-1 variables have already been selected, Rp-12 has a constant value in

[0,1] and maximizing Fs is similar to maximizing Rp2. Equation (4.1.3) selects

variables in the same order as Rp2 does.

For backward elimination the variable eliminated from the remaining p is the less

significant in terms of the Fisher test i.e. it is the one with the smallest value of

SSRp-1 or equivalently of Fs(p)backward (table 1). Selection is stopped if

Fs(p)backward > F(1,N-p,α).

4.2  Feature Selection For Classification

For classification, we shall select the variable subset which allows the best

separation of the data. Variable selection is usually performed by considering a

class separation criterion for the choice criterion and an associated F-test as

stopping criterion. As for regression, forward, backward or stepwise methods

may be used.

Data separation is usually computed through an inter-class distance measure

(Kittler, 1986). The most frequent discriminating measure is the Wilks lambda
(Wilks, 1963) ΛsVp defined as follows:
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Λ S Vp =
W

W + B
(4.2.1)

where W is the intra-class matrix dispersion corresponding to the selected

variable set SVp, B the corresponding inter-class matrix2 and |M| the determinant

of matrix M. The determinant of a covariance matrix being a measure of the

volume occupied by the data, |W| measures the mean volume of the different

classes and |W+ B| the volume of the whole data set. These quantities are

computed for the selected variables so that a good discriminating power
corresponds to a small value of Λsvp: the different classes are represented by

compact clusters and are well separated. This criterion is well suited in the case of

multinormal distributions with equal covariance for each class, it is meaningless

for e.g. multimodal distributions. This is clearly a very restrictive hypothesis.

With this measurement the statistic Fs, defined below, has a F(g-1,N-g-p+1,α)

distribution (McLachlan 1992):

FS = (N − g − p +1)
(g −1)

1− ΛSVp( )
ΛSVp

(4.2.2)

We can then use the Wilks lambda both for estimating the discriminating power

of a variable and for stopping the selection in forward, backward (Habbema and

Hermans, 1977) or stepwise methods.

For the comparisons in section 6, we used Stepdisc, a stepwise method based on

(4.2.2) with a 95% confidence level.

4.3 Mutual Information

When data are considered as realization of a random process, probabilistic

information measures may be used in order to compute the relevance of a set of

2 these two quantities are defined as : 

W = xl − µ j( )t xl − µ j( )
x l ∈class j

∑
j =1

g

∑ B = Nj (µ − µ j )t(µ − µ j )
j=1

g

∑
with g the number of classes, nj the number of samples in class j, µj the mean of

class j and µ the global mean.
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variables with respect to other variables. Mutual information is such a measure

which is defined as:

MI(a,b) = P(a,b) × log
P(a,b)

P(a)P(b)

 
 
  

 a,b
∑ (4.3.1)

where a and b are two variables with probability density P(a) and P(b).

Mutual information is independent from any inversible and differentiable

transformation of the variables. It measures the "uncertainty reduction" on b

when a is known. It is also known as the Kullbak-Leibler distance between the

joint distribution P(a,b) and the marginal distribution product P(a)*P(b).

The method described below does not make use of restrictive assumptions on the

data and is therefore more general and attractive than the ones described in

sections 4.1 and 4.2, especially when these hypothesis do not correspond to the

data processing model, which is usually the case for NNs. It may be used either

for regression or discrimination. On the other hand such non parametric methods

are computationally intensive. The main practical difficulty here is the estimation

of the joint density P(a,b) and of the marginal densities P(a) and P(b). Non

parametric density estimation methods are costly in high dimensions and

necessitate a large amount of data.

The algorithm presented below uses the Shannon entropy (denoted H(.)) to

compute the mutual information MI(a,b) = H(a) + H(b) - H(a,b). It is possible to

use other entropy measures like quadratic or cubic entropies (Kittler, 1986).

Battiti (1994) proposed to use mutual information with a forward selection

algorithm called MIFS (Mutual Information based Feature Selection). P(a,b) is

estimated by Fraser algorithm (Fraser and Swinney, 1986), which recursively

partitions the space using χ2 tests on the data distribution. This algorithm can

only compute the mutual information between two variables. In order to compute

the mutual information between xp and the selected variable set SVp-1 (xp does

not belong to SVp-1), Battiti uses simplifying assumptions. Moreover, the

number of variables to select is fixed before the selection. This algorithms uses

forward search and variable xp is the one which maximises the value :
MI(S Vp−1∪ {xp}, y) (4.3.2)

where SVp-1 is the set of p - 1 already selected variables.
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Bonnlander and Weigend (1994) use Epanechnikov kernels for density

estimation (Härdle, 1990) and a Branch&Bound (B&B) algorithm for the search

(Narendra and Fukunaga, 1977). B&B warrants an optimal search if the criterion

used is monotonous and it is less computationally intensive than exhaustive

search. For the search algorithm, one can also consider the suboptimal floating

search techniques proposed by Pudil et al. (1994) which offer a good

compromise between the sequential methods simplicity and the relative

computational cost of the Branch&Bound algorithm.

For the comparisons in section 6, we have used Epanechnikov kernels for

density estimation  in (4.3.2), a forward search, and the selection is stopped

when the MI increase falls below a fixed threshold (0.99).

5. Model dependent feature selection for Neural Networks

Model dependent feature selection attempts to perform simultaneously the

selection and the processing of the data: the feature selection process is part of the

training process and features are sought for optimizing a model selection

criterion. This "global optimization" looks more attractive than model-

independent selection where the adequacy of the two steps is up to the user.

However, since the value of the choice criterion depends on the model

parameters, it might be necessary to train the NN with different sets of variables:

some selection procedures alternate between variable selection and retraining of

the model parameters. This forbids the use of sophisticated search strategies

which would be computationally prohibitive.

Some specificities of NNs should also be taken into consideration when deriving

feature selection algorithms:

• NNs are usually non linear models. Since many parametric model-

independent techniques are based on the hypothesis that input-output variables

dependency is linear or that input variables redundancy is well measured by linear

correlation between these variables, such methods are clearly ill fitted for NNs.

• The search space has usually many local minima, and relevance

measures will depend on the minimum the NN will have converged to. These
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measures should be averaged over several runs. For most applications this is

prohibitive and has not been considered here.

• Except for (White 1989) who derives results on the weight distribution

there is no work in the NN community which might be used for hypothesis

testing.

For NN feature selection algorithms, choice criteria are mainly based on heuristic

individual feature evaluation functions. Several of them have been proposed in

the literature, we have made an attempt to classify them according to their

similarity. We will distinguish between:

• zero order methods which use only the network parameter values.

• first order methods which use the first derivatives of network parameters.

• second order methods which use second derivatives of network

parameters.

Most feature evaluation criteria only allow to rank variables at a given time, the

value of the criterion by itself being non informative. However, we will see that

most of these methods work reasonably well.

Feature selection methods with neural networks use mostly backward search

although some forward methods have also been proposed (Moody 1994,  Goutte

1997). Several methods use individual evaluation of the features for ranking them

and do not take into consideration their dependencies or their correlations. This

may be problematic for selecting minimal relevant sets of variables. Using the

correlation as a simple dependence measure is not enough since NNs capture non

linear relationships between variables, on the other hand, measuring non linear

dependencies is not trivial. While some authors simply ignore this problem,

others propose to select only one variable at a time and to retrain the network with

the new selected set before evaluating the relevance of remaining variables. This

allows to take into account some of the dependencies the network has discovered

among the variables.

More critical is the difficulty for defining a sound stop criterion or model choice.

Many methods use very crude techniques for stopping the selection, e.g. a

threshold on the choice criterion value, some rank the different subsets using an
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estimation of the generalization error. The latter is the expected error performed

on future data and is defined as:
R= r(x, y )p(x, y )∫ dxdy (5.0.1)

where in our case, r(x,y) is the euclidean error between desired and computed

outputs. Estimates can be computed  using a validation set, cross-validation or

algebraic approximations of this risk like the Final Prediction Error, (Akaike

1970). Several estimates have been proposed in the statistical (Gustafson and

Hajlmarsson 1995) and NN (Moody 1991, Larsen and Hansen 1994) literature.

For the comparison in section 6, we have used a simple threshold when the

authors gave no indication for the stop criterion and a validation set

approximation of the risk otherwise.

5.1 Zero Order Methods

For linear regression models, the partial correlation coefficient can be expressed

as a simple function of the weights. Although this is not sound for non linear

models, there have been some attempts for using the input weight values in the

computation of variable relevance. This has been observed to be an inefficient

heuristic: weights cannot be easily interpreted in these models.

A more sophisticated heuristic has been proposed by Yacoub and Bennani

(1997), it exploits both the weight value and the network structure of a multilayer

perceptron. They derived the following criterion:

S
w

w

w

w
i

ji

ji
i I

kj

kj
j H

k Oj H

=















′

′∈
′

′∈
∈∈ ∑ ∑∑∑ (5.1.1)

where I, H, O denote respectively the input, hidden and output layer.

For a better understanding of this measure, let us suppose that each hidden and

output unit incoming weight vector has a unitary L1 norm, the above equation

can be written as:

S w wi oj ji
j Ho O

=
∈∈
∑∑ (5.1.2)

In (5.1.2), the inner term is the product of the weights from input i to hidden unit

j and from j to output o. The importance of variable i for output o is the sum of
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the absolute values of these products over all the paths -in the NN- from unit i to

unit o. The importance of variable i is then defined as the sum of these values

over all the outputs. Denominators in (5.1.1) operate as normalizing factors, this

is important when using squashing functions, since these functions limit the

effect of weight magnitude. Note that this measure will depend on the magnitude

of the input, the different variables should then be in a similar range. The two

weight layers do have different role in a MLP which is not reflected in (5.1.1),

for example, if the outputs are linear, the normalization should be suppressed in

the inner summation of (5.1.1).

They used a backward search and the NN is retrained after each variable deletion,

the stop criterion is based on the evolution of the performances on a validation

set, elimination is stopped as soon as performances decrease.

5.2 First Order Methods

Several methods propose to evaluate the relevance of a variable by the derivative

of the error or of the output with respect to this variable. These evaluation criteria

are easy to compute, most of them lead to very similar results. These derivatives

measure the local change in the outputs wrt a given input, the other inputs being

fixed. Since these derivatives are not constant like in linear models, they must be

averaged over the training set. For these measures to be fully meaningful, inputs

should be independent and since these measures average local sensitivity values,

the training set should be representative of the input space.

5.2.1 Saliency Based Pruning (SBP)

This backward method (Moody and Utans 1992) uses as evaluation criterion the

variation of the learning error when a variable xi is replaced by its empirical mean

x i  (zero here since variables are assumed centered):

Si = MSE− MSE(xi ) (5.2.1)

where MSE x
N

f x x x yi
l

i
l

k
l l

l

N

( ) ( ,..., ,..., )= −
=
∑1

1
2

1
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This is a direct measure of the usefulness of the variable for computing the

output. For large values of N, computing Si is costly, and a linear approximation

may be used:

S
N

f y

x
x xi

l l

il

N

i
l

i
l=

−
−( )

=
∑1

2

1

∂

∂

( )x
(5.2.2)

Variables are eliminated  in the increasing order of Si.

For each feature set, a NN is trained and an estimate of the generalization error - a

generalization of the Final Prediction Error criterion - is computed. The model

with minimum generalization error is selected.

Changes in MSE is not ambiguous only when inputs are not correlated. Variable

relevance being computed once here, this method does not take into account

possible correlations between variables. Relevance could be computed from the

successive NNs in the sequence at a computational extra-cost (O(k2) Si

computations instead of O(k) in the present method).

5.2.2 Methods using computation of output derivatives

For a linear model the output derivative wrt any input is a constant, which is not

the case for non linear NNs. Several authors have proposed to measure the

sensitivity of the network transfer function with respect to input xi by computing

the mean value of outputs derivative with respect to xi over the whole training set.

In the case of multilayer perceptrons, this derivative can be computed

progressively during learning (Hashem, 1992). Since these derivatives may take

both positive and negative values, they may compensate and produce an average

near zero. Most measures use average squared or absolute derivatives. Tenth of

measures based on derivatives have been proposed, and many others could be

defined, we thus give below only a representative sample of these measures.

The sum of the derivative absolute values has been used e.g. in Ruck et al.

(1990):

Si =
∂f j

∂xi
(xl )

j =1

g

∑
l =1

N

∑ (5.2.3)

For classification Priddy et al. (1993) remark that since the error for decision j
 P jerr ( / )x  may be estimated by 1 - fj(x) , (5.2.3) may be interpreted as the
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absolute value of the error probability derivative averaged over all decisions

(outputs) and data.

Squared derivatives may be used instead of the absolute values, Refenes et al.

(1996) for example proposed for regression a normalized sum:

S
N

x

f y

f

xi
i

i

l

l

=
−





∑1

2
var( )

var( ( ) )
( )

x
x

∂
∂

 (5.2.4)

where var holds for variance. They also proposed a series of related criteria,

among which:

- a normalized standard deviation of the derivatives:

S
N

f

x

f

x

f

x

i

i

l

i

j

jl

i

l

l

=
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∑∑

∑
1
1 2

2 1 2

/

/

( ) ( )

( )

∂
∂

∂
∂

∂
∂

x x

x
(5.2.5)

- a weighted average of the derivatives absolute values where the weights

reflect the relative magnitude of x and f(x):

S
N

f

x

x

f
i

i

l i
l
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All these measures being very sensitive to the input space representativeness of

the sample set, several authors have proposed to use a subset of the sample in

order to increase the significance of their relevance measure.

In order to obtain robust methods, "non-pathological" training examples should

be discarded. For regression and radial basis function networks, Dorizzi et al.

(1996) propose to use the 95% percentile of the derivative absolute value:

Si = q95
∂f

∂xi
(x)

 

 
  

 
 (5.2.7)

Aberrant points being eliminated, this contributes to the robustness of the

measure. Note that the same idea could be used with other relevance measures

proposed in this paper.

Following the same line, Czernichow (1996) proposed a heuristic criterion for

regression, estimated on a set of non pathological examples whose cardinality is

N'.  The proposed choice criterion is:
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For classification, Rossi (1996), following a proposition made by Priddy et al.

(1993), considers only the patterns which are near the class frontiers. He

proposes the following relevance measure:
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(5.2.9)

The frontier is defined as the set of point for which ∇ ( ) >x
lf x ε  where ε  is a

fixed threshold. Several authors have also considered relative contribution of

partial derivatives to the gradient as in (5.2.9).

All these methods use a simple backward search.

For the stopping criteria, all these authors use heuristic rules, except for Refenes

et al. (1996) who define statistical tests for their relevance measures. For non

linear NNs, this necessitates an estimation of the relevance measure distribution,

which is very costly and in our opinion usually prohibits this approach, even if it

looks attractive.

5.2.3 Links between these methods

All these methods use simple relevance measures which depend upon the gradient

of network outputs with respect to input variables. It is difficult to rank the

different criteria, all that can be said is that it is wise to use some reasonable rules

like discarding aberrant points for robustness, or retraining the NN after

discarding each variable and computing new relevance measures for each NN in

the sequence, in order to take into account dependencies between variables. In

practice, all these methods give very similar results as will be shown in section 6.

We summarize below in table 2 the main characteristics of relevance measures for

the different methods.
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Derivative

used

Task

C/R

Data

used

(Moody (5.2.1)) ∂f

∂xi

C/R All

(Refenes (5.2.5)) ∂f

∂xi

C/R All

(Dorizzi (5.2.7)) ∂f

∂xi

C/R Non pathological

data

(Refenes (5.2.6)) ∂f

∂xi

C/R All

(Czernichow (5.2.8)) ∂f

∂xi

 
 
  

 
 

2
C/R Non pathological

data

(Refenes (5.2.4)) ∂f

∂xi

 
 
  

 
 

2 C/R All

(Ruck (5.2.3)) ∂f j

∂xij=1

g

∑ C All

(Rossi (5.2.9)) ∂f j

∂xij=1

g

∑ / ∇x f j
C Frontier between

classes

Table 2. Computation of the relevance of a variable by different methods using
the derivative of the network function. C /R denote respectively Classification

and Regression tasks.

5.3 Second Order Methods

Several methods propose to evaluate the relevance of a variable by computing

weight pruning criteria for the set of weights of each input node. We present

below three methods. The first one is a Bayesian approach for computing the

weight variance. The other two use the hessian of the cost  function for

computing the cost function dependence upon input unit weights.

5.3.1 Automatic Relevance Determination (ARD)

This method was proposed by MacKay (1994) in the framework of Bayesian

learning. In this approach, weight are considered as random variables and
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regularization terms taking into account each input are included into the cost

function. Assuming that the prior probability distribution of the group of weights

for the ith input is gaussian, the input posterior variance σi2  is estimated (with

the help of the hessian matrix).

ARD has been successful for time serie prediction, learning with regularization

terms improved the prediction performances. However ARD has not really been

used as a feature selection method since variables were not pruned during

training.

5.3.2 Optimal Cell Damage

Several neural selection methods have been inspired by weight pruning

techniques. For the latter, the decision of pruning a weight is made according to a

relevance criterion often named the weight  saliency, the weight being pruned if

its saliency is low. Similarly, the saliency for an input cell is usually defined as

the sum of its weights saliencies.

Saliency(xi ) = Saliency(wj )
fan−out(i )

∑  (5.3.3)

where fan-out(i) is the set of weights of input i.

Optimal Cell Damage (OCD) has been proposed by Cibas et al. (1994a, 1996) (A

similar method has also been proposed by Mao et al., 1994). This feature

selection method is inspired from the Optimal Brain Damage (OBD) weight

pruning technique developed by LeCun (1990). In OBD, the connection saliency

is defined by :

Saliency(wj ) =
1

2
H jj wj

2 =
1

2

∂2MSE

∂wj
2 wj

2 (5.3.4)

which is an order two Taylor expansion of MSE variation around a local

minimum. The Hessian matrix H can be easily computed using gradient descent

but this may be computationally intensive for large networks. For OBD, the

authors use a diagonal approximation for the hessian which can then be computed

in O(N).. The saliency of an input variable is defined accordingly as:

Si = Saliency(xi ) =
1

2

∂2MSE

∂wj
2 wj

2

j ∈fan− out( i)
∑

(5.3.5)

 Cibas et al. (1994) proposed to use (5.3.5) as a choice criterion for eliminating

variables. The NN is trained so as to reach a local minimum, variables whose
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saliency is below a given threshold are eliminated. The threshold value is fixed

by cross validation. This process is then repeated until no variable is found below

the threshold.

This method has been tested on several problems and gave satisfying results.

Once again, the difficulty lies in selecting an adequate threshold. Furthermore,

since several variables can be eliminated simultaneously whereas only individual

variable pertinence measures are used, significant sets of dependent variables

may be eliminated.

For stopping, the generalization performances of the NN sequence are estimated

via a validation set and the variable set corresponding to the NN with the best

performances is chosen.

The hessian diagonal approximation has been questioned by several authors,

Hassibi and Stork (1993), for example, proposed a weight pruning algorithm,

Optimal Brain Surgeon (OBS) which is similar to OBD, but uses the whole

hessian for computing weight saliencies. Stahlberger and Riedmiller (1997)

proposed a feature selection method similar to OCD except that it takes into

account non diagonal terms in the hessian.

For all these methods, saliency is computed using for performance measure the

error variation on the training set. Weight estimation and model selection both use

the same data set, which is not optimal. Pedersen et al. (1996) propose two

weight pruning methods γOBD and γOBS that compute weight saliency

according to an estimate of the generalization error: the Final Prediction Error

(Akaike 1970). Similarly to OBD and OBS, these methods could be also

transformed into feature selection methods.

5.3.3 Early Cell Damage (ECD)

Using a second order Taylor expansion, as in the OBD family of methods, is

justified only when a local minimum is reached and the cost is locally quadratic in

this minimum. Both hypothesis are barely met in practice. Tresp et al. (1997)

propose two weight pruning techniques from the same family, coined EBD

(Early Brain Damage) and EBS (Early Brain Surgeon). They use a heuristic

justification to take into account early stopping by adding a new term in the

saliency computation.
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These methods can be extended for feature ranking, we will call ECD (Early Cell

Damage) the EBD extension. For ECD, the saliency of input i is defined as:

Si =
1

2

∂2MSE

∂wj
2 wj

2 −
j∈ fan−out( i)

∑ ∂MSE

∂wj

wj +
1

2

∂MSE

∂wj

 

 
  

 
 

2

∂2MSE
∂wj

2

(5.3.6)

The algorithm we propose is slightly different from OCD: only one variable is

eliminated at a time, and the NN is retrained after each deletion.

For choosing the "best" set of variables, we have used a variation of  the

"selection according to an estimate of the generalization error" method. This

estimate is computed using a validation set. Since the performances may oscillate

and be not significantly different, several subsets may have the same

performances (see e.g. figure 1). Using a Fisher test we compare any model

performances with those of the best model, we then select the set of networks

whose performances are similar to the best ones and choose among these

networks the one with the smallest number of input variables.

6. Experimental comparison

We now present comparative performances of different feature selection

methods. Comparing these methods is a difficult task: there is not a unique

measure which characterizes the importance of each input, the selection accuracy

also depends on the search technique and on the variable subset choice criterion.

In the case of NNs, these different steps rely on heuristics which could be

exchanged from one method to the other. The NNs used are multilayer

perceptrons with one hidden layer of 10 neurons.

The comparison we provide here is not intended for a definite ranking of the

different methods but for illustrating the general behavior of some of the methods

which have been described before. We have used two synthetic classification

problems which illustrate different difficulties of variable selection. In the first

one the frontiers are "nearly" linear and there are dependent variables as  well as

pure noise variables. The second problem has non linear frontiers and variables

can be chosen independent or correlated.
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The first problem has been originally proposed by Breiman et al. (1984). It is a

three class waveforms classification problem with 19 noisy dependent features.

We have also used a variation of this problem where 21 pure noise variables are

added to the 19 initial variables (there are 40 inputs for this variant). The training

set has 300 patterns and the test set 4300. A description of this problem is

provided in the appendix. The performances of the optimal Bayes classifier

estimated on this test set are 86% correct classification. A performance

comparison appears in tables 3 and 4 for these two instances.

Method p* Selected Variables Perf.

None 40 111111111111111111111  1111111111111111111
82.51 %

[81.35 - 83.62]

Stepdisc (4.2.2) 14 000110111111111011100  0000000000000000000
85.35 %

[84.26 - 86.38]

(Bonnlander (4.3.2)) 12 000011101111111110000  0000000000000000000
85.12 %

[84.02 - 86.15]

(Yacoub (5.1.1)) 16 000111111111111111100  0000000000000000000
85.16 %

[84.07 - 86.19]

(Moody (5.2.1)) 16 000111111111111111100  0000000000000000000
85.19 %

[84.10 - 86.22]
(Ruck (5.2.3))

(Dorizzi (5.2.7)) 18 011111111111111111100  0000000000000000000
85.51 %

[84.43 - 86.53]

(Czernichow (5.2.8)) 17 010111111111111111100  0000000000000000000
85.67 %

[84.59 - 86.69]

(Cibas (5.3.5)) 9 000001111110111000000  0000000000000000000
82.26 %

[81.09 - 83.37]

(Leray (5.3.6)) 11 000001111111111100000  0000000000000000000
84.56 %

[83.45 - 85.61]

Table 3. Performance comparison of different variable selection on the noisy
wave problem.

For the noisy problem, all methods do eliminate pure noise variables. Except for

the two methods at the bottom of table 3 which give slightly lower performances

and select fewer variables , all give similar values around 85% correct. Stepdisc

also gives good performances since in this problem data have a unimodal

distribution and the frontiers are nearly linear. For the non noisy problem,

performances and methods ordering change. The two techniques at the bottom of

table 4 give now slightly better performances.
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Method p* Selected Variables Perf.

None 21 111111111111111111111
85.28 %

[84.19 - 86.31]

Stepdisc (4.2.2) 14 001110101111111011100
84.19 %

[83.07 - 85.25]

(Bonnlander (4.3.2)) 8 000001100111101010000
83.05 %

[81.90 - 84.14]

(Yacoub (5.1.1)) 18 011111111111111111100
85.46 %

[84.38 - 86.48]

(Moody (5.2.1)) 16 000111111111111111100
85.63 %

[84.65 - 86.65]
(Ruck (5.2.3))

(Dorizzi (5.2.7)) 12 000111101111111010000
84.65 %

[83.54 - 85.70]

(Czernichow (5.2.8)) 10 000110101011111010000
82.58 %

[81.42 - 83.68]

(Cibas (5.3.5)) 15 001011111111111110100
85.23 %

[84.14 - 86.26]

(Leray (5.3.6)) 13 000011111111111110000
85.67 %

[84.59 - 86.69]

Table 4. Performance comparison of different variable selection methods on the
original wave problem.

Number of remaining variables

%

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

4 0 3 7 3 4 3 1 2 8 2 5 2 2 1 9 1 6 1 3 1 0 7 4 1

ECD

OCD

Figure 1. Performance comparison of two variable selection methods (OCD and
ECD) according to the number of remaining variables for the noisy wave

problem.

Figure 1 shows performance curves for two methods, OCD and ECD, estimated

on a validation set. Since we have used a single validation set, there are small
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fluctuations in the performances. Some form of cross validation should be used

in order to get better estimates, the test strategy proposed for ECD looks also

attractive in this case. It can be seen that for this problem, performances are more

or less similar during the backward elimination (they slightly rise) until they

quickly drop when relevant variables are removed.

82

84

86

20406080100

None

Yacoub
Moody

Cibas

Leray

Ruck
Dorizzi

Stepdisc

Bonnlander

Czernichow

%

%

Figure 2. Performance comparison of different variable selection methods vs.
percentage of selected variables on the original wave problem. x axis: percentage

of variables selected, y axis: percentage of correct classification.

Figure 2 gives the repartition of different variable selection methods for the

original wave problem according to their performances (y axis) and the

percentage of selected variables (x axis). The best methods are those with the best

performances and the lower number of variables. In this problem, "Leray" is

satisfying (see figure 2). "Yacoub" does not delete enough variables while

"Bonnlander" deletes too much variables.

The second problem is a two class problem in a 20 dimensional space. The

classes are distributed according two gaussians with respectively µ1=(0,...,0),

Σ1=4*I, µ2=(0,1,2,...,19)/α (α is chosen so that ||µ1µ2|| = 2) and Σ2=I . In this

problem, variable relevance is ordered according to their index: x1 is useless,

xi+1 is more relevant than xi.
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Method p* Selected Variables Perf.

None 20 11111111111111111111
94.80 %

[94.15 - 94.35]

Stepdisc (4.2.2) 17 10001111111111111111
94.88 %

[94.23 - 95.43]

(Bonnlander (4.3.2)) 5 00010000000000011011
90.60 %

[89.76 - 91.38]

(Yacoub (5.1.1)) 18 01011111111111111111
94.86 %

[94.21 - 95.44]

(Moody (5.2.1)) 9 01000100011000110111
92.94 %

[92.20 - 93.62]

(Ruck (5.2.3)) 10 00000000101101111111
94.86 %

[94.21 - 95.44]

(Dorizzi (5.2.7)) 11 00000000101111111111
94.66 %

[94.00 - 95.25]

(Czernichow (5.2.8)) 9 00000000001101111111
94.02 %

[93.33 - 94.02]

(Cibas (5.3.5)) 14 01001110010111111111
94.62 %

[93.96 - 95.21]

(Leray (5.3.6)) 15 01011011101110111111
94.08 %

[93.39 - 94.70]

Table 5. Performance comparison of different variable selection methods on the
two gaussian problem with uncorrelated variables.

90

91

92

93

94

95

20406080100

%

%

None

Yacoub Stepdisc

Leray

Cibas Dorizzi
Ruck

Czernichow

Moody

Bonnlander

Figure 3. Performance comparison of different variable selection methods vs.
percentage of selected variables on the two gaussian problem with uncorrelated
variables. x axis: percentage of variables selected, y axis: percentage of correct

classification.
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Table 5 shows that Stepdisc is not adapted for this non linear frontier: it is the

only method that selects x1 which is useless for this problem. We can remark on

figure 3 that Bonnlander's method deletes too many variables whereas Yacoub's

stop criterion is too rough and does not delete enough variables.

In an other experiment, we replaced the I  matrix in Σ1 and Σ2  by a block

diagonal matrix. Each block is 5x5 so that there are four groups of five

successive correlated variables in the new problem.

Method p* Selected Variables Perf.

None 20 11111111111111111111
90.58 %

[89.74 - 91.36]

Stepdisc (4.2.2) 11 00001101011010110111
91.96 %

[91.17 - 92.68]

(Bonnlander (4.3.2)) 5 00001001010000100001
88.48 %

[85.57 - 89.34]

(Ruck (5.2.3)) 10 00011001011110100011
91.06 %

[90.24 - 91.82]

(Leray (5.3.6)) 7 00000010101010100011
90.72 %

[89.88 - 91.49]

Table 6. Performance comparison of different variable selection methods on the
two gaussian problem with correlated variables.

Table 6 gives the results of some representative methods for this problem:

• Stepdisc still gives a model with good performances but selects

many correlated variables,

• Bonnlander's method selects only 5 variables and gives

significantly lower results,

• Ruck's method obtains good performances but selects some

correlated variables,

• Leray's method, thanks to the retraining after each variable deletion,

find models with good performances and few variables (7 compared

to 10 and 11 for Ruck and Stepdisc).



Feature Selection with Neural Networks - Philippe Leray and Patrick Gallinari 25

7. Conclusion

We have reviewed variable selection methods developed in the field of Neural

Networks. The main difficulty here is that NNs are non linear systems which do

not make use of explicit parametric hypothesis. As a consequence, selection

methods rely heavily on heuristics for the three steps of variable selection :

relevance criterion, search procedure - NN variable selection use mainly

backward search - and choice of the final model. We first discussed the main

difficulties for developing each of these steps. We then introduced different

families of methods and discussed their strengths and weaknesses. We believe

that a variable selection method must remain computationally feasible for being

useful, and we have not considered techniques which rely on computer intensive

methods like e.g. bootstrap at each step of the selection . Instead, we have

proposed a series of rules which could be used in order to enhance several of the

methods which have been described, at a reasonable extra computational cost,

e.g. retraining each NN in the sequence and computing the relevance for each of

these NN allows to take into account some correlations between variables, simple

estimates of the generalization error may be used for the evaluation of a variable

subset, simple tests on these estimates, allow to choose minimal variable sets

(section 5.3.3). Finally we performed a comparison of representative NN

selection techniques on synthetic problems.
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Appendix : waveforms problem

This problem has been proposed by Breiman et al. (1984). 3 vectors or

waveforms  in 21 dimensions, Hi,  i = 1, …, 3, are given. Patterns in each class

are defined in ℜ21 as random convex combinations of 2 of these vectors (waves

(1,2), (1,3), (2,3) respectively for class 1, 2 and 3).

 The problem is then to classify these patterns into one of the 3 classes. More

precisely, patterns are generated according to:

xi = uHi
m + (1− u)Hi

n

5
+ εi

0 ≤ i ≤ 20

where xi denotes the ith component of a pattern x, u is a uniform random variable

in [0,1], εi  is generated according to a normal distribution N(0,1), m and n

identify the two waves used in this combination, i.e. the class of pattern x.

For the noisy problem, 19 additional components are added to the 21 components

of the above vectors:
xi = εi 21 ≤ i ≤ 40

The training, validation and test sets have respectively 300, 1000, 4300 elements.


