
HAL Id: hal-02547714
https://hal.science/hal-02547714

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Yet Yet on the bounded retransmission protocol
Thérèse Hardin, Brahim Mammass

To cite this version:
Thérèse Hardin, Brahim Mammass. Yet Yet on the bounded retransmission protocol. [Research
Report] lip6.1998.010, LIP6. 1998. �hal-02547714�

https://hal.science/hal-02547714
https://hal.archives-ouvertes.fr

Yet Yet on the Bounded RetransmissionProtocolTh�er�ese Hardin and Brahim MammassLaboratoire d'Informatique de Paris 6Tour 45-55, 4 Place Jussieu 75252 Paris Cedex 05, Francee-mail: Brahim.Mammass@lip6.fr, Therese.Hardin@lip6.frAbstract. The aim of this paper is twofold. We �rst present a cor-rectness proof of the Bounded Retransmission Protocol (BRP), which iseasily done by bisimulation in the �-calculus. Then, we compare severalworks on this protocol, focusing on how the used formalism inuencesimplementation choices and proof techniques.1 IntroductionThe development of communication networks needs more and more sophisti-cated communication protocols which must be reliable. Traditional veri�cationmethods use model checking techniques, but they cannot deal with in�nite statesystems and more generally with mobility.Our aim is to elaborate some methodologic guides for designing and provingcommunication protocols using theorem provers. We choose the BRP as our casestudy because it is simple but, as it is parameterized, model checking cannot bedirectly applied. The BRP is a communication protocol, developed at PhilipsResearch Laboratory, that transfers messages from a producer to a consumerover an unreliable physical medium that can lose messages.The �-calculus [23, 24] is an extension of the process algebra CCS [21] withmobility keeping its algebraic properties. It is more expressive than CCS be-cause it provides possibilities for coding data types, �-calculus and higher orderprocesses. Moreover, it o�ers the possibility of introducing new channels andpassing channel names between processes. So, on one hand, we present a proofof the BRP using �-calculus bisimulations.On the other hand, we study some related works in order to compare di�er-ent approaches. They are the following. Helmink, Sellink and Vaandrager [14]analyze the BRP in the setting of I/O automata [17]. Havelund and Shankar [13]combine model checking and theorem proving techniques to prove the correct-ness of the BRP. They use PVS [26] as a theorem prover, and SMV [19], Mur�[20], and an extension of PVS with the modal �-calculus [15] as model checkers.Groote and Van De Pol [9] use as a formal support �CRL [10], a combinationof process algebra and abstract data types, to prove the correctness of the BRP.Abrial [1] designs the BRP by successive re�nements in the proof-assistant B[2]. Finally, D'Argenio, Katoen, Ruys and Tretmans [8] analyze the BRP in the

setting of timed automata [3]. The correctness of the protocol is checked usingUPPAAL [5].The comparison between these approaches tackles the following questions.Do these works start from the same description ? How are the protocol entitiesmodeled ? What is exactly proved ? What are the di�culties encountered indoing the proofs ? Are they due to the used formalism or to implementationchoices ? Is the �-calculus a well-suited framework ?The paper is structured as follows: section 2 presents the initial informaldescription of the BRP. In section 3, we complete this description by explicitingsome points and we give the point of view of the mentioned papers. The section4 gives an abstract view of the BRP in the �-calculus and compares it to theothers. In section 5, we implement the protocol in the �-calculus. The section 6presents our correctness proof which proceeds by bisimulation. Finally, in section7, we present the other implementations and proofs of the BRP and we comparethem to ours.2 The Bounded Retransmission ProtocolApart from some little and irrelevant variations, all the papers start from thesame description which is the following. The BRP communicates messages froma producer to a consumer over an unreliable physical medium that can losemessages. It is a nontrivial extension of the alternating bit protocol [6] that usestimeouts and aborts transmission following a bounded number of transmissionattempts. The environment of the protocol consists of the producer and theconsumer. The black box view of the system is that it accepts requests Req(f)from the producer to transmit the �le f . When transmission of f has been eithercompleted or aborted, the producer receives a con�rmation Conf(c), where c iseither ok, notok, or dtkw (don't know), respectively indicating that the �lewas successfully transmitted, aborted, or that the last message in the �le wasnot acknowledged but might have been received by the consumer. The consumereither receives an Inderr signal indicating that the �le transmission was aborted,or an Ind(m; i) signal where m is the message and i is either first, last or inc(incomplete) corresponding to the �rst, last, or an intermediate message in the�le.Opening the black box, the protocol (�gure 1) consists of a sender programat the producer side, a receiver program at the consumer side, and two channels(one-place bu�ers): a message channel K and an acknowledgment channel L.Both channels are unreliable in that they can lose messages or acknowledgments;but, messages are neither garbled, nor received out of order. Two timers are used.A timer has a �xed period T of time associated. When it is set, a timeout occursT time units later.The sender sends each message over the channel K, sets timer1, and thenwaits for an acknowledgment over the channel L. The timer1 is used to detect theloss of a message or an acknowledgment. The time associated with this timer ex-ceeds the time required to send a message overK and to get the acknowledgment

over L. If an acknowledgment comes back within this time, the timer is cleared,and the next message is sent. If the transmission has been completed, the sendercon�rms Conf(ok) to signal a successful transmission to the producer. If there isno acknowledgment, a timeout occurs whereupon the message is retransmitted,and the timer set again. There is a �xed upper bound on the number of suchretransmissions (max). When this retransmission bound has been reached, thesender aborts transmission and con�rms that the transmission failed. Either itcon�rms Conf(notok) or it con�rms Conf(dtkw).The receiver waits for messages over the channel K. If the alternating bitof the received message is equal to that of the previous one, the receiver onlyretransmits an acknowledgment over the channel L. Otherwise, it delivers themessage to the consumer, stores its alternating bit, sets timer2, and sends anacknowledgment over the channel L. In both cases, it waits for the subsequentmessage over the channel K. The time associated with timer2 must exceed therequired time to transmit max times a message (i.e, timer2 � max � timer1).If timer2 expires, i.e., no new message is received, the receiver sends an Inderrsignal to the consumer to indicate the transmission abort.
Req(f)

Conf(c)

L

K

Sender Receiver

Ind(m,i)

-OK
-NOTOK

ConsumerProducer

-FST
-LST
-INC

-DTKW

InderrFig. 1. The BRP protocolWe note that in [8, 9, 14], only one channel is used for indication signals fromthe receiver to the producer. So, if i equals notok, the noti�cation Ind(m; i)indicates that an abort occurred and m is dummy. This di�erence seems irrele-vant but perhaps may induce some typing di�culties if the protocol is extendedby other treatments of m.3 The complete informal speci�cationIn this section, we give our interpretation of the BRP description, then we com-pare it to the ones adopted in the other papers.

3.1 Our interpretationThe previous section describes the protocol as a parallel composition of twoentities: the sender and the receiver, that run sequentially. Before formalizingthe protocol, we must complete the BRP description by expliciting some points.What can be the content of the �le ? How can the synchronization between thesender and the receiver be realized ? How does the alternating bit work ? Whathappens if the �rst message never arrives at the receiver side ? In which casesmust the receiver signal the abort to the consumer ?We assume that the �le may contain zero, one or more messages. If the �leis empty, the sender must con�rm immediately the transfer with a con�rmationok to the producer. If the �le contains one message, this message must beconsidered as the last message in the �le. Moreover, if the transfer is abortedduring the transmission of this message, a con�rmation dtkw must be sent tothe producer.The synchronization between the sender and the receiver after a transmissionabort is achieved by means of timer2. The description gives no indication aboutits activation. So, we assume that this timer is not enabled when the systemstarts. Otherwise, timer2 could expire and should be restarted in�nitely oftenleading to an active waiting of the receiver. After getting the �rst message, thereceiver enables timer2.As timer2 � max � timer1, the sender is the �rst to detect a transmissionabort. The sender may then receive a request to transfer a new �le and send its�rst message while the receiver does not yet detect the abort (i.e., timer2 hasnot expired). The receiver may consider this message as the next message (or asa duplication of the current message) of the previous �le, that is wrong. So, thesender must wait until the receiver detects the abort. Moreover, the two mustreinitialize their alternating bit before the beginning of the next transfer. Foruniformity, we decide that they reinitialize their alternating bit also when thetransfer has been completed.After the correct termination of a �le transmission, two situations are pos-sible. Either the sender receives no new request before expiration of timer2, sothe receiver may send a misleading Inderr signal to the consumer. Or it receivesa new request and sends the �rst message. If timer2 has not yet expired, the re-ceiver may consider this �rst message as a duplication of the last message of theprevious �le because it cannot know the new alternating bit value. To solve thesesynchronization problems, the sender must signal the end of the current transferto the receiver before it begins the next one. The receiver can then anticipatethe expiration of timer2, then the two reinitialize their alternating bit.If the �rst message in the �le never arrives at the receiver side, as timer2 isnot yet set, the receiver cannot be informed about this abort. But, as decidedabove, the sender will wait the expiration of timer2. This will lead to a deadlocksituation. In a distributed setting, there is no solution to this problem becausethe abort information has to be transported on an unreliable channel. So, weassume that the �rst message arrives at least one time at the receiver side.When an abort occurs during the transmission of an intermediate message,

the sender must send a con�rmation notok to the producer and the receivermust send an Inderr signal to the consumer. If the abort occurs during thetransmission of the last message, a con�rmation dtkw is sent by the sender.But, at the receiver side, either this message was received, so no Inderr signalis sent. Or the message was always lost, an Inderr signal must be sent to theconsumer. This point is not fully stated in the BRP description.3.2 Other interpretationsNow, we only point out the di�erences between the other interpretations andours. The consequences of their di�erent choices will be discussed in section 7.In [8, 9], the authors decide that when an abort occurs before the delivery ofthe �rst message, the consumer does not need an indication error. Moreover, ifthe transmission of the next �le starts before timer2 expires, the alternating bitscheme is simply continued. This scheme is only interrupted after a failure.In [14], the acknowledgment consists of three control bits, but is consideredas a simple signal in the other presentations.In [1], the complete informal speci�cation is written in a pseudo-code style.The author decide that timer2 is only started when the received message is notthe last one in the �le.4 The abstract view of the BRPIn this section, we consider the system as a black box. Its abstract view isthe observable behavior on the external channels Req, Ind, Inderr, and Conf,abstracting the communications over the internal channels K and L. We �rstintroduce the polyadic �-calculus [22] which is our formal framework. Then, wegive our formal description and compare all the proposed abstract views.4.1 Syntax and informal semantics of the polyadic �-calculusLet x; y; z; u; v; : : : range over N , a set of channel names. Let A;B; : : : range overa set of agent identi�ers; each identi�er has a nonnegative arity. We note by ~xthe tuple x1; x2; : : : ; xn. Let P;Q; : : : range over agents (i.e. processes) which arede�ned as follows:{ 0, an agent which can do nothing.{ yex:P , an agent which outputs the tuple ex on channel y; thereafter it behavesas P . In this action, y is the subject, ex is the object, and both ex and y arefree.{ y(ex):P , an agent which receives a tuple on channel y; thereafter it behavesas P but with the newly received names in place of xi. In this action, y isthe subject, ex is bound, and y is free.{ �:P , an agent which performs the silent action � ; thereafter it behaves as P .{ P +Q, an agent which behaves like either P or Q.

{ P j Q, an agent representing the parallel composition of P and Q. Thisagent can do anything that P or Q can do, and moreover if P = yeu:P 0and Q = y(ex):Q0, then P j Q �! :(P 0 j Q0feu=exg) where Q0feu=exg is thesubstitution of each occurrence of xi by ui in Q0.{ (� x)P , an agent which behaves like P where the name x is local but P canexport x.{ [x = y]P , an agent which behaves like P if x and y are the same name;otherwise it does nothing.{ A(y1; : : : ; yn) is an agent if A is an identi�er of arity n; for any such identi�erthere is a de�ning equation written A(x1; : : : ; xn) def= P , where the namesx1, . . . , xn are distinct and are the only names which may occur free in P .The agent A(y1; : : : ; yn) behaves like P where yi is substituted for xi for alli = 1; : : : ; n. Agent identi�ers provide recursion since the de�ning equationof A may contain A itself.The formal operational semantics of agents is de�ned and explained in [24].In the sequel, we note (� x1 : : :xn)P instead of (� x1) : : : (� xn)P .4.2 The abstract view of the BRP in the �-calculusThe abstract view is pictured in �gure 2 and is expressed by three recursiveequations. The �le is modeled by a list of messages and we use the usual functionscons, hd and tl on lists.
Conf(c)

Ind(m,i)Req(f)

Inderr

ConsumerProducer Fig. 2. The abstract view of the BRPIn the initial state S0, the system waits for a �le f on the channel Req. If fis empty it returns to S0, else it processes the �rst message in the state S1.S0 def= Req(f):([f = Nil]:Conf ok:S0 + [f = cons(h; t)]:S1(f)In S1 and S2, the � actions indicate that the choice between the delivery orloss of a message or an acknowledgment is decided by the internal actions.S1(f) def= �:Ind hd(f) last:Conf ok:S0+ �:Ind hd(f) first:S2(tl(f))+ �:Ind hd(f) last:Conf dtkw:S0+ �:Ind hd(f) first:Conf notok:Inderr:S0

In the state S2, the system treats the remaining messages of the list.S2(f) def= �:Conf dtkw:Inderr:S0+ �:Conf notok:Inderr:S0+ �:Ind hd(f) last:Conf dtkw:S0+ �:Ind hd(f) inc:Conf notok:Inderr:S0+ �:Ind hd(f) last:Conf ok:S0+ �:Ind hd(f) inc:S2(tl(f))The speci�cation above does not explicit the loss of messages or acknowledg-ments but supposes that they may occur. To make these losses explicit, the �actions must be made observable in the protocol implementation.4.3 The other abstract viewsThe abstract view in [9] is de�ned by four recursive equations written in �CRL.However, only one equation processes the �rst and the remaining messages ofthe list. This requires a tag which distinguishes the two cases. This tag is notneeded in our case since the �rst element is treated separately in S1.In [14], the authors specify the abstract view by an I/O automaton whichhas the same input and output actions as the protocol but no internal actions.As the channels are modeled by shared variables, their access managing is partof the abstract view and is described by means of preconditions.The abstract view in [1] states, in the B language, that the consumer receivesa pre�x of the �le transmitted by the producer. There is no notion of time,even implicitly in message processing. The �le is supposed to be transmittedinstantaneously.In [8], the abstract view is provided as a �le transfer service described bylogical relations between inputs and outputs. This approach leads to some di�-culties which we discuss in section 7.The approach adopted in [13] is di�erent and will be discussed in section 7.5 The formal implementation of the BRPWe start from the complete informal speci�cation of section 3. To encode theprotocol in the �-calculus, we need the types integer, boolean and list, and somefunctions on these types. They are encoded in the �-calculus [23].We model the external channels Req,Conf, Ind, and Inderr as constant namesbecause they are never bound during the execution of the protocol.We model timer1 by the agent T1 which repeatedly waits for a signal overthe channel time1, then sends a signal over the channel timeout1. To set timer1,the sender must send a signal over time1. To reset timer1, the sender must makea rendez-vous over timeout1. The timer2 is modeled in the same way.T1 def= time1:timeout1:T1T2 def= time2:timeout2:T2

The sender S uses locally four variables: first, last, tag and rn. If first(resp. last) equals True, then the current message is the �rst (resp. last) one.The variable tag contains the alternating bit, and rn contains the number ofretransmissions. Every message transmitted by the sender contains the infor-mations first, last, tag and the message data. In the initial state, the senderinitializes its variables (j[True]jtag puts True in tag) and waits for a request onthe channel Req. When a request is received, the sender starts the transfer ofthe �le.S(K;L; abort; restart) def= j[True]jfirst:j[True]jtag:j[0]jrn:j[False]jlast:Wait req(K;L; abort; restart; first; last; tag; rn)Wait req(K;L; abort; restart; first; last; tag; rn) def=Req(f):T ransfer(K;L; abort; restart; f; first; last; tag; rn)If the �le is empty, the sender con�rms ok, makes a rendez-vous over thechannel restart with the receiver and returns to its initial state. Otherwise,the sender transmits the �rst message, sets timer1, increments the number ofretransmissions rn, and waits for an acknowledgment over the channel L. Thefunction one(l) tests if l is a list of one element.Transfer(K;L; abort; restart; f; first; last; tag; rn) def=[f = Nil] Conf ok:restart:S(K;L; abort; restart)+ [f = cons(head; tail)] j[one(f)]jlast:K first last tag head:time1:j[rn+ 1]jrn:Wait ack(K;L; abort; restart; head; tail; first; last; tag; rn)If an acknowledgment is received, the sender resets timer1, reinitializes rn,complements tag, and transmits the next message in the �le. If no acknowledg-ment is received, timer1 expires and the sender retransmits the message.Wait ack(K;L; abort; restart; head; tail; first; last; tag; rn) def=L:timeout1:j[0]jrn:Not(tag):j[False]jfirst:T ransfer(K;L; abort; restart; tail; first; last; tag; rn)+ timeout1:Retrans(K;L; abort; restart; cons(head; tail); first; last; tag; rn)If the bound of retransmissions is not exceeded, the message is retransmitted.If not, the transfer is aborted. The sender sends a con�rmation dtkw (for thelast message) or notok (otherwise) to the producer. Then, it makes a rendez-vous with the receiver over the channel abort before it begins a new transfer.Retrans(K;L;abort; restart; f; first; last; tag; rn) def=If equal(rn; max) then([last = True] Conf dtkw:abort:S(K;L; abort; restart)+[last = False] Conf notok:abort:S(K;L; abort; restart))else Transfer(K;L; abort; restart; f; first; last; tag; rn)

The receiver R is described in the same way as the sender in appendix A.The sender and the receiver are linked by the channels K, L, abort, and restart.These channels are private to the protocol. The channel abort (resp. restart) isused to solve the synchronization problems between the sender and the receiverafter a transmission abort (resp. after a correct transfer). Introducing these twochannels allows us to separate cleanly the two situations.
L

Receiver

K

Timer1

time1

P

Ind

Q

timeout2time2timeout1

Req

Conf

Timer2

abort abortrestart restart

Sender
Producer Consumer

InderrFig. 3. The implementation of the BRP in the �-calculusThe sender and its timer constitute the component P of the system. Theycommunicate via their private channels time1 and timeout1. The receiver andits timer constitute the component Q of the system. They communicate via theirprivate channels time2 and timeout2. These two components communicate viathe sender and the receiver over the private channels K, L, abort, and restart.This is pictured in �gure 3.P (K;L; abort; restart) def= (� time1 timeout1) (S(K;L; abort; restart) j T1)Q(K;L; abort; restart) def= (� time2 timeout2) (R(K;L; abort; restart) j T2)The external event corresponding to the loss of a message (resp. loss of anacknowledgment) is modeled by the agent loss msg (resp. loss ack) which canintercept the message (resp. the acknowledgment) and return to its initial state.These two events can happen at any moment.loss msg def= K(first last tag m):loss msgloss ack def= L():loss ackHence, the system is completely described by the parallel composition of thecomponents P and Q, and the external events loss msg and loss ack.

System def= (� K L abort restart)(P (K;L; abort; restart) j Q(K;L; abort; restart) j loss msg j loss ack)Note that the con�guration of the system does not change during the execu-tion of the protocol: the links are static. However, the mobility would be easilyexpressed in the �-calculus.6 The correctness proof of the BRPThe purpose of this section is to prove formally that the implementation of theBRP (System) and its abstract view (S0) have equivalent behaviors so theyhave the same observational properties, for example deadlock-freeness. In the�-calculus, the notion of behavioral equivalence is made mathematically preciseby using bisimulations [23]. In our proof, we use some algebraic properties ofthese bisimulations and we recall them in appendix B. Our method is inspiredby Orava's and Parrow's method [25]. The proof follows these steps:1. Analyze the system by applying, repeatedly, the expansion law (E) in order todetermine its intermediate states by using strong ground equivalence _�. Forexample, the system (xy:P j x(u):Q) is expanded to (xy:P +x(u):Q+ �:(P jQfx=ug)), then we iterate the expansion on the new states xy:P , x(u):Q and�:(P j Qfx=ug). This step leads to a set RE0 of mutual recursive equationsbetween the obtained states.2. Build the �x-point of RE0. This results in a new set RE1 of mutual recursiveequations.3. Simplify RE1 by using the � -laws, by identifying and substituting in theequations equivalent expressions up to weak bisimulation ', and by elim-inating � -loops from equations using the law (L) (the law (U1) cannot beapplied if the equations are not guarded). This step leads to a new reducedset RE2 of mutual recursive equations.4. Build the �x-point ABS of the equations de�ning the abstract view.5. Finally, prove that RE2 is a solution of ABS. Then, by applying the law(U1), conclude that RE2 and ABS are equivalent.Starting from the implementation of the BRP (System), the step 1 is �rstapplied separately to the components P and Q, then it is applied to the parallelcomposition of their expansion with the external events loss msg and loss ack.This technique has a great advantage: it is modular in that we never have toanalyze and compute on the whole system description at once.Because of lack of space, we cannot give the complete proof. The step 1results in twenty four equations parameterized by the �le to be transferred. Thestep 3 leads to a system of three equations which is proved equivalent to theabstract view. The complete proof is described in an internal report [18]. Itis done manually, requires about three man-month and its writing is about 50pages.

The method we use is really interesting. It provides a clear distinction be-tween the implementation and the abstraction of the system, proving the equiv-alence of the two views. Someone who wants to use the protocol as a componentof a more complex system has just to use its abstract view which is simple andprovides exactly its observable behavior.7 Other implementations and proofs of the BRPNow, we give a sketchy comparison between the implementations and proofs ofthe BRP presented in the studied papers, focusing on the following aspects: themodeling of time, the synchronization between the sender and the receiver, theimplementation di�culties and the proof approach.7.1 The modeling of timeLike us, in [1, 9, 13, 14], the formalism does not provide explicit time. Themodeling of time in [9] is close to ours. The timers just have to expire, andthe authors only care about scheduling of actions. In [1, 13, 14], the timers arerepresented by timer events. For example, the timeout event corresponding totimer1 is de�ned to occur when a message or an acknowledgment is lost. In [8],the authors used timed automata. A timed automaton is a classical �nite stateautomaton equipped with clock variables and state invariants which constrainthe amount of time the system may idle in a state. So, the protocol veri�cationallows them to obtain tight constraints on the amount of the timers.7.2 The synchronization between the sender and the receiverIn [9], the synchronization between the sender and the receiver, done via thechannels abort and restart in our case, is enforced by two extra signals lost andready. To avoid that a message arrives after timer1 expires, the channels K andL send a signal lost to timer1 indicating that a timeout may occur. When anabort occurs, the sender sends a signal ready to the receiver asking it to stoptimer2. Then, the receiver returns a signal ready to the sender allowing it totransfer a new list. Since there is a strong connection between the sender, thereceiver, timer1 and timer2, the resulting implementation is not modular.In [13, 14], the loss of a message or an acknowledgment causes a timeoutaction of timer1. After an abort, the sender starts a new timer called timer3.When timer2 expires, the receiver generates a timeout action for timer3 so thatthe sender can proceed and handle the next request. This solution requires thattimer3 � timer2 and can be hardly reused if time constraints have to be changed.In [1], a loss of the last acknowledgment causes a misleading abort of thesender. The receiver considers that the transfer is already completed, so anyretransmission done by the sender will not be acknowledged. Furthermore, thevariable representing the number of retransmissions is still shared by the senderand the receiver in the last re�nement.

In [8], urgent transitions, performed without any delay, are used to forbid thesender to stay arbitrarily long in a state and to avoid that the receiver times outwithout abortion of the sender. After a failure, an additional delay of SY NCunits is set to the sender to ensure that it does not start transmitting a new �lebefore the receiver has properly reacted to the failure.7.3 The implementation and the proofIn [9], the BRP is de�ned in �CRL as the parallel composition of its components:the sender, the receiver, timer1 and timer2, as we have done. The authors usethe branching bisimulation, a strong variant of weak bisimulation (no di�erenceobservable) which is a model of �CRL theory [11]. They prove manually theequivalence between the protocol and its abstract view by applying the Recur-sive Speci�cation Principle (equivalent to our law (U1)). But in their case, theprotocol can start transmission of a list in two distinct modes: either the receiverknows the next alternating bit (after a successful transmission), either no (aftera transmission abort). For this reason, the intermediate system is de�ned byeight equations considering the two modes. In our case, this system is simplythe abstract view and is de�ned by three equations, so the proof is facilitated.Their proof is mechanized in the proof-assistant Coq [7]. The authors encodethe syntax, axioms and rules of �CRL in Coq. However, they do not use theRecursive Speci�cation Principle, but instead encode the system of recursiveequations by a unique equation in Coq. So, their BRP implementation in �CRLis compact and formal, but the proof in Coq required a detailed encoding so thatthe resulting Coq speci�cation is fairly large.In [14], the authors specify each component of the protocol by an I/O au-tomaton (the sender, the receiver, and channels K and L). Then, they de�ne thefull protocol as the parallel composition of these I/O automata. However, themodel forces them to specify, for all possible states, what happens if an inputaction occurs. This leads to the explosion of the I/O automata. The correctnesscriteria of the protocol is a re�nement argument showing that the BRP I/O au-tomata implements the abstract view I/O automata. The authors prove that theBRP is deadlock-free. Moreover, a number of protocol invariants is presented.The proofs of these invariants lead to the following conclusions. The protocolmay use a single bidirectional medium to implement both channels K and L.At each reachable state of the protocol, at most one of the four componentsenables a locally controlled action; this means that the protocol operates in afully sequential way. The only information conveyed by an acknowledgment isthe fact of its arrival itself, the rest is redundant. Finally, the �eld first of themessages conveys no information and is redundant; it can be determined by thestate of the receiver and the other �elds of the transmitted message. However,the most di�culties with I/O automata veri�cations is �nding the appropriateautomata, the re�nement relation and the invariants. The safety part of theproofs is mechanically checked using Coq. The notions from I/O automata the-ory are encoded directly for the BRP. So, it is di�cult to reuse this encoding for

other applications. The authors have not checked the liveness property becausethis would have required a considerable e�ort.In [1], the author constructs formally the protocol by successive re�nements.The implicit time in the abstract view is extended gradually to obtain the im-plementation. Each re�nement step is proved to satisfy the properties expressedin the preceding one. This construction approach required seven re�nementswhich deal with gradual distribution of various aspects of the protocol that areglobal in the abstract view. The �rst and the second re�nement introduce inthe sender and in the receiver variables which express the termination of theprotocol. The third, fourth and �fth re�nements are concerned with the distri-bution of the data transmission. The remaining re�nements are concerned withthe localization of the control in the protocol. The deadlock-freeness property isproved provided the protocol is performed in a fully sequential way. Moreover,the termination of the protocol is proved by determining a sequence of naturalnumber expressions that decrease lexicographically after each protocol action.But, the most di�culty of this work is to �nd the appropriate re�nements; thistask is nontrivial.In [8], the BRP is modeled by a network of timed automata. Channels Kand L are modeled as queues of unbounded capacity, and the data is removedfrom the transmitted message. The authors verify the protocol in UPPAALwhich reduces the veri�cation problem to solving a set of constraints on clockvariables. So, they obtain precise amounts of the timers. However, data in UP-PAAL is restricted to clocks and integers and value passing at synchronizationis not supported. For these reasons, the data was removed from the transmittedmessage. If data is included in the model, this would lead to an explosion ofthe amount of states and transitions in UPPAAL. Value passing is modeled byshared variables assignments, this requires to split some transitions. ChannelsK and L were reduced from unbounded queues to one-place bu�ers. Conditionslike a 6= b are not handled by UPPAAL. So, some transitions are splitted inlocations that must be performed atomically. To this end, committed locationsthat forbid interference with the actions of other timed automata are introduced.The properties of the FTS speci�cation are not invariant and can hardly be ex-pressed using the property language of UPPAAL. Moreover, since the data isremoved from their speci�cation, properties of the FTS concerning the transmit-ted data are not checked. So, the protocol is only checked for small values of the�le length and the number of retransmissions. The correctness of the protocolwhen omitting the timing aspects is also checked using SPIN [12]. The FTS de-scription in PROMELA, the modeling language provided by SPIN, is obtainedby a straightforward translation of the abstract view of [9]. Moreover, the BRPimplementation is close to that of [9]. So, the remarks on [9] can be made here.7.4 The abstraction approachNow, we discuss the opposed approach taken in [13] which starts from an imple-mentation to deduce an abstract view. The authors �rst analyze a scaled-downversion (i.e. �nite state system) of the BRP using Mur�, a state exploration

tool, as a debugging aid. Then, they translate the Mur� description into PVSand modify manually a few of the PVS declarations to obtain the in�nite stateimplementation.This yields two PVS theories. The �rst one contains the protocolitself. It is modeled by a predicate that holds for a sequence of reachable states.Their modeling of the synchronization between the sender and the receiver is thesame as [14]. So, the remarks on [14] apply here. Moreover, the BRP implemen-tation in PVS is too detailed and not so formal. The second theory contains thecorrectness criteria which is de�ned by an invariant. This invariant needs to begreatly strengthened in order to be provable, and this invariant strengtheningis the real challenge of the proof. Finally, from the complete implementationin PVS, they deduce a �nite state abstraction which bound the resources ofunboundedness in the state space that are the message data, the number ofretransmissions and the �le length. They show that the mapping between theimplementation and the abstract view preserves the initialization predicate, thenext-state relation and the properties. They used the model checkers SMV, Mur�and an extension of PVS with the modal �-calculus for the �nal model checking.However, the most di�culty of Havelund's and Shanker's approach is to �ndthe protocol abstraction: no technique is provided to mechanize the abstractionresearch. For example, to �nd the abstraction of the sliding window protocol isa real challenge.8 ConclusionsWe �rst present our correctness proof of the BRP using the �-calculus. Themajor advantages of our approach are the following. The description of the pro-tocol is compact and entirely formal. Moreover, the exhaustive analysis of allpossible cases gives a good understanding of the protocol; it allows us to detectseveral implementation errors. In fact, the BRP implementation was modi�edthree times. The approach is modular since we never have to handle the wholeprotocol description at once. So, the implementation can be reused easily ifspeci�cation changes occur. Furthermore, our correctness criteria is highly infor-mative because the protocol is proved equivalent to the speci�cation representingits external behavior. Finally, the �-calculus laws are simple and the proof bybisimulation is purely procedural. So, large parts of the proof can be mechanized.Without the help of a prover, the exhaustive analysis of all possible cases istedious and is hard to control and to maintain after implementation changes dueto errors detection. Our aim is to elaborate a general methodology for the designof communication protocols which allows to reduce the e�ort to prove theircorrectness by bisimulation in the �-calculus. Since our BRP implementationis modular, actually, we are investigating a compositional proof of the BRP byusing the relativized bisimulation [16]. Next, we want to extend the methodologyin order to prove mobile protocols and liveness properties. The proofs are doneby hand for the moment, another objective is to mechanize at least parts of theproofs.

Having compared with other works, the �-calculus appears as a really con-venient framework for encoding and analyzing communication protocols. Someother languages like �-CRL also o�er some possibilities of modularity and cod-ing of data but the �-calculus has a functional treatment of names, which allowsextensions of protocols by mobility features.References1. Abrial, J-R.: Speci�cation and Design of a Transmission Protocol by SuccessiveRe�nements using B, 1997.2. Abrial, J-R.: The B-Book. Cambridge University Press, 1996.3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science,126 (1994) p183{235.4. Alur, R., Henzinger, T., Sontag, E.D.: Hybrid Systems III. LNCS 1066, Springer-Verlag, 1996.5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL { A toolsuite for the automatic veri�cation of real-time systems. In [4], p232-243.6. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplextransmission over half-duplex links. Communications of the ACM, 12(5) (1969)p260{261.7. Cornes, C., Courant, J., Filliatre, J.C., Huet, G., Manoury, P., Paulin-Mohring, C.,Munoz, C., Murthy, C., Parent, C., Saibi, A., Werner, B.: The Coq Proof AssistantReference Manual version 5.10. Technical Report, INRIA Rocquencourt, France,February 1995.8. D'Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, J.: The Bounded Retransmis-sion Protocol must be on Time !. TACAS'97.9. Groote, J.F., Van de Pol, J.: A Bounded Retransmission Protocol for Large DataPackets. CAV'96, LNCS 1101, 1996.10. Groote, J.F., Ponse, A.: The syntax and semantics of �CRL. Technical reportCS-R9076, CWI, Amsterdam, December 1990.11. Groote, J.F., Ponse, A.: Proof theory for �CRL: a language for processes withdata. In Andrews, D.J., Groote, J.F., and Middelburg, C.A., editors, Proc. of theInt. Workshop on Semantics of Speci�cation Languages, p232{251. Workshops inComputing, Springer Verlag, 1994.12. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall,1991.13. Havelund, K., Shankar, N.: Experiments in Theorem Proving and Model Checkingfor Protocol Veri�cation. In Proceeding of FME, March 1996, Oxford.14. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof checking a data link pro-tocol. In Barandregt, H., and Nipkow, T., editors, Types for proofs and programs,LNCS 806, p127{165, Springer-Verlag, 1994.15. Janssen, G.: ROBDD Software. Department of Electrical Engineering, EindhovenUniversity of Technology, October 1993.16. Larsen, K., Milner, R.: A Complete Protocol Veri�cation Using Relativized Bisimu-lation. In Proceeding 14th Colloquium on Automata, Languages and Programming,LNCS 267, Springer-Verlag, 1987.17. Lynch, N.A., Tuttle, M.R.: Hierarchical Correctness Proofs for Distributed Algo-rithms. In Proceeding of the 6th Annual Symposium on Principles of DistributedComputing, New York, p137{151, ACM Press, 1987.

18. Mammass, B.: A proof of the Bounded Retransmission Protocol in the �-calculus.Technical report, LIP6, 1997.19. McMillan, K.L.: Symbolic Model ChecKing. Kluwer Academic Publishers, Boston,1993.20. Melton, R., Dill, D.L., Norris Ip., C.: Murphi Annotated Reference Manual, version2.6. Technical Report, Stanford University, Palo Alto, California, USA, November1993.21. Milner, R.: Communication and Concurrency. Prentice-Hall, 1989.22. Milner, R.: The polyadic �-calculus: a tutorial. LFCS, technical report ECS-LFCS-91-180, October 1991.23. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part 1. LFCS,technical report ECS-LFCS-89-85, June 1989.24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part 2. LFCS,technical report ECS-LFCS-89-86, June 1989.25. Orava, F., Parrow, J.: An Algebraic Veri�cation of a Mobile Network. FormalAspects of Computing, 4(6), p497{543, 1992.26. Owre, S., Rushby, J., Shankar, N., Henke, F.von.: Formal Veri�cation For Fault-tolerant Architectures: Prolegomena to the Design of PVS. IEEE Transactions onSoftware Engineering, 21(2), p107{125, February 1995.A The implementation of the receiver in the �-calculusR(K;L; abort;restart) def= j[False]jrtag:j[False]jend:j[False]jt2on:Wait msg(K;L; abort; restart; rtag; end; t2on)Wait msg(K;L; abort; restart; rtag; end; t2on) def=K(first last tag m):T reat(K;L; abort; restart; first; last; tag;m; rtag; end; t2on)+ If equal bool(t2on; T rue) thentimeout2:abort:Abort(K;L; abort; restart; end)+ restart:If equal bool(t2on; T rue) then timeout2:R(K;L; abort; restart)else R(K;L; abort; restart)Treat(K;L; abort; restart; first; last; tag;m; rtag; end; t2on) def=If equal bool(tag; rtag) thenL:Wait msg(K;L; abort; restart; rtag; end; t2on)elseIf equal bool(first; T rue) thenj[tag]jrtag:Indicate(K;L; abort; restart; first; last;m; rtag; end; t2on)else j[tag]jrtag:timeout2:Indicate(K;L; abort; restart; first; last;m; rtag; end; t2on)Indicate(K;L; abort; restart; first; last;m; rtag; end; t2on) def=If equal bool(last; T rue) thenj[True]jend:Ind m last:L:time2:j[True]jt2on:Wait msg(K;L; abort; restart; rtag; end; t2on)else If equal bool(first; T rue) then

Ind m first:L:time2:j[True]jt2on:Wait msg(K;L; abort; restart; rtag; end; t2on)else Ind m inc:L:time2:j[True]jt2on:Wait msg(K;L; abort; restart; rtag; end; t2on)Abort(K;L; abort; restart; end) def= If equal bool(end; T rue) then R(K;L; abort; restart)else Inderr:R(K;L; abort; restart)B The �-calculus algebraic theoryThe strong ground equivalence _� corresponds to behavioral a equivalence wherethe precise amount of internal actions � is signi�cant. For example, we distinguishthe agent �:�:0 from the agent �:0. In contrast, the weak ground equivalence _'identi�es this two agents; the internal actions � are signi�cant only insofar asthey preempt other actions.The algebraic laws for strong ground equivalence _�, as stated in [24], aredescribed below. To state them in a compact way, we de�ne the derived pre�xx(ey):P to mean (� ey)xey:P when x 6= y, and let �, � range over ordinary andderived pre�xes. Let fn(P) (resp. bn(P)) be the set of free (resp. bound) namesin P . Hereafter, = is used instead of _� to allow di�erent interpretations of thelaws.{ (A) P � Q ` P = Q (�-conversion){ (C0) P = Q ` �:P = �:Q, P + R = Q+ R, (� x)P = (� x)Qxy:P = xy:Q, P j R = Q j R, [x = y]P = [x = y]Q{ (C1) x(y):P = x(y):Q i� Pfz=yg = Qfz=yg, 8 z{ 0 is a zero for +, and + is idempotent, commutative and associative.{ (R0) (� x)P = P (if x =2 fn(P))(R1) (� x)(� y)P = (� y)(� x)P(R2) (� x)(P + Q) = (� x)P + (� x)Q(R3) (� x)�:P = �:(� x)P (if x is not in �)(R4) (� x)�:P = 0 (if x is the subject of �){ (M0) [x = y]P = 0 if x 6= y, (M1) [x = x]P = P{ (I) A(ey) = Pfey=exg if A(ex) def= P{ 0 is a zero for j, and j is commutative and associative.(P3) (� x)(P j Q) = P j (� x)Q (if x =2 fn(P)){ (E) Let P = Pi �i:Pi, Q = Pj �j :Qj where bn(�i) \ fn(Q) = ; 8 i andbn(�j) \ fn(P) = ; 8 j. ThenP j Q =Pi �i:(Pi j Q) + Pj �j :(P j Qj) +P�icomp�j �:Rijwhere the relation �i comp �j (�i complements �j) holds in the followingfour cases, which also de�ne Rij:1. �i is xu and �j is x(v); then Rij is Pi j Qjfu=vg2. �i is x(u) and �j is x(v); then Rij is (� w)(Pifw=ug j Qjfw=vg) (wherew is not free in (� u)Pi or in (� v)Qj)3. the two others are the converse.

The weak ground equivalence _' is strictly weaker that strong ground equiv-alence _� and also satis�es the laws described above. In addition, it satis�es thewell known � -laws [21], these are:{ (T0) �:�:P _' �:P{ (T1) P + �:P _' �:P{ (T2) �:(P + �:Q) + �:Q _' �:(P + �:Q).In order to eliminate � -loops from recursively de�ned agents (see [21]):{ (L) If A = P + �:A and B = �:P then A _' BWe de�ne strong (non-ground) equivalence � as strong ground equivalenceunder all substitutions � of non-constant names, i.e., P � Q i� P� _� Q�, for allsubstitutions � from non-constant names to names.We de�ne weak (non-ground)equivalence ' in a similar way.The main use of the non-ground equivalences is in the laws for recursivelyde�ned agents which we adopt from [24]. To formulate them, we need some addi-tional notations. Let E, F , . . . represent agent expressions; these are like agentswith \holes" where agents or agent identi�ers can be inserted. Let E(P1; : : : ; Pn)be the agent which is the result of inserting P1; : : : ; Pn into E. Two agent ex-pressions E and F are (strongly/weakly) equivalent if E(eP) is (strongly/weakly)equivalent to F (eP) for all P1; : : : ; Pn.The �rst law for recursion (U0) means that if the right hand sides of de�ni-tions are transformed, respecting equivalence, then the agent de�ned is the sameup to equivalence. This law holds for strong and weak non-ground equivalence(but fails for the ground equivalences).(U0) Suppose that E1; : : : ; En and F1; : : : ; Fn are expressions and A1; : : : ; AnandB1; : : : ; Bn identi�ers such that for all i: Ei = Fi andAi(exi) = Ei(A1; : : : ; An)and Bi(exi) = Fi(B1; : : : ; Bn) Then Ai(exi) = Bi(exi) for all i.The second law (U1) means that if two agents satisfy the same set of recursiveequations, then the agents are equivalent. This law holds for strong non-groundequivalence provided E1; : : : ; En are weakly guarded (i.e., all occurrences of Pj inEi(P1; : : : ; Pn) are within a pre�x operator). Furthermore, it holds for weak non-ground equivalence provided E1; : : : ; En are guarded (i.e., all occurrences of Pjin Ei(P1; : : : ; Pn) are within an output or input pre�x operator), and sequential(i.e., no Ei contains a parallel composition).(U1) Suppose that E1; : : : ; En are expressions and P1; : : : ; Pn and Q1; : : : ; Qnare agents such that for all i: Pi = Ei(P1; : : : ; Pn) andQi = Ei(Q1; : : : ; Qn) ThenPi = Qi for all i.This article was processed using the LATEX macro package with LLNCS style

