N

N
N

HAL

open science

Yet Yet on the bounded retransmission protocol

Thérese Hardin, Brahim Mammass

» To cite this version:

Thérése Hardin, Brahim Mammass. Yet Yet on the bounded retransmission protocol.

Report] 1ip6.1998.010, LIP6. 1998. hal-02547714

HAL Id: hal-02547714
https://hal.science/hal-02547714
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research

https://hal.science/hal-02547714
https://hal.archives-ouvertes.fr

Yet Yet on the Bounded Retransmission
Protocol

Thérese Hardin and Brahim Mammass

Laboratoire d’Informatique de Paris 6
Tour 45-55, 4 Place Jussieu 75252 Paris Cedex 05, France
e-mail: Brahim.Mammass@lip6.fr, Therese. Hardin@lip6.fr

Abstract. The aim of this paper is twofold. We first present a cor-
rectness proof of the Bounded Retransmission Protocol (BRP), which is
easily done by bisimulation in the w-calculus. Then, we compare several
works on this protocol, focusing on how the used formalism influences
implementation choices and proof techniques.

1 Introduction

The development of communication networks needs more and more sophisti-
cated communication protocols which must be reliable. Traditional verification
methods use model checking techniques, but they cannot deal with infinite state
systems and more generally with mobility.

Our aim is to elaborate some methodologic guides for designing and proving
communication protocols using theorem provers. We choose the BRP as our case
study because it is simple but, as it is parameterized, model checking cannot be
directly applied. The BRP is a communication protocol, developed at Philips
Research Laboratory, that transfers messages from a producer to a consumer
over an unreliable physical medium that can lose messages.

The w-calculus [23, 24] is an extension of the process algebra CCS [21] with
mobility keeping its algebraic properties. It is more expressive than CCS be-
cause 1t provides possibilities for coding data types, A-calculus and higher order
processes. Moreover, it offers the possibility of introducing new channels and
passing channel names between processes. So, on one hand, we present a proof
of the BRP using w-calculus bisimulations.

On the other hand, we study some related works in order to compare differ-
ent approaches. They are the following. Helmink, Sellink and Vaandrager [14]
analyze the BRP in the setting of I/O automata [17]. Havelund and Shankar [13]
combine model checking and theorem proving techniques to prove the correct-
ness of the BRP. They use PVS [26] as a theorem prover, and SMV [19], Muré
[20], and an extension of PVS with the modal g-calculus [15] as model checkers.
Groote and Van De Pol [9] use as a formal support pCRL [10], a combination
of process algebra and abstract data types, to prove the correctness of the BRP.
Abrial [1] designs the BRP by successive refinements in the proof-assistant B
[2]. Finally, D’Argenio, Katoen, Ruys and Tretmans [8] analyze the BRP in the

setting of timed automata [3]. The correctness of the protocol is checked using
UPPAAL [5].

The comparison between these approaches tackles the following questions.
Do these works start from the same description 7 How are the protocol entities
modeled 7 What is exactly proved 7 What are the difficulties encountered in
doing the proofs 7 Are they due to the used formalism or to implementation
choices 7 Is the m-calculus a well-suited framework 7

The paper 1s structured as follows: section 2 presents the initial informal
description of the BRP. In section 3, we complete this description by expliciting
some points and we give the point of view of the mentioned papers. The section
4 gives an abstract view of the BRP in the 7-calculus and compares it to the
others. In section 5, we implement the protocol in the w-calculus. The section 6
presents our correctness proof which proceeds by bisimulation. Finally, in section
7, we present the other implementations and proofs of the BRP and we compare
them to ours.

2 The Bounded Retransmission Protocol

Apart from some little and irrelevant variations, all the papers start from the
same description which is the following. The BRP communicates messages from
a producer to a consumer over an unreliable physical medium that can lose
messages. It is a nontrivial extension of the alternating bit protocol [6] that uses
timeouts and aborts transmission following a bounded number of transmission
attempts. The environment of the protocol consists of the producer and the
consumer. The black box view of the system is that it accepts requests Regq(f)
from the producer to transmit the file f. When transmission of f has been either
completed or aborted, the producer receives a confirmation Conf{c), where ¢ is
either OK, NOTOK, or DTKW (don’t know), respectively indicating that the file
was successfully transmitted, aborted, or that the last message in the file was
not acknowledged but might have been received by the consumer. The consumer
either receives an Inderr signal indicating that the file transmission was aborted,
or an Ind(m, 1) signal where m is the message and i is either FIRST, LAST or INC
(incomplete) corresponding to the first, last, or an intermediate message in the
file.

Opening the black box, the protocol (figure 1) consists of a sender program
at the producer side, a receiver program at the consumer side, and two channels
(one-place buffers): a message channel K and an acknowledgment channel L.
Both channels are unreliable in that they can lose messages or acknowledgments;
but, messages are neither garbled, nor received out of order. T'wo timers are used.
A timer has a fixed period T of time associated. When it is set, a timeout occurs
T time units later.

The sender sends each message over the channel K, sets timer;, and then
waits for an acknowledgment over the channel L. The timer; is used to detect the
loss of a message or an acknowledgment. The time associated with this timer ex-
ceeds the time required to send a message over K and to get the acknowledgment

over L. If an acknowledgment comes back within this time, the timer is cleared,
and the next message is sent. If the transmission has been completed, the sender
confirms Conf{ 0K) to signal a successful transmission to the producer. If there is
no acknowledgment, a timeout occurs whereupon the message is retransmitted,
and the timer set again. There 1s a fixed upper bound on the number of such
retransmissions (MAX). When this retransmission bound has been reached, the
sender aborts transmission and confirms that the transmission failed. Either it
confirms Conf{NOTOK) or it confirms ConfiDTKW).

The receiver waits for messages over the channel K. If the alternating bit
of the received message is equal to that of the previous one, the receiver only
retransmits an acknowledgment over the channel L. Otherwise, it delivers the
message to the consumer, stores its alternating bit, sets timers, and sends an
acknowledgment over the channel L. In both cases, it waits for the subsequent
message over the channel K. The time associated with timers must exceed the
required time to transmit MAX times a message (i.e, timery > MAX * timery).
If timer, expires, i.e., no new message is received, the receiver sends an Inderr
signal to the consumer to indicate the transmission abort.

I -FST
-LST
-INC

Req(f) Ind(m,i)
—_— —

Producer Sender Receiver Consumer
- —
Conf(c) Inderr
-OK

-DTKW]

Fig. 1. The BRP protocol

We note that in [8, 9, 14], only one channel is used for indication signals from
the receiver to the producer. So, if i equals NOTOK, the notification Ind(m,)
indicates that an abort occurred and m is dummy. This difference seems irrele-
vant but perhaps may induce some typing difficulties if the protocol is extended
by other treatments of m.

3 The complete informal specification

In this section, we give our interpretation of the BRP description, then we com-
pare 1t to the ones adopted in the other papers.

3.1 Our interpretation

The previous section describes the protocol as a parallel composition of two
entities: the sender and the receiver, that run sequentially. Before formalizing
the protocol, we must complete the BRP description by expliciting some points.
What can be the content of the file 7 How can the synchronization between the
sender and the receiver be realized 7 How does the alternating bit work 7 What
happens if the first message never arrives at the receiver side 7 In which cases
must the receiver signal the abort to the consumer ?

We assume that the file may contain zero, one or more messages. If the file
is empty, the sender must confirm immediately the transfer with a confirmation
OK to the producer. If the file contains one message, this message must be
considered as the last message in the file. Moreover, if the transfer is aborted
during the transmission of this message, a confirmation DTKW must be sent to
the producer.

The synchronization between the sender and the receiver after a transmission
abort is achieved by means of timers. The description gives no indication about
its activation. So, we assume that this timer is not enabled when the system
starts. Otherwise, timery could expire and should be restarted infinitely often
leading to an active waiting of the receiver. After getting the first message, the
recelver enables timers.

As timers > MAX % timer;, the sender is the first to detect a transmission
abort. The sender may then receive a request to transfer a new file and send its
first message while the receiver does not yet detect the abort (i.e., timers has
not expired). The receiver may consider this message as the next message (or as
a duplication of the current message) of the previous file, that is wrong. So, the
sender must wait until the receiver detects the abort. Moreover, the two must
reinitialize their alternating bit before the beginning of the next transfer. For
uniformity, we decide that they reinitialize their alternating bit also when the
transfer has been completed.

After the correct termination of a file transmission, two situations are pos-
sible. Either the sender receives no new request before expiration of timers, so
the receiver may send a misleading Inderr signal to the consumer. Or it receives
a new request and sends the first message. If timers has not yet expired, the re-
ceiver may consider this first message as a duplication of the last message of the
previous file because it cannot know the new alternating bit value. To solve these
synchronization problems, the sender must signal the end of the current transfer
to the receiver before it begins the next one. The receiver can then anticipate
the expiration of timers, then the two reinitialize their alternating bit.

If the first message in the file never arrives at the receiver side, as timer; is
not yet set, the receiver cannot be informed about this abort. But, as decided
above, the sender will wait the expiration of timers. This will lead to a deadlock
situation. In a distributed setting, there is no solution to this problem because
the abort information has to be transported on an unreliable channel. So, we
assume that the first message arrives at least one time at the receiver side.

When an abort occurs during the transmission of an intermediate message,

the sender must send a confirmation NOTOK to the producer and the receiver
must send an Inderr signal to the consumer. If the abort occurs during the
transmission of the last message, a confirmation DTKW is sent by the sender.
But, at the receiver side, either this message was received, so no Inderr signal
is sent. Or the message was always lost, an Inderr signal must be sent to the
consumer. This point is not fully stated in the BRP description.

3.2 Other interpretations

Now, we only point out the differences between the other interpretations and
ours. The consequences of their different choices will be discussed in section 7.

In [8, 9], the authors decide that when an abort occurs before the delivery of
the first message, the consumer does not need an indication error. Moreover, if
the transmission of the next file starts before timers expires, the alternating bit
scheme 1s simply continued. This scheme is only interrupted after a failure.

In [14], the acknowledgment consists of three control bits, but is considered
as a simple signal in the other presentations.

In [1], the complete informal specification is written in a pseudo-code style.
The author decide that timers i1s only started when the received message is not
the last one in the file.

4 The abstract view of the BRP

In this section, we consider the system as a black box. Its abstract view is
the observable behavior on the external channels Req, Ind, Inderr, and Conf,
abstracting the communications over the internal channels K and L. We first
introduce the polyadic m-calculus [22] which is our formal framework. Then, we
give our formal description and compare all the proposed abstract views.

4.1 Syntax and informal semantics of the polyadic w-calculus

Let z,y,z,u,v,...range over N, a set of channel names. Let A, B, ... range over
a set of agent identifiers; each identifier has a nonnegative arity. We note by z
the tuple 21, za,...,2,. Let P,Q,...range over agents (i.e. processes) which are

defined as follows:

— 0, an agent which can do nothing.

— gyz.P, an agent which outputs the tuple Z on channel y; thereafter it behaves
as P. In this action, y is the subject, x is the object, and both = and y are
free.

— y(#).P, an agent which receives a tuple on channel y; thereafter it behaves
as P but with the newly received names in place of #;. In this action, y is
the subject, T is bound, and y is free.

— 71.P, an agent which performs the silent action 7; thereafter it behaves as P.

— P4+ @, an agent which behaves like either P or Q.

— P | @, an agent representing the parallel composition of P and . This
agent can do anything that P or @ can do, and moreover if P = yu.P’
and Q = y(7).Q', then P | Q = (P’ | Q{u/F}) where Q'{u/%} is the
substitution of each occurrence of x; by u; in @Q’.

— (v)P, an agent which behaves like P where the name # is local but P can
export x.

— [x = y]P, an agent which behaves like P if and y are the same name;
otherwise it does nothing.

— A(y1,...,yn) is an agent if A is an identifier of arity n; for any such identifier

. . . . d
there is a defining equation written A(zq1,...,2,) f P, where the names

x1, ..., &y are distinct and are the only names which may occur free in P.
The agent A(yi1, ..., yn) behaves like P where y; is substituted for z; for all
t =1,...,n. Agent identifiers provide recursion since the defining equation
of A may contain A itself.

The formal operational semantics of agents is defined and explained in [24].
In the sequel, we note (v 1 ...x,)P instead of (v 21)...(v x,)P.

4.2 The abstract view of the BRP in the w-calculus

The abstract view is pictured in figure 2 and is expressed by three recursive
equations. The file is modeled by a list of messages and we use the usual functions
cons, hd and t{ on lists.

Req(f)_(” Ind(m,i
Producer Consumer
Conf(c) Inderr

Fig. 2. The abstract view of the BRP

In the initial state Sy, the system waits for a file f on the channel Req. If f
i1s empty it returns to Sy, else it processes the first message in the state S;.

So “ Req(f).([f = Nil].Conf ok.Sy + [f = cons(h,t)].51(f)

In S; and S5, the 7 actions indicate that the choice between the delivery or
loss of a message or an acknowledgment is decided by the internal actions.

S1(f) Y Tnd hd(f) LasT.Conf 0OK.Sy

~—

+ 7.Ind hd(f) FIRST.S2(t(f))
+ 7.Ind hd(f) LAST.Conf DTKW.Sp
+ 7.Ind hd(f) FIRST.Conf NOTOK.Inderr.Sp

In the state Sy, the system treats the remaining messages of the list.
def [[
Sa2(f) = r.Conf pTKW.Inderr.Sy
7.Conf NOTOK.Inderr.Sy
7.Ind hd(f) LAST.Conf DTKW.Sp
r.Ind hd(f) 1Nc.Conf NoTOK.Inderr.Sy
r.Ind hd(f) LAST.Conf O0OK.Sp
r.Ind hd(f) 1NC.S3(t(f))

++ 4+ +

The specification above does not explicit the loss of messages or acknowledg-
ments but supposes that they may occur. To make these losses explicit, the 7
actions must be made observable in the protocol implementation.

4.3 The other abstract views

The abstract view in [9] is defined by four recursive equations written in uCRL.
However, only one equation processes the first and the remaining messages of
the list. This requires a tag which distinguishes the two cases. This tag i1s not
needed in our case since the first element is treated separately in 5.

In [14], the authors specify the abstract view by an I/O automaton which
has the same input and output actions as the protocol but no internal actions.
As the channels are modeled by shared variables, their access managing is part
of the abstract view and is described by means of preconditions.

The abstract view in [1] states, in the B language, that the consumer receives
a prefix of the file transmitted by the producer. There is no notion of time,
even implicitly in message processing. The file is supposed to be transmitted
instantaneously.

In [8], the abstract view is provided as a file transfer service described by
logical relations between inputs and outputs. This approach leads to some diffi-
culties which we discuss in section 7.

The approach adopted in [13] is different and will be discussed in section 7.

5 The formal implementation of the BRP

We start from the complete informal specification of section 3. To encode the
protocol in the w-calculus, we need the types integer, boolean and list, and some
functions on these types. They are encoded in the m-calculus [23].

We model the external channels Req, Conf, Ind, and Inderr as constant names
because they are never bound during the execution of the protocol.

We model timer; by the agent T'1 which repeatedly waits for a signal over
the channel t2mel, then sends a signal over the channel tzmeoutl. To set timery,
the sender must send a signal over timel. To reset timer, the sender must make
a rendez-vous over timeoutl. The timer; is modeled in the same way.

T1 Y timel Timeowt1.T1
T2 time2 Timeout2.T2

The sender S uses locally four variables: first, last, tag and rn. If first
(resp. last) equals True, then the current message is the first (resp. last) one.
The variable tag contains the alternating bit, and rn contains the number of
retransmissions. Every message transmitted by the sender contains the infor-
mations first, last, tag and the message data. In the initial state, the sender
initializes its variables ([Trueltag puts True in tag) and waits for a request on
the channel Req. When a request is received, the sender starts the transfer of

the file.

S(K, L, abort, restart) = [True] first.[True]tag.[0]rn.[False]last.
Wait_req(K, L, abort, restart, first, last, tag,rn)

Wait_req(K, L, abort, restart, first, last, tag,rn) =

Req(f).Transfer(K, L, abort, restart, f, first,last, tag,rn)

If the file is empty, the sender confirms 0K, makes a rendez-vous over the
channel restart with the receiver and returns to its initial state. Otherwise,
the sender transmits the first message, sets timery, increments the number of
retransmissions rn, and waits for an acknowledgment over the channel L. The
function one(!) tests if [is a list of one element.
Transfer(K, L,abort, restart, f, first,last, tag, rn) =

[f = Nil] Conf ok.restart.S(K, L, abort, restart)
+ [f = cons(head, tail)] [one(f)|last. K first last tag head.timel.
[rn+ rn.Wait_ack(K, L, abort, restart, head, tail, first, last, tag, rn)

If an acknowledgment is received, the sender resets timer;, reinitializes rn,
complements tag, and transmits the next message in the file. If no acknowledg-
ment is received, timer; expires and the sender retransmits the message.

Wait_ack(K, L, abort, restart, head, tail, first,last, tag, rn) =
L.timeoutl.[0]rn.Not(tag).[False] first.
Transfer(K, L, abort, restart, tail, first,last, tag, rn)
+ timeoutl.Retrans(K, L, abort, restart, cons(head, tail), first,last, tag, rn)

If the bound of retransmissions is not exceeded, the message is retransmitted.
If not, the transfer is aborted. The sender sends a confirmation DTKw (for the
last message) or NOTOK (otherwise) to the producer. Then, it makes a rendez-
vous with the receiver over the channel abort before it begins a new transfer.
Retrans(K, L,abort, restart, f, first, last, tag, rn) =
If equal(rn,nax) then
([last = True] Conf pTkw.abort.S(K, L, abort, restart)
+[last = False] Conf notok.abort.S(K, L, abort, restart))
else Transfer(K, L, abort, restart, f, first,last, tag, rn)

The receiver R is described in the same way as the sender in appendix A.
The sender and the receiver are linked by the channels K, L, abort, and restart.
These channels are private to the protocol. The channel abort (resp. restart) is
used to solve the synchronization problems between the sender and the receiver
after a transmission abort (resp. after a correct transfer). Introducing these two
channels allows us to separate cleanly the two situations.

I

abort restart restart abort }

Req Ind

\ - Sender Receiver |

Producer i Consumer

L —

e i —

Conf | imel timeout1 fime2 1MEOU2 | | ey

Fig. 3. The implementation of the BRP in the 7-calculus

The sender and its timer constitute the component P of the system. They
communicate via their private channels timel and timeoutl. The receiver and
its timer constitute the component () of the system. They communicate via their
private channels t2me2 and timeout2. These two components communicate via
the sender and the receiver over the private channels K, L, abort, and restart.
This is pictured in figure 3.

P(K, L, abort, restart) e (v timel timeoutl) (S(K,L,abort,restart) | T1)

Q(K, L, abort, restart) = (v time2 timeout2) (R(K,L,abort,restart) | T2)

The external event corresponding to the loss of a message (resp. loss of an
acknowledgment) is modeled by the agent loss_msg (resp. loss_ack) which can
intercept the message (resp. the acknowledgment) and return to its initial state.
These two events can happen at any moment.

loss_msg = K(first last tag m).loss_msg

loss_ack L().loss_ack
Hence, the system is completely described by the parallel composition of the
components P and @), and the external events loss_msg and loss_ack.

System = (v K L abort restart)

(P(K, L,abort, restart) | Q(K, L, abort, restart) | loss_msg | loss_ack)

Note that the configuration of the system does not change during the execu-
tion of the protocol: the links are static. However, the mobility would be easily
expressed in the w-calculus.

6 The correctness proof of the BRP

The purpose of this section is to prove formally that the implementation of the
BRP (System) and its abstract view (Sp) have equivalent behaviors so they
have the same observational properties, for example deadlock-freeness. In the
w-calculus, the notion of behavioral equivalence is made mathematically precise
by using bisimulations [23]. In our proof, we use some algebraic properties of
these bisimulations and we recall them in appendix B. Our method is inspired
by Orava’s and Parrow’s method [25]. The proof follows these steps:

1. Analyze the system by applying, repeatedly, the expansion law (E) in order to
determine its intermediate states by using strong ground equivalence ~. For
example, the system (Zy.P | #(u).Q) is expanded to (Fy.P + z(u).Q + 7.(P |
Q{x/u})), then we iterate the expansion on the new states Zy.P, z(u).Q and
7.(P | Q{x/u}). This step leads to a set RFy of mutual recursive equations
between the obtained states.

2. Build the fix-point of REy. This results in a new set RE; of mutual recursive
equations.

3. Simplify RE; by using the 7-laws, by identifying and substituting in the
equations equivalent expressions up to weak bisimulation ~, and by elim-
inating 7-loops from equations using the law (L) (the law (Ul) cannot be
applied if the equations are not guarded). This step leads to a new reduced
set RFs of mutual recursive equations.

4. Build the fix-point ABS of the equations defining the abstract view.

5. Finally, prove that RFE5 1s a solution of ABS. Then, by applying the law
(U1), conclude that RE2 and ABS are equivalent.

Starting from the implementation of the BRP (System), the step 1 is first
applied separately to the components P and @, then 1t is applied to the parallel
composition of their expansion with the external events loss_msg and loss_ack.
This technique has a great advantage: it is modular in that we never have to
analyze and compute on the whole system description at once.

Because of lack of space, we cannot give the complete proof. The step 1
results in twenty four equations parameterized by the file to be transferred. The
step 3 leads to a system of three equations which is proved equivalent to the
abstract view. The complete proof is described in an internal report [18]. It
is done manually, requires about three man-month and its writing is about 50

pages.

The method we use is really interesting. It provides a clear distinction be-
tween the implementation and the abstraction of the system, proving the equiv-
alence of the two views. Someone who wants to use the protocol as a component
of a more complex system has just to use i1ts abstract view which 1s simple and
provides exactly its observable behavior.

7 Other implementations and proofs of the BRP

Now, we give a sketchy comparison between the implementations and proofs of
the BRP presented in the studied papers, focusing on the following aspects: the
modeling of time, the synchronization between the sender and the receiver, the
implementation difficulties and the proof approach.

7.1 The modeling of time

Like us, in [1, 9, 13, 14], the formalism does not provide explicit time. The
modeling of time in [9] is close to ours. The timers just have to expire, and
the authors only care about scheduling of actions. In [1, 13, 14], the timers are
represented by timer events. For example, the timeout event corresponding to
timer; is defined to occur when a message or an acknowledgment is lost. In [8],
the authors used timed automata. A timed automaton is a classical finite state
automaton equipped with clock variables and state invariants which constrain
the amount of time the system may idle in a state. So, the protocol verification
allows them to obtain tight constraints on the amount of the timers.

7.2 The synchronization between the sender and the receiver

In [9], the synchronization between the sender and the receiver, done via the
channels abort and restart in our case, is enforced by two extra signals lost and
ready. To avoid that a message arrives after timer; expires, the channels K and
L send a signal lost to timer; indicating that a timeout may occur. When an
abort occurs, the sender sends a signal ready to the receiver asking it to stop
timery. Then, the receiver returns a signal ready to the sender allowing it to
transfer a new list. Since there is a strong connection between the sender, the
receiver, timer; and timers, the resulting implementation is not modular.

In [13, 14], the loss of a message or an acknowledgment causes a timeout
action of timer;. After an abort, the sender starts a new timer called timers.
When timers expires, the receiver generates a timeout action for timers so that
the sender can proceed and handle the next request. This solution requires that
timers > timers and can be hardly reused if time constraints have to be changed.

In [1], a loss of the last acknowledgment causes a misleading abort of the
sender. The receiver considers that the transfer is already completed, so any
retransmission done by the sender will not be acknowledged. Furthermore, the
variable representing the number of retransmissions is still shared by the sender
and the receiver in the last refinement.

In [8], urgent transitions, performed without any delay, are used to forbid the
sender to stay arbitrarily long in a state and to avoid that the receiver times out
without abortion of the sender. After a failure, an additional delay of SY NC'
units is set to the sender to ensure that it does not start transmitting a new file
before the receiver has properly reacted to the failure.

7.3 The implementation and the proof

In [9], the BRP is defined in pCRL as the parallel composition of its components:
the sender, the receiver, timer; and timers, as we have done. The authors use
the branching bisimulation, a strong variant of weak bisimulation (no difference
observable) which is a model of yCRL theory [11]. They prove manually the
equivalence between the protocol and its abstract view by applying the Recur-
sive Specification Principle (equivalent to our law (U1)). But in their case, the
protocol can start transmission of a list in two distinct modes: either the receiver
knows the next alternating bit (after a successful transmission), either no (after
a transmission abort). For this reason, the intermediate system is defined by
eight equations considering the two modes. In our case, this system is simply
the abstract view and is defined by three equations, so the proof is facilitated.
Their proof is mechanized in the proof-assistant Coq [7]. The authors encode
the syntax, axioms and rules of pCRL in Coq. However, they do not use the
Recursive Specification Principle, but instead encode the system of recursive
equations by a unique equation in Coq. So, their BRP implementation in xCRL
is compact and formal, but the proof in Coq required a detailed encoding so that
the resulting Coq specification is fairly large.

In [14], the authors specify each component of the protocol by an I/O au-
tomaton (the sender, the receiver, and channels K and L). Then, they define the
full protocol as the parallel composition of these I/O automata. However, the
model forces them to specify, for all possible states, what happens if an input
action occurs. This leads to the explosion of the I/O automata. The correctness
criteria of the protocol is a refinement argument showing that the BRP I/0O au-
tomata implements the abstract view I/O automata. The authors prove that the
BRP is deadlock-free. Moreover, a number of protocol invariants is presented.
The proofs of these invariants lead to the following conclusions. The protocol
may use a single bidirectional medium to implement both channels K and L.
At each reachable state of the protocol, at most one of the four components
enables a locally controlled action; this means that the protocol operates in a
fully sequential way. The only information conveyed by an acknowledgment is
the fact of its arrival itself, the rest is redundant. Finally, the field first of the
messages conveys no information and is redundant; it can be determined by the
state of the receiver and the other fields of the transmitted message. However,
the most difficulties with I/O automata verifications is finding the appropriate
automata, the refinement relation and the invariants. The safety part of the
proofs is mechanically checked using Coq. The notions from I/O automata the-
ory are encoded directly for the BRP. So, it is difficult to reuse this encoding for

other applications. The authors have not checked the liveness property because
this would have required a considerable effort.

In [1], the author constructs formally the protocol by successive refinements.
The implicit time in the abstract view is extended gradually to obtain the im-
plementation. Each refinement step is proved to satisfy the properties expressed
in the preceding one. This construction approach required seven refinements
which deal with gradual distribution of various aspects of the protocol that are
global in the abstract view. The first and the second refinement introduce in
the sender and in the receiver variables which express the termination of the
protocol. The third, fourth and fifth refinements are concerned with the distri-
bution of the data transmission. The remaining refinements are concerned with
the localization of the control in the protocol. The deadlock-freeness property is
proved provided the protocol 1s performed in a fully sequential way. Moreover,
the termination of the protocol is proved by determining a sequence of natural
number expressions that decrease lexicographically after each protocol action.
But, the most difficulty of this work is to find the appropriate refinements; this
task is nontrivial.

In [8], the BRP is modeled by a network of timed automata. Channels K
and L are modeled as queues of unbounded capacity, and the data is removed
from the transmitted message. The authors verify the protocol in UPPAAL
which reduces the verification problem to solving a set of constraints on clock
variables. So, they obtain precise amounts of the timers. However, data in UP-
PAAL is restricted to clocks and integers and value passing at synchronization
1s not supported. For these reasons, the data was removed from the transmitted
message. If data is included in the model, this would lead to an explosion of
the amount of states and transitions in UPPAAL. Value passing is modeled by
shared variables assignments, this requires to split some transitions. Channels
K and L were reduced from unbounded queues to one-place buffers. Conditions
like @ # b are not handled by UPPAAL. So, some transitions are splitted in
locations that must be performed atomically. To this end, committed locations
that forbid interference with the actions of other timed automata are introduced.
The properties of the FTS specification are not invariant and can hardly be ex-
pressed using the property language of UPPAAL. Moreover, since the data is
removed from their specification, properties of the F'TS concerning the transmit-
ted data are not checked. So, the protocol 1s only checked for small values of the
file length and the number of retransmissions. The correctness of the protocol
when omitting the timing aspects is also checked using SPIN [12]. The FTS de-
scription in PROMELA, the modeling language provided by SPIN| is obtained
by a straightforward translation of the abstract view of [9]. Moreover, the BRP
implementation is close to that of [9]. So, the remarks on [9] can be made here.

7.4 The abstraction approach

Now, we discuss the opposed approach taken in [13] which starts from an imple-
mentation to deduce an abstract view. The authors first analyze a scaled-down
version (i.e. finite state system) of the BRP using Murg, a state exploration

tool, as a debugging aid. Then, they translate the Mur¢ description into PVS
and modify manually a few of the PVS declarations to obtain the infinite state
implementation. This yields two PVS theories. The first one contains the protocol
itself. It 1s modeled by a predicate that holds for a sequence of reachable states.
Their modeling of the synchronization between the sender and the receiver is the
same as [14]. So, the remarks on [14] apply here. Moreover, the BRP implemen-
tation in PVS is too detailed and not so formal. The second theory contains the
correctness criteria which is defined by an invariant. This invariant needs to be
greatly strengthened in order to be provable, and this invariant strengthening
is the real challenge of the proof. Finally, from the complete implementation
in PVS, they deduce a finite state abstraction which bound the resources of
unboundedness in the state space that are the message data, the number of
retransmissions and the file length. They show that the mapping between the
implementation and the abstract view preserves the initialization predicate, the
next-state relation and the properties. They used the model checkers SMV, Mur¢
and an extension of PVS with the modal p-calculus for the final model checking.
However, the most difficulty of Havelund’s and Shanker’s approach is to find
the protocol abstraction: no technique is provided to mechanize the abstraction
research. For example, to find the abstraction of the sliding window protocol is
a real challenge.

8 Conclusions

We first present our correctness proof of the BRP using the w-calculus. The
major advantages of our approach are the following. The description of the pro-
tocol 18 compact and entirely formal. Moreover, the exhaustive analysis of all
possible cases gives a good understanding of the protocol; it allows us to detect
several implementation errors. In fact, the BRP implementation was modified
three times. The approach 1s modular since we never have to handle the whole
protocol description at once. So, the implementation can be reused easily if
specification changes occur. Furthermore, our correctness criteria is highly infor-
mative because the protocol is proved equivalent to the specification representing
its external behavior. Finally, the m-calculus laws are simple and the proof by
bisimulation is purely procedural. So, large parts of the proof can be mechanized.

Without the help of a prover, the exhaustive analysis of all possible cases is
tedious and is hard to control and to maintain after implementation changes due
to errors detection. Our aim is to elaborate a general methodology for the design
of communication protocols which allows to reduce the effort to prove their
correctness by bisimulation in the m-calculus. Since our BRP implementation
1s modular, actually, we are investigating a compositional proof of the BRP by
using the relativized bisimulation [16]. Next, we want to extend the methodology
in order to prove mobile protocols and liveness properties. The proofs are done
by hand for the moment, another objective is to mechanize at least parts of the
proofs.

Having compared with other works, the 7-calculus appears as a really con-
venient framework for encoding and analyzing communication protocols. Some
other languages like u-CRL also offer some possibilities of modularity and cod-
ing of data but the m-calculus has a functional treatment of names, which allows
extensions of protocols by mobility features.

References

1. Abrial, J-R.: Specification and Design of a Transmission Protocol by Successive
Refinements using B, 1997.

2. Abrial, J-R.: The B-Book. Cambridge University Press, 1996.

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science,
126 (1994) p183-235.

4. Alur, R., Henzinger, T., Sontag, E.D.: Hybrid Systems III. LNCS 1066, Springer-
Verlag, 1996.

5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - A tool
suite for the automatic verification of real-time systems. In [4], p232-243.

6. Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM, 12(5) (1969)
p260-261.

7. Cornes, C., Courant, J., Filhatre, J.C., Huet, G., Manoury, P., Paulin-Mohring, C.,
Munoz, C., Murthy, C., Parent, C., Saibi, A., Werner, B.: The Coq Proof Assistant
Reference Manual version 5.10. Technical Report, INRIA Rocquencourt, France,
February 1995.

8. D’Argenio, P.R., Katoen, J.P., Ruys, T.C., Tretmans, J.: The Bounded Retransmis-
sion Protocol must be on Time !. TACAS’97.

9. Groote, J.F., Van de Pol, J.: A Bounded Retransmission Protocol for Large Data
Packets. CAV’96, LNCS 1101, 1996.

10. Groote, J.F., Ponse, A.: The syntax and semantics of yCRL. Technical report
CS-R9076, CWI, Amsterdam, December 1990.

11. Groote, J.F., Ponse, A.: Proof theory for pCRL: a language for processes with
data. In Andrews, D.J.; Groote, J.F., and Middelburg, C.A. editors, Proc. of the
Int. Workshop on Semantics of Specification Languages, p232-251. Workshops in
Computing, Springer Verlag, 1994.

12. Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall,
1991.

13. Havelund, K., Shankar, N.: Experiments in Theorem Proving and Model Checking
for Protocol Verification. In Proceeding of FME, March 1996, Oxford.

14. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof checking a data link pro-
tocol. In Barandregt, H., and Nipkow, T., editors, Types for proofs and programs,
LNCS 806, p127-165, Springer-Verlag, 1994.

15. Janssen, G.: ROBDD Software. Department of Electrical Engineering, Eindhoven
University of Technology, October 1993.

16. Larsen, K., Milner, R.: A Complete Protocol Verification Using Relativized Bisimu-
lation. In Proceeding 14th Colloquium on Automata, Languages and Programming,
LNCS 267, Springer-Verlag, 1987.

17. Lynch, N.A. Tuttle, M.R.: Hierarchical Correctness Proofs for Distributed Algo-
rithms. In Proceeding of the 6th Annual Symposium on Principles of Distributed
Computing, New York, p137-151, ACM Press, 1987.

18. Mammass, B.: A proof of the Bounded Retransmission Protocol in the w-calculus.
Technical report, LIP6, 1997.

19. McMillan, K.L.: Symbolic Model ChecKing. Kluwer Academic Publishers, Boston,
1993.

20. Melton, R., Dill, D.L., Norris Ip., C.: Murphi Annotated Reference Manual, version
2.6. Technical Report, Stanford University, Palo Alto, California, USA, November
1993.

21. Milner, R.: Communication and Concurrency. Prentice-Hall, 1989.

22. Milner, R.: The polyadic w-calculus: a tutorial. LFCS, technical report ECS-LFCS-
91-180, October 1991.

23. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part 1. LFCS,
technical report ECS-LFCS-89-85, June 1989.

24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, Part 2. LFCS,
technical report ECS-LFCS-89-86, June 1989.

25. Orava, F., Parrow, J.: An Algebraic Verification of a Mobile Network. Formal
Aspects of Computing, 4(6), p497-543, 1992.

26. Owre, S., Rushby, J., Shankar, N., Henke, F.von.: Formal Verification For Fault-
tolerant Architectures: Prolegomena to the Design of PVS. IEEE Transactions on
Software Engineering, 21(2), p107-125, February 1995.

A The implementation of the receiver in the mw-calculus

R(K,L,abort,restart) = [False]rtag.[False]end.[False]t2on.

Wait_msg(K, L, abort, restart, rtag, end, t2on)
Wait_msg(K, L, abort, restart, rtag, end, t2on) =
K(first last tag m).Treat(K, L, abort, restart, first,last tag, m,rtag, end,t2on)
+ If equal_bool(t2on,True) then
timeout2.abort. Abort(K, L, abort, restart, end)
+ restart.I1f equal_bool(t2on, True) then timeout2.R(K, L, abort, restart)
else R(K,L,abort, restart)
Treat(K,L, abort, restart, first,last, tag, m,rtag, end,t2on) =
If equal_bool(tag,rtag) then
L.Wait_msg(K, L, abort, restart, rtag, end, t2on)
else
If equal_bool(first,True) then
[tag)rtag.Indicate(K, L, abort, restart, first, last, m,rtag, end,t20n)
else [tag]rtag.timeout2.
Indicate(K, L, abort, restart, first,last, m,rtag, end,t2on)
Indicate(K, L, abort, restart, first,last, m,rtag, end,t2on) =
If equal_bool(last, True) then
[True]end. Ind m LasT.L.time2.[True]t2on.
Wait_msg(K, L, abort, restart, rtag, end, t2on)
else If equal_bool(first,True) then

Ind m FIRST.L.time2.[True]t2on.
Wait_msg(K, L, abort, restart, rtag, end, t2on)
else Ind m 1nc.L.time2.[True]t2on.
Wait_msg(K, L, abort, restart, rtag, end, t2on)

Abort(K,L, abort, restart end) If equal_bool(end, True) then R(K,L,abort, restart)
else Inderr R(K, L, abort, restart)

B The m-calculus algebraic theory

The strong ground equivalence ~ corresponds to behavioral a equivalence where
the precise amount of internal actions 7 is significant. For example, we distinguish
the agent 7.7.0 from the agent 7.0. In contrast, the weak ground equivalence ~
identifies this two agents; the internal actions 7 are significant only insofar as
they preempt other actions.

The algebraic laws for strong ground equivalence ~, as stated in [24], are
described below. To state them in a compact way, we define the derived prefix
Z(Y).P to mean (v §)Ty.P when # # y, and let «, 3 range over ordinary and
derived prefixes. Let fn(P) (resp. bn(P)) be the set of free (resp. bound) names
in P. Hereafter, = is used instead of ~ to allow different interpretations of the
laws.

- (A) P=QF P =Q (a-conversion)

- (CO)P=QFTP=1Q, P+ R=Q+ R, (v)P =(vx)Q
Ty P=7y.Q, PI|R=Q|R, [z =y|P =[z=y]Q

Cl) x(y).P = 2(y).Q ifl P{z/y} = Q{z/y},V =

— 0 is a zero for 4+, and + is idempotent, commutative and associative.

~—~~

~—~~

- (RO) (v)P = P (if z ¢ fn(P))
(RL) (v))P = (v 4)()P
(R2) (v 2)(P+ Q) = (v 2)P + (v 1)@
(R3) (v #)a.P = a.(v) P (if @ is not in «)
(R4) (v #)a.P = 0 (if # is the subject of &)
- MO) [zg=ylP=0ifz £y, ML) [x=2]P=P

- (1) A@) = P{/a}if A < P
is a zero for |, and | is commutative and associative.
(P3) (v 2)(P | Q) = P | (v 2)Q (if « & fu(P))
—(E) Let P =57 0.5, Q = 3, 5.Q; where bn(a;) N fn(Q) = 0V iand
bn(3;)N fn(P) =0V j. Then
P | Q = Zz al'(P | Q) + Z] BJ(P | Q]) + Za,compﬁj TRZ]
where the relation «; comp 5; (o; complements §;) holds in the following
four cases, which also define R;;:
1. «; is Tu and §; is z(v); then Ry; is Py | Q;{u/v}
2. a;1s T(u) and F; is «(v); then Ry; is (v w)(Pi{w/u} | Qj{w/v}) (where
w is not free in (v u)F; or in (v v)Q;)
3. the two others are the converse.

The weak ground equivalence ~ is strictly weaker that strong ground equiv-
alence ~ and also satisfies the laws described above. In addition, it satisfies the
well known 7-laws [21], these are:

- (T0) o.t.P =~ a.P
~ (T1) P+r.P%~1rP
~(T2) a(P+7.Q)+0a.Q = a(P+1.Q).

In order to eliminate 7-loops from recursively defined agents (see [21]):
- (L)IfA=P+r.Aand B=7.P then A~ B

We define strong (non-ground) equivalence ~ as strong ground equivalence
under all substitutions ¢ of non-constant names, i.e., P ~ Q iff Po ~ Qo, for all
substitutions ¢ from non-constant names to names. We define weak (non-ground)
equivalence ~ in a similar way.

The main use of the non-ground equivalences is in the laws for recursively
defined agents which we adopt from [24]. To formulate them, we need some addi-
tional notations. Let E, F'| .. .represent agent expressions; these are like agents
with “holes” where agents or agent identifiers can be inserted. Let E(Py, ..., P,)
be the agent which is the result of inserting P, ..., P, into F. Two agent ex-
pressions F and F are (strongly/weakly) equivalent if F(P) is (strongly/weakly)
equivalent to F(ﬁ) for all Pp,..., P,.

The first law for recursion (U0) means that if the right hand sides of defini-
tions are transformed, respecting equivalence, then the agent defined is the same
up to equivalence. This law holds for strong and weak non-ground equivalence
(but fails for the ground equivalences).

(U0) Suppose that Ey,..., F, and Fy, ..., F, are expressions and 41,..., 4,
and By, ..., By identifiers such that for all i: E; = F; and A;(#;) = E;(A1, ..., Ap)
and B;(#;) = Fi(B1,...,Bn) Then A;(Z;) = B;(#;) for all ¢.

The second law (U1l) means that if two agents satisfy the same set of recursive
equations, then the agents are equivalent. This law holds for strong non-ground
equivalence provided Ey, ..., E, are weakly guarded (i.e., all occurrences of P; in
FE;(Py, ..., Py) are within a prefix operator). Furthermore, it holds for weak non-
ground equivalence provided E1, ..., E, are guarded (i.e., all occurrences of P;
in E;(Py, ..., P,) are within an output or input prefix operator), and sequential
(i.e., no E; contains a parallel composition).

(U1) Suppose that Fy, ..., E, are expressions and Py, ..., P, and @1,...,Qy

are agents such that for all ¢: P, = F;(Py, ..., Py)and Q; = E;(Q1,...,Qy) Then
P, = Q; for all 4.

This article was processed using the ETEX macro package with LLNCS style

