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Introduction

Let k be a perfect eld and k an algebraic closure of k. Let x 1 < : : : < x n be n ordered variables which are algebraically independent over k.

Let I be a radical zero dimensional ideal included in k x 1 ; : : : ; x n ]. For a polynomial 2 k x 1 ; : : : ; x n ], the endomorphism of A I = k x 1 ; : : : ;

x n ]=I associated with , and denoted by ^ , is de ned by: A I ! A I P 7 ! :P ;

where is the class of in A I .

The characteristic polynomial associated with this endomorphism will be denoted by C ;I . Its coe cients lies in the eld k like those of the matrice associated with the endomorphism ^ . It is well known from the classical theorem of Stikelberger that, when I is a radical ideal, we have: C ;I (X) = Y 2V (I) (X ( )) ;

(1) where V (I) is the algebraic variety of I in k n . This paper presents an algorithm for computing the characteristic polynomial in the particular case where the ideal I admits a separable triangular set of generators (see De nition 2.6). This algorithm may be exploited in Galois Theory; it may be related to the computation of resolvents (see De nition 6.5) and more generally to the main problem of nding the Galois group of a given polynomial f.

The resolvent is the fundamental tool in the e ective Galois theory. It has been introduced by J.L. Lagrange (see 3] and 14]). It is important to note that the resolvents relative to the symmetric group S n , called absolute resolvents, can be computed with many algorithms (see 14], 18], 22] and 24]). But, when L is a proper subgroup of S n , 1 2 COMPUTING CHARACTERISTIC POLYNOMIALS ASSOCIATED TO SOME QUOTIENT RINGS there exists only numerical methods (see 11] or 23]) and a linear method which requires hard generic computation (see 2] and 9]); the reader can see also [START_REF] Valibouze | Galois theory. Course given in departement of mathematics of the University of Pisa[END_REF] for computing linear factors of resolvents. In fact, the resolvent relative to a group L of permutations is immediately obtained from the characteristic polynomial C ;I where I is a so-called ideal of relations invariant by L (see De nition 2.1). We show here that the ideal of relations invariant by some group of permutations which contains the Galois group of f is generated by a separable triangular set of polynomials. Thus our algorithm can be used to compute resolvents in Galois theory, and is an e cient tool for the computation of the Galois group of a given polynomial.

The paper is structured as follows. Section 2 introduces our terminology and notations. The third section contains some lemmas of commutative algebra; further proofs will refered to them. In Section 4, we establish a necessary and su cient condition { related to its variety { for an ideal I to be generated by a separable triangular set. For an ideal I which satis es this requirement, Section 5 gives the algorithm which computes the characteristic polynomial of an endomorphism of A I associated with some polynomial

. In Section 6 we exploit the former results in Galois theory as mentionned above and illustrate their interest by an example.

Definitions, notations

Let f be a univariate polynomial of k X] supposed separable, with degree n. Let = ( 1 ; : : : ; n ) be an ordered set of the n roots of f in k n . For P 2 k x 1 ; : : : ; x n ], the evaluation of P in is denoted by P( ). We state S n for the symmetric group of degree n. For 2 S n the action of on , denoted by : is de ned by : = ( (1) ; : : : ; (n) ). De nition 2.1. The ideal of -relations invariant by a subgroup L of the symmetric group S n , denoted by I L , is de ned by I L := fR 2 k x 1 ; : : : ; x n ] j (8 2 L) ( :R)( ) = 0g ;

where ( :R)(x 1 ; : : : ; x n ) = R(x (1) ; : : : ; x (n) ).

De nition 2.2. The ideal I Sn is called the ideal of symmetric relations of f. The ideal I fIdg is called the ideal of relations of f and is simply denoted by I .

Let us recall the de nition of the Galois group.

De nition 2.3. The Galois group of over k, denoted by G , is the subgroup of S n de ned by G = f 2 S n j (8P 2 I ) :P( ) = 0g :

Usually G is also called the Galois group of f over k. Remark 1. It obviously follows from the de nition of the Galois group that I G = I :

For i 2 1; n] and E k x 1 ; : : : ; x i ], we denote by Id(E) the ideal generated by E in k x 1 ; : : : ; x n ], by Z k i (E) the set of zeros of E in k i , and V (E) the variety Z k n (E).

For a variety V in k n we denote J (V ) the radical ideal of k x 1 ; : : : ; x n ] composed by the polynomials which cancel on V . Notation 2.4. Let i and j be integers such that 1 i j n. Let V be a subset of k j . We denote by j;i the natural projection map from k j to k i , which sends (a 1 ; : : : ; a j ) to (a 1 ; : : : ; a i ). Moreover we state V i = j;i (V ).

Triangular sets of polynomials are an e ective tool for solving algebraic systems (see 5]). In this paper we only need to deal with zero-dimensional ideals; the following de nition is thus adapted from the terminology of the general case of positive dimension.

De nition 2.5. A set T of n polynomials in k x 1 ; : : : ; x n ] is called a triangular set of k x 1 ; : : : ; x n ] if T = ff 1 (x 1 ); : : : ; f n (x 1 ; : : : ; x n )g, where the i-th polynomial f i is monic as a polynomial in x i with degree(f i ; x i ) > 0.

For a triangular set T in k x 1 ; : : : ;

x n ], we will always use in the paper the notation T = ff 1 ; : : : ; f n g, where f i is the unique polynomial of T with x i as greatest variable. It is clear that the ideal generated by a triangular set is zero-dimensional. Remark 2. If the set of polynomials f 1 ; : : : ; f n exists, it is a triangular reduced Gr obner basis of the ideal I for lexicographical ordering (see 7] or 6]).

For our purposes it is convenient to introduce a stronger concept:

De nition 2.6. We say that a triangular set T = ff 1 ; : : : ; f n g of k x 1 ; : : : ; x n ] is a separable triangular set if each polynomial f i satis es the following condition: 8 = ( 1 ; : : : ; i 1 ) 2 V i 1 , the univariate polynomial f i ( 1 ; : : : ; i 1 ; x i ) is separable,

i.e. it has no multiple root in k x i ]. Remark 3. Generally a zero-dimensional variety V cannot be expressed as zeros of a single separable triangular set, as shown in 15] with the simple following example: V = V (x 1 ; x 2 ) V (x 1 ; x 2 + 1) V (x 1 + 1; x 2 ) : However, it always can be splitted into a nite family of separable triangular sets (see 4], 15] and 19]).

Preliminaries

In this section we give some basic properties that we will use in proofs in the next section. For a subset E of a ring S, we write Id S (E) for the ideal generated in S by E. Lemma 3.1. Let : R ! S be a surjective homomorphism of commutative rings. Let I be an ideal in R such that Ker( ) I. We denote by J the ideal (I). Then I is the contraction of J to R under , that is: Proof. Note that J is an ideal of S because the homomorphism is surjective. We have obviously I 1 (J). Conversely let r 2 1 (J). We have (r) 2 J. By de nition of J there exists an element p in I such that (r) = (p). Then from the assumption Ker( ) I, we easily obtain that r 2 I. Thus 1 (J) I. Corollary 3.2. With the hypothesis of Lemma 3.1, I is a radical ideal of R i (I) is a radical ideal of S. Proof. We set J = (I). More generally it is known that 1 ( p J) = p 1 (J)

(2) when is an homomorphism and I an ideal of R (see 21], p. 218). Hence if J is radical then I is obviously radical. Conversely let us assume that I is radical. With our hypothesis we have I = 1 (J). It follows from Relation (2) that 1 ( p J) = p I = I. Applying the homomorphism we obtain p J = (I) = J. Proposition 3.3. Let M be an ideal of a ring R and I a proper ideal of R x] such that M I. If I 6 = MR x] then there exists a monic polynomial g 2 R x] n R such that I = Id R x] (M fgg).

Proof. The natural homomorphism from R to R=M induces a surjective homomorphism de ned by : R x] ! (R=M) x]

p = X c k x k 7 ! X c k M x k
where c M is the class of c in R=M.

The ideal J = (I) is a principal ideal since R=M is a eld. It is not reduced to the null ideal, otherwise I = MR x], which contradicts the hypothesis. Therefore J is generated by a monic univariate polynomial of (R=M) x]. Thus there exists g 2 R x] { which can be choosen with monic leading coe cient in x { such that J is generated by (g). However note that g is not equal to 1 since I is a proper ideal by assumption.

It is clear that 1 (J) = Id R x] (M fgg). Hence it follows from Lemma 3.1 that I = Id R x] (M fgg). Proposition 3.4. Let k be a perfect eld. Let M be a maximal ideal of k x 1 ; : : : ; x n 1 ] and g 2 k x 1 ; : : : ; x n ] such that degree(g; x n ) > 0 and g is monic w.r.t. the variable x n .

Then the following are equivalent:

(i) the ideal Id(M fgg) is radical; (ii) 8 = ( 1 ; : : : ; n 1 ) 2 V (M) ; g( 1 ; : : : ; n 1 ; x n ) is a separable polynomial. Proof. Let 2 V (M). From the isomorphism between the eld K = k( 1 ; : : : ; n 1 ) and k x 1 ; : : : ; x n 1 ]=M we deduce the following surjective homomorphism: : k x 1 ; : : : ; x n ] ! K x n ] p = X c k (x 1 ; : : : ; x n 1 ) x k n 7 ! X c k ( 1 ; : : : ; n 1 ) x k n COMPUTING CHARACTERISTIC POLYNOMIALS ASSOCIATED TO SOME QUOTIENT RINGS 5

The ideal (Id(M fgg)) is generated in K x n ] by the image of g. Since the eld k is perfect the algebraic extension K is also perfect. Thus Id K xn] (g( 1 ; : : : ; n 1 ; x n )) is radical if and only if the univariate polynomial g( 1 ; : : : ; n 1 ; x n ) is separable. Then the assertion follows from Corollary 3.2.

The following variant of chinese remainder Theorem appears implicitly in 15].

Lemma 3.5. Let I 1 ; : : : ; I m be pairwise comaximal ideals in a ring R and I = \ m j=1 I j .

Let p 1 ; : : : ; p m be monic polynomials of the same positive degree d in R X]. Then there exists a monic polynomial p 2 R X] of degree d such that (8j 2 1; m]) p p j (mod I j R X]) :

(3) Moreover we have Id R X] (I fpg) = \ m j=1 Id R X] (I j fp j g) :

(4) Proof. First we show by induction the existence of a polynomial p which satis es [START_REF] Arnaudi Es | Sur la r esolution explicite des equations de degr e 5, quand elles sont r esolubles par radicaux[END_REF]. Let m = 2. Since I 1 and I 2 are comaximal in R, there exists a 1 2 I 1 and a 2 2 I 2 such that a 1 + a 2 = 1. We state p = a 2 p 1 + a 1 p 2 . Then p is monic and degree(p) = d. Moreover one can easily check that p p j (mod I j R X]) for j 2 f1; 2g. For m > 2, it follows from hypothesis that I 1 and \ m i=2 I i are comaximal ideals. Therefore we obtain the rst property of the lemma by induction. Now, let us show Relation (4). Let j be an integer in 1; m]. By Property (3), we obtain p 2 Id R X] (I j fp j g). Then Id R X] (I fpg) Id R X] (I j fp j g) obviously follows, and thus Id R X] (I fpg) \ m j=1 Id R X] (I j fp j g): Conversely, let f 2 \ m j=1 Id R X] (I j fp j g): For each j 2 1; m] there exists q j in R X] such that f q j p j 2 I j R X]. By chinese remainder Theorem there exists a polynomial q in R X] such that q q j (mod I j R X]) for each j in 1; n]. Consequently we have f qp f q j p j (mod I j R X]) 0 (mod I j R X]) :

It follows that (f qp) 2 IR X] and so f 2 Id R X] (I fpg):

Now, let us recall some properties on zero-dimensional varieties.

Proposition 3.6. Let V be a zero-dimensional variety in k n and I = J (V ). Then the following hold:

1. The ideal I contains a non-constant univariate polynomial in each of the variables in fx 1 ; : : : ; x n g, and the elimination ideal I \ k x 1 ; : : : ; x n 1 ] is a zero-dimensional ideal of k x 1 ; : : : ; x n 1 ]; 2. For each i in 1; n], the projection V i is a variety in k i which is zero-dimensional, and V i = Z k i (I \ k x 1 ; : : : ; x i ]); 3. The ideal of V i in k x 1 ; : : : ; x i ] corresponds to I \ k x 1 ; : : : ; x i ].

Proof. See Lemma 6.50 in 6] for the rst point. We obtain assertion 2 by induction from rst point and Corollary 4 in p.124 of 10]. The third assertion obviously follows from the relation V i = Z k i (I \ k x 1 ; : : : ; x i ]) and the fact that I is radical.

4. Zero-dimensional varieties and separable triangular sets In this section, we introduce the concept of equiprojectable variety. We show that it characterizes the zero-dimensional varieties which can be expressed as V (T) where T is a separable triangular set. It follows that the ideal of the equiprojectable variety is the ideal generated by T. Now let us state two properties of triangular sets. First, the projection of the algebraic variety of a triangular set T is easily obtained from the polynomials of T in the following way: Proposition 4.1. Let T = ff 1 ; : : : ; f n g be a triangular set of k x 1 ; : : : ; x n ] and i be an integer in 1; n]. Then we have n;i (V (T)) = Z k i (f 1 (x 1 ); : : : ; f i (x 1 ; : : : ; x i )) :

Proof. We clearly have V (T) \ k i Z k i (f 1 ; : : : ; f i ). Now let us assume that = ( 1 ; : : : ; i ) 2 Z k i (f 1 ; : : : ; f i ). By de nition the polynomial f i+1 ( 1 ; : : : ; i ; x i+1 ) is monic.

This univariate polynomial has positive degree; therefore it admits at least one root i+1 in k. Thus ( 1 ; : : : ; i ; i+1 ) is a zero of ff 1 ; : : : ; f i+1 g in k i+1 . In the same way we can nd i+2 ; : : : ; n such that ( 1 ; : : : ; n ) 2 V (T), which proves the inclusion Z k i (f 1 ; : : :

; f i ) V (T) \ k i .
Proposition 4.2. Let n > 0 and T be a separable triangular set of k x 1 ; : : : ; x n ]. Then Id(T) is radical.

Proof. We show the result by induction on n. If n = 1 we deduce it immediately from the de nition of a separable triangular set. Let n > 1 and T = ff 1 ; : : : ; f n g. We denote by T 0 the triangular set ff 1 ; : : : ; f n 1 g of k x 1 ; : : : ; x n 1 ]. By induction hypothesis the zero-dimensional ideal I 0 generated by T 0 in k x 1 ; : : : ; x n 1 ] is radical. Hence there exists M 1 ; : : : ; M r maximal ideals of k x 1 ; : : : ; x n 1 ] such that I 0 = \ r j=1 M j . Using Lemma 3.5

(with f n for each p j ), we obtain Id(T) = \ r j=1 Id(M j ff n g) :

Then the assertion follows from Proposition 3.4 Now we de ne what is an equiprojectable nite subset V of k n .

De nition 4.3. Let 1 i j n and V be a nite subset of k j . The set V is said equiprojectable on V i , its projection on ki , if there exists an integer c such that for each point M in V i , we have card( 1 j;i (M)) = c : The positive integer c will be denoted by c i (V ).

De nition 4.4. With the notations of De nition 4.3, we say that V is equiprojectable if V is equiprojectable on V i for each i 2 1; j].

An equiprojectable subset of k n may be characterized by induction. This equivalence will be useful for further proofs. Proposition 4.5. Let V be a nite subset of k n . Then V is equiprojectable i V i+1 is equiprojectable on V i for each i 2 1; n 1].

Proof. Let 1 i < j n and M be a point of V i . Clearly we have

1 n;i (M) = M 0 2 1 j;i (M)
1 n;j (M 0 ) ; and this union is disjoint. It follows that card( 1

n;i (M)) = X M 0 2 1 j;i (M)
card( 1 n;j (M 0 )) : [START_REF] Aubry | Ensembles triangulaires de polynômes[END_REF] Let us assume that V is equiprojectable on V i for each i 2 1; n]. Let i 2 1; n 1].

For some point M in V i , we obtain from Relation (5) above, with j = i + 1, that c i (V ) = card( 1 i+1;i (M)) c i+1 (V ). Therefore card( 1 i+1;i (M)) does not depend on the choice of the point M of V i ; thus V i+1 is equiprojectable on V i .

Conversely, assume that V i+1 is equiprojectable on V i for each i 2 1; n 1]. If i 2 1; n 1] and M is a point of V i , then an easy induction shows that card( 1 n;i (M)) = Y i j<n c j (V j+1 ) : [START_REF] Aubry | Triangular sets for solving polynomial systems: A comparison of four methods[END_REF] It follows that V is equiprojectable on V i .

Before giving the main theorem of this section, we study in the following proposition the case where V is a variety such that V n 1 is irreducible. We will refer to this particular case in Theorem 4.7 by splitting V n 1 into irreducible components and recombining results with chinese remainders. Proposition 4.6. Let n > 1 and V be a zero-dimensional variety in k n such that V n 1 is irreducible over k. Let us denote by I = J (V ) the ideal of V , and M the ideal of V n 1 in k x 1 ; : : : ; x n 1 ]. Then V is equiprojectable on V n 1 and there exists a polynomial g in k x 1 ; : : : ; x n ] of degree d in x n such that (i) c n 1 (V ) = d;

(ii) I = Id(M fgg) ;

(iii) g is monic in x n ;

(iv) g( 1 ; : : : ; n 1 ; x n ) is a separable polynomial for each ( 1 ; : : : ; n 1 ) in V n 1 . Proof. By Proposition 3.3 there exists g in k x 1 ; : : : ; x n ] for which properties (ii) and (iii) hold. Since the ideal I is radical, property (iv) follows from Proposition 3.4. Now we prove Relation (i) and consequently that V is equiprojectable on V n 1 . Let M = ( 1 ; : : : ; n 1 ) be a point of V n 1 and P = ( 1 ; : : : ; n 1 ; n ) with n 2 k. We have: P 2 1 n;n 1 (M) () (8f 2 Id(M fgg)) f( 1 ; : : : ; n ) = 0 () g( 1 ; : : : ; n ) = 0 : Thus P 2 1 n;n 1 (M) i n is a root of g( 1 ; : : : ; n 1 ; x n ). It follows that the number of elements in 1 n;n 1 (M) corresponds to the number of roots of g( 1 ; : : : ; n 1 ; x n ). Since this polynomial is separable we have card( 1 n;n 1 (M)) = degree(g; x n ) = d. Relation (i) clearly follows.

Theorem 4.7. Let V be a zero-dimensional variety in k n . Then the following statements are equivalent:

(1) there exists a separable triangular set T = ff 1 ; : : : ; f n g such that J (V ) = Id(T);

(2) V is equiprojectable.

Furthermore we have c i (V i+1 ) = degree(f i+1 ; x i+1 ) and c i (V ) = Q n j=i+1 degree(f j ; x j ).

Proof. First, we assume (1). Let T = ff 1 ; : : : ; f n g and d j = degree(f j ; X j ). We want to show that for any i in 1; n 1], the variety V i+1 is equiprojectable on V i . Let us assume that M = ( 1 ; : : : ; i ) is a point of V i . The polynomial f i+1 ( 1 ; : : : ; i ; x i+1 ) has no multiple root, and from Proposition 4.1 we have V i+1 = Z k i+1 (f 1 ; : : : ; f i+1 ). Since the polynomials f 1 ; : : : ; f i cancel for ( 1 ; : : : ; i ), it is clear that the cardinal of 1 i+1;i (M) equals d i+1 . Therefore V i+1 is equiprojectable on V i . It follows from Proposition 4.5 that V is equiprojectable.

Remark that we also have shown that degree(f i+1 ; x i+1 ) = c i (V i+1 ). Moreover the equality concerning c i (V ) in the theorem is obtained by Relation (6) above. Thus last part of the theorem is proved.

Reciprocally, let V be an equiprojectable variety. We will show by induction on n that there exists a separable triangular set T which generates J (V ).

If n = 1, the result is immediate since k x 1 ] is a principal ideal domain. Of course, there exists a monic polynomial f 1 which generates J (V ), and the separability of f 1 follows from the fact that J (V ) is radical and k is perfect.

Let n > 1. Let V n 1 = W 1 : : : W r be the decomposition of the variety V n 1 into irreducible components. If we denote 1 n;n 1 (W j ) = M2W j 1 n;n 1 (M), then we have V = 1 n;n 1 (W 1 ) : : :

1 n;n 1 (W r ) : [START_REF] Becker | Gr obner Bases[END_REF] Let us denote by M j the ideal of W j in k x 1 ; : : : ; x n 1 ]; The ideal M j is maximal. If I 0 is the ideal of V n 1 in k x 1 ; : : : ; x n 1 ], then I 0 = M 1 \ : : : \ M r : Each 1 n;n 1 (W j ) is a variety (since it is the inverse image by an homomorphism of a closed set of k n in the Zariski topology) which satis es the hypothesis of Proposition 4.6. Hence there exists r polynomials g 1 ; : : : ; g r of k x 1 ; : : : ; x n ] such that for each j 2 1; r] (i) degree(g j ; x n ) = card( 1 n;n 1 (M)) where M is a point of W j ;

(ii) J ( 1 n;n 1 (W j )) = Id(M j fg j g);

(iii) g j is monic as univariate in x n ;

(iv) g j ( 1 ; : : : ; n 1 ; x n ) is a separable polynomial for each ( 1 ; : : : ; n 1 ) in W j . Besides, it is clear that the variety V n 1 in k n 1 is equiprojectable. According to the induction hypothesis, its ideal I 0 is therefore generated by a separable triangular set T 0 . Now, the equiprojectability of V on V n 1 will allow us to combine results (i) to (iv) in order to exhibit a convenient polynomial g with greatest variable x n to extend T 0 into a triangular set of k x 1 ; : : : ; x n ]. Thus, if we set d = c n 1 (V ), then by assertion (i), each g j Proof. At the beginning, 0 =Res x 1 (f 1 (x 1 ); 1 (x 1 )) = Q 1 2V 1 1 ( 1 ). Let us denote by V the variety V (T). By induction, we prove that for each j 2 1; n] 0 = Y f 1 ;::: ; j g2V j j ( 1 ; : : : ; j ) : Supposing that our assertion is valid for j = i 1, we have 0 = Y f 1 ;::: ; i 1 g2V i 1 i 1 ( 1 ; : : : ; i 1 ) : [START_REF] Butler | The transitive groups of degree up to 11[END_REF] By de nition of i 1 , the identity (9) becomes 0 = Y f 1 ;:::; i 1 g2V i 1 Res x i (f i ( 1 ; : : : ; i 1 ; x i ); i ( 1 ; : : : ; i 1 ; x i )) :

Then the result follows from Proposition 4.1 and the fact that, by assumption, f i ( 1 ; : : : ; i 1 ; x i ) is monic and separable in k x i ].

Theorem 5.2. Let T be a separable triangular set and I the zero-dimensional ideal of k x 1 ; : : : ; x n ] generated by T. Let 2 k x 1 ; : : : ; x n ]. Then the characteristic polynomial C ;I (X) of k X] is computable by the algorithm presented in Lemma 5.1.

Proof. We just apply Lemma 5.1 with = (X ) 2 k X] x 1 ; : : : ; x n ]. Thus we compute by successive resultants the polynomial 0 = Q 2V (T) (X ( )). Since the ideal I is radical (by Proposition 4.2) the characteristic polynomial C ;I (X) is given by Relation (1) of Introduction and corresponds to 0 .

Application to Galois theory

In this section it is shown that if a group of permutations L contains the Galois group of f, then the ideal I L (see De nition 2.1) is generated by a separable triangular set. We deduce that in this case, the resolvents of f relative to L can be obtained by computing characteristic polynomials with the algorithm described in Section 5. For computing such a relative resolvent, the triangular set which generates I L must be known; but conversely, it is possible to obtain this triangular set from the generators of an ideal I M , where L < M, if we are able to compute resolvent relative to M. An example will illustrate this link between the computation of relative resolvents and the computation of ideals of relations invariant by a group of permutations. It shows how it can be applied to nd the Galois group of f. Theorem 6.4. Let be an ordered set of roots of a univariate polynomial f supposed separable. Let L be a subgroup of S n which contains G . Then there exists a separable triangular set T such that I L = Id(T): Proof. If L contains the Galois group of , it is known that V (I L ) = f : j 2 Lg (see 25]). Besides it is easy to verify that I L is radical; thus I L = J (V (I L )). Then the result follows immediately from Proposition 6.3 and Theorem 4.7.

Remark 5. The above result is well known when L is the group S n . Let us recall that I Sn is generated by the separable triangular set ff 1 ; : : : ; f n g of Cauchy moduli de ned by induction as follows:

f 1 (x 1 ) = f(x 1 ) f i (x 1 ; : : : ; x i ) = f i 1 (x 1 ; : : : ; x i 2 ; x i ) f i 1 (x 1 ; : : : ; x i 2 ; x i 1 )

x i x i 1 :

The reader can refer to 20].

6.2. Characteristic polynomial and resolvent.

In the following, L is a subgroup of S n which contains G , the Galois group of , and is a polynomial of k x 1 ; : : : ; (X ( )) ;

where L: is the natural orbit of the polynomial under the action of the group L. When L = S n the resolvent L ;I Sn is called an absolute resolvent of f by . Remark 6. In literature the polynomial L ;I L is used to be called an L-relative resolvent of f by . The fact that the coe cients of L ;I L are in k easily follows from Galois theory. Lemma 6.6. Let L be a subgroup of S n such that G < L. Let 2 k x 1 ; : : : ; x n ]. We set d = card(H). Then we have:

C ;I L = L d ;I L : (10) 
Proof. We saw in the proof of Theorem 6.4 that V (I L ) = f : j 2 Lg when G < L.

Hence Relation (1) of Introduction becomes C ;I L (X) = Y 2L (X : ( )) :

The result easily follows.

Remark 7. When the L-relative resolvent of by is separable, it is exactly the minimal polynomial of the endomorphism ^ .

De nition 6.7. Let H be a subgroup of L and 2 k x 1 ; : : :

; x n ]. The polynomial is an L-primitive H-invariant if H = f 2 L j : = g :
The following lemma is of prime importance for computing ideals of relations invariant by a subgroup of S. The reader will refer in 25] for the proof. It shows that if we can compute L ;I L then it is possible to construct a system of generators of I H from a system of generators of I L . Lemma 6.8. Let H be a subgroup of L such that G H is a group and be an L-primitive H-invariant. We set = ( ). Let Min ;k be the minimal polynomial of over k. If is a simple root of the resolvent L ;I L then I H = I L + Id(Min ;k ( )) :

Remark 8. In Lemma 6.8 the minimal polynomial Min ;k is a simple factor of the resolvent L ;I L .

Remark 9. The fact that must be a simple root of the resolvent in Lemma 6.8 is not really restrictive. Indeed it is known that if k is in nite then there exists an L-primitive H-invariant such that L ;I L is separable (see 3]). In this case we see below that the problem of nding a system of generators of an ideal I L and the problem of computing an L-relative resolvent resolve mutually. Proposition 6.9. Let k be a perfect eld which is in nite. The L-relative resolvent L ;I L of by can be computed by using the algorithm of Section 5.

Proof. First, we need a system of generators of the ideal I L . Let us assume without restriction that we know a system of generators of an ideal I M for a subgroup M of S n which contains L: of course, we can choose M = S n (see Remark 5). According with Remark 9 we may assume that we have an M-primitive L-invariant such that L ;I M is separable. The value ( ), which belongs to k, is then obtained by the factorization of L ;I M . It follows from Lemma 6.8 that we know a generator system of I L .

According with Theorem 6.4 the ideal I L is generated by a separable triangular set ff 1 ; : : : ; f n g. Now, by Remark 2, the polynomials f 1 ; : : : ; f n can be determined by the computation of a Gr obner basis of I L from our system of generators of this ideal.

The basis ff 1 ; : : : ; f n g being known, it follows from Theorem 5.2 that the characteristic polynomial C ;I L can be computed by the algorithm of Section 5. The resolvent L ;I L is then immediately obtained with Formula (10). Remark 10. In the proof of Proposition 6.9 we obtain a system of generators of I L by the computation of an absolute resolvent. But practically, if we want to avoid computing resolvents with high degree, we may obtain I L by several steps with intermediate computations of relative resolvents and ideals of -relations invariant by some subgroups of S n (see the example of Paragraph 6.4).

Implementation.

The algorithm presented in this paper for computing relative resolvents is analogous to a well-known method for computing absolute resolvents when L is the symmetric group of degree n (see 20]). This latter method becomes very e cient when the coe cients are reduced by the ideal I Sn in each step. Thus the growth of coe cients is controlled and some variables may be eliminated before the computation of the corresponding resultant. Moreover extraneous powers which appears during the computation of resultants in the algorithm can be suppressed in each step by the method given in 17].

Both these previous principles can be applied for computing the resolvent L ;I L in the case where L 6 = S n . Thus the method proposed here can be e cient in order to obtain the Galois group of f in the way suggested in Remark 10. It is always possible to compute only absolute resolvents; however it is better to compute relative resolvents L ;I L for L 6 = S n since the degree of these resolvents increases with the order of L, and since these resolvents have to be factorized for extracting informations on the Galois group of f. 6.4. An explicit example. This example illustrates our method for computing relative resolvents and its interest for computing the ideal of relations I (see De nition 2.2), which is equivalent to compute the Galois group G . It shows how both problems are linked together. We consider the polynomial f = x 6 + 2, irreducible over Q, whose Galois group is a transitive subgroup of S 6 . We will compute the ideal of relations between the roots of f using relative resolvents. In this subsection, for a subset E of Q x 1 ; : : : ; x n ] we will denote by < E > the ideal generated by E in Q x 1 ; : : : ; x n ].

The rst step consists in computing a triangular set which generates the ideal I M for M = S 6 . This set is given by the the Cauchy moduli of the polynomial f: I S 6 = < x 6 + x 5 + x 4 + x 3 + x 2 + x 1 ; x 2 5 + x 4 x 5 + x 3 x 5 + x 2 x 5 + x 1 x 5 + x 2 4 + x 3 x 4 + x 2 x 4 + x 1 x 4 + x 2 3 + x 2 x 3 +x 1 x 3 + x 2 2 + x 1 x 2 + x 2 1 ; x 3 4 + x 3 x 2 4 + x 2 x 2 4 + x 1 x 2 4 + x 2 3 x 4 + x 2 x 3 x 4 + x 1 x 3 x 4 + x 2 2 x 4 + x 1 x 2 x 4 + x 2 1 x 4 +x 3 3 + x 2 x 2 3 + x 1 x 2 3 + x 2 2 x 3 + x 1 x 2 x 3 + x 2 1 x 3 + x 3 2 + x 1 x 2 2 + x 2 1 x 2 + x 3 1 ; x 4 3 + x 2 x 3 3 + x 1 x 3 3 + x 2 2 x 2 3 + x 1 x 2 x 2 3 + x 2 1 x 2 3 + x 3 2 x 3 + x 1 x 2 2 x 3 + x 2 1 x 2 x 3 +x 3 1 x 3 + x 4 2 + x 1 x 3 2 + x 2 1 x 2 2 + x 3 1 x 2 + x 4 1 ; x 5 2 + x 1 x 4 2 + x 2 1 x 3 2 + x 3 1 x 2 2 + x 4 1 x 2 + x 5 1 ; x 6 1 + 2 > :

Let L =PGL(2; 5) the transitive maximal subgroup of S 6 of degree 120. We denote by 3 the primitive L-invariant given in 13] (we do not give the explicite expression of this very big invariant). The computation of the separable absolute resolvent of f by 3 is realized by an implementation of the method given in 20] for which the present paper is a generalization. Its factorization over Q is the following: L 3 ;I S 6 f (X) = (X 42)(X 24) 2 (X + 6) 3 : In this case we know by partition matrix method (see 3]) that the Galois group of f is one of the following groups: PGL(2; 5), PSL(2; 5), the dihedral group D 6 or the cyclic group C 6 , which are included in PGL(2; 5). By Lemma 6.8 the ideal I L is the ideal generated by the union of the ideal I S 6 and the ideal < 3 42 >, where 42 is the value given by the linear factor over Q of L 3 ;I S 6 f . The separable triangular set which generates the ideal I L is obtained by computing a Gr obner base for the lexicographical ordering of this ideal. Thus we have: I PGL(2;5) = < 24x 6 + x 3 3 x 3 2 x 1 + 8x 3 3 x 2 2 x 2 1 + 6x 3 3 x 2 x 3 1 + 5x 3 3 x 4 1 + 8x 2 3 x 3 2 x 2 1 + 4x 2 3 x 2 2 x 3 1 +8x 2 3 x 2 x 4 1 + 6x 3 x 3 2 x 3 1 + 8x 3 x 2 2 x 4 1 4x 3 x 2 x 5 1 + 12x 3 + 5x 3 2 x 4 1 + 12x 2 + 14x 1 ; 24x 5 5x 3 3 x 4 2 7x 3 3 x 3 2 x 1 16x 3 3 x 2 2 x 2 1 7x 3 3 x 2 x 3 1 5x 3 3 x 4 1 8x 2 3 x 4 2 x 1 12x 2 3 x 3 2 x 2 1 12x 2 3 x 2 2 x 3 1 8x 2 3 x 2 x 4 1 12x 3 x 4 2 x 2 1 16x 3 x 3 2 x 3 1 12x 3 x 2 2 x 4 1 +8x 3 5x 4 2 x 3 1 5x 3 2 x 4 1 2x 2 2x 1 ; 24x 4 + 5x 3 3 x 4 2 + 6x 3 3 x 3 2 x 1 + 8x 3 3 x 2 2 x 2 1 + x 3 3 x 2 x 3 1 + 8x 2 3 x 4 2 x 1 + 4x 2 3 x 3 2 x 2 1 +8x 2 3 x 2 2 x 3 1 + 12x 3 x 4 2 x 2 1 + 10x 3 x 3 2 x 3 1 + 4x 3 x 2 2 x 4 1 + 4x 3 x 2 x 5 1 + 4x 3 + 5x 4 2 x 3 1 +14x 2 + 12x 1 ; x 4 3 + x 3 3 x 2 + x 3 3 x 1 + x 2 3 x 2 2 + x 2 3 x 2 x 1 + x 2 3 x 2 1 + x 3 x 3 2 + x 3 x 2 2 x 1 + x 3 x 2 x 2 1 +x 3 x 3 1 + x 4 2 + x 3 2 x 1 + x 2 2 x 2 1 + x 2 x 3 1 + x 4 1 ; x 5 2 + x 4 2 x 1 + x 3 2 x 2 1 + x 2 2 x 3 1 + x 2 x 4 1 + x 5 1 ; x 6 1 + 2 > : Remark 11. We used the very powerful Gr obner engine FGb (see 12]) developed by J.C. Faug ere to obtain this Gr obner base quickly. Now, set M =PGL(2; 5). We choose the subgroup L = D 6 (one of the conjugates) of M in order to compute an associated resolvent. We are in the following situation:

I Sn I M I L I fIdg :

The polynomial 4 = x 1 x 4 +x 4 x 5 + x 5 x 2 +x 2 x 3 + x 3 x 6 +x 6 x 1 is a primitive D 6 -invariant, and a fortiori a PGL(2; 5)-primitive D 6 -invariant. The PGL(2; 5)-relative resolvent of f by 4 has degree 10 = M : L]; its computation is performed modulo the ideal I PGL(2;5) by our method as follows: Let R 0 (X; x 1 ; : : : ; x 6 ) = X 4 . The reduction of R 0 modulo the ideal I M (given by successive euclidean divisions) eliminates the variables x 6 ; x 5 and x 4 . Let W 0 (X; x 1 ; x 2 ; x 3 ) be the result of this reduction.

We set R 1 (X; x 1 ; x 2 ) =Res x 3 (f 3 ; W 0 ). The reduction of R 1 modulo the ideal I M does not eliminate the variables x 1 and x 2 of respective degrees 32 and 28 in R 1 , but produces a new polynomial W 1 of degree 4 in each variables x 1 and x 2 . The elimination of the variable x 2 is given by R 2 (X; x 1 ) =Res x 2 (f 2 ; W 1 ). The reduction of R 2 modulo the ideal I M produces a univariate polynomial of degree 20 whose factorization is the following: X 2 (X 3 2) 2 (X 3 + 2) 4 : The factorization over Q of the resolvent is: L 4 ;I M (X) = X(X 3 2)(X 3 + 2) 2 : The partitions matrix associated with M indicates that the Galois group of f is D 6 or C 6 . The ideal xed by D 6 is given by: I D 6 = I PGL(2;5) + < 4 0 > ; where 0 is the value given by the simple linear factor over Q of the resolvent L 4 ;I M . In the same way as for the ideal xed by PGL(2; 5), from a generator system of the ideal I M and the polynomial 4 ,we compute with FGb the following triangular set of generators of our ideal I D 6 : I D 6 =< x 6 x 3 x 1 ; x 5 + x 3 + x 1 ; x 4 + x 3 ; x 2 3 + x 1 x 3 + x 2 1 ; x 2 + x 1 ; x 6 1 + 2 > :

Now we set M = D 6 and choose L = C 6 . Let 5 = x 4 x 2 5 +x 3 x 2 6 +x 5 x 2 2 +x 2 x 2 3 +x 6 x 2 1 +x 1 x 2 4 be an M-primitive L-invariant. The degree of an M-relative resolvent is 2, the index of L in M.

The reduction of 5 modulo the ideal I D 6 produces the value 0. We are in a degenerated case: the resolvent equals X 2 and the computation of the resolvent modulo the ideal I D 6 produces the polynomial X. Many D 6 -primitive C 6 -invariants computed by Abdeljaouad's package (see 1]) are in this case. In order to nd a D 6 -primitive C 6 -invariant which is not degenerated, we adopt Colin's method exposed in 9]. We replace the invariant 5 (x 1 ; : : : ; x 6 ) by the invariant = 5 (p(x 1 ); : : : ; p(x 6 )) where p(x) = x 2 + 1. The computation of the D 6 -relative resolvent of f by is realized using two reductions modulo the ideal I D 6 and one resultant. It is the following irreducible polynomial: L ;I D 6 (X) = X 2 24X + 252 : Since this resolvent is irreducible over Q, the Galois group of f over Q is D 6 and the ideal of relations among the roots of f is I D 6 .

Conclusions

Another algebraic method for computing the resolvent L ;I L , when L is not the symmetric group is proposed in 3]. In 9] an e ective algorithm is given for this method. But this computation induces the formal computation of the coe cients of the polynomial Q 2L: (x ). The method proposed in this paper is less expensive, since it needs only COMPUTING CHARACTERISTIC POLYNOMIALS ASSOCIATED TO SOME QUOTIENT RINGS 17 the computation of a Gr obner basis for lexicographical ordering of the ideal I L , which can be realized by the algorithm given in 7] (see also 12] for an e cient method).

The numerical method proposed in 23] in order to compute resolvents is based on approximations of roots of f. It leads to some problems when the roots of f are close. This algebraic method avoids this problem and gives a general algorithm for arbitrary degrees and polynomials.

  x n ]. De nition 6.5. The L-relative resolvent of by , denoted by L ;I L , is the following polynomial of k X]:

(J) = fr

R j (r) 2 Jg = I :

has degree d relatively to x n . By Lemma 3.5, there exists a polynomial g 2 k x 1 ; : : : ; x n ], monic w.r.t. the variable x n with degree(g; x n ) = d, such that (8j 2 1; r]) g g j (mod Id(M j )) ; [START_REF] Buchberger | Ein Algorithmus zum Au nden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal[END_REF] and Id(I 0 fgg) = \ m j=1 Id(M j fg j g) :

Together with identity (ii), it follows that Id(I 0 fgg) = \ m j=1 J ( 1 n;n 1 (W j )) ; and by Relation [START_REF] Becker | Gr obner Bases[END_REF] Id(I 0 fgg) = J (V ) :

Thus we have J (V ) = Id(T 0 fgg) : Hence J (V ) is generated by the triangular set T = T 0 fgg.

We have to check that the triangular set T is separable. Let M = ( 1 ; : : : ; n 1 ) be a point of V n 1 ; there exists an index j such that M 2 W j . From Relation (8) we easily obtain g( 1 ; : : : ; n 1 ; x n ) = g j ( 1 ; : : : ; n 1 ; x n ) and deduce with assertion (iv) that T is a separable triangular set.

Computation of characteristic polynomials

In this section we denote by K an extension of the eld k such that K\k x 1 ; : : : ; x n ] = k.

For two polynomials p and q in K x 1 ; : : : ; x n ] and for i 2 1; n], we denote by Res x i (p; q) the resultant of the polynomials p and q relatively to the variable x i . The following lemma presents an algorithm which eliminates the variables x 1 ; : : : ; x n from a polynomial in K x 1 ; : : : ;

x n ] and a separable triangular set of k x 1 ; : : : ; x n ]. It will be exploited in Theorem 5.2 for computing characteristic polynomials C ;I , where is a polynomial in k x 1 ; : : : ; x n ] and I is an ideal generated by a separable triangular set. Lemma 5.1. Let T = ff 1 ; : : : ; f n g be a separable triangular set of k x 1 ; : : : ; x n ]. Let 2 K x 1 ; : : : ; x n ]. We de ne inductively the n + 1 polynomials 0 ; 1 ; : : : ; n relatively to T as follows:

n := 2 K x 1 ; : : : ; x n ] i 1 := Res x i (f i (x 1 ; : : : ; x i ); i (x 1 ; : : : ; x i )) 2 K x 1 ; : : : ; x i 1 ] ;

Then the element 0 of K is given by: 0 = Y 2V (T) ( ) :

6.1. Ideals of invariant -relations and triangular sets. Notation 6.1. Let L be a subgroup of S n . We denote by L (i) the stabilizer of f1; : : : ; ig under the natural action of L.

Thus we obtain a chain of subgroups of L: L (n) = fIdg < L (n 1) : : : < L (1) < L :

Now let us study the left classes of L modulo L (i) , that is, the classes of the equivalence relation i , de ned by i 0 if and only if 1 0 2 L (i) . We can characterize these classes as follows: Lemma 6.2. Let L be a subgroup of S n and ( ; 0 ) 2 L 2 . Then i 0 () 8k 2 f1; : : : ; ig; (k) = 0 (k) and each equivalence class in L= i has cardinality card(L (i) ). Proof. We easily have the following equivalences: i 0 () 1 0 2 L (i) () (8k 2 f1; : : : ; ig) 1 0 (k) = k () (8k 2 f1; : : : ; ig) 0 (k) = (k):

The second part of this lemma is a basic result on left classes of a group L modulo a subgroup of L. Lemma 6.2 applies to a particular family of subsets of k n de ned from subgroups of S n as follows: Proposition 6.3. Let f be a separable polynomial of k X] and an ordered set of roots of f. If L is a subgroup of S n , then the subset V of k n de ned by V = f : j 2 Lg is equiprojectable.

Proof. Let i 2 1; n] and M 2 V i . It is su cient to show that the cardinality of 1 n;i (M) is independant from the choice of the point M.

It follows from the de nition of V that there exists a permutation in L such that M = ( (1); : : : ; (i)). Then the inverse image of M by n;i may be de ned by 1 n;i (M) = f : j 2 L and (8k 2 f1; : : : ; ig) (k) = (k)g Since the points of V are all distincts we have card( 1 n;i (M)) = card(f 2 L j i g) = card(L (i) ) :

Thus the assertion is proved. Remark 4. In general, the set V de ned in Proposition 6.3 is not a variety over k. However it is a variety when G L.