
HAL Id: hal-02547663
https://hal.science/hal-02547663v1

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component-based Framework for the Specification,
Verification and Validation of Open Distributed Systems

Alioune Diagne, Pascal Estraillier

To cite this version:
Alioune Diagne, Pascal Estraillier. A Component-based Framework for the Specification, Verification
and Validation of Open Distributed Systems. [Research Report] lip6.1997.037, LIP6. 1997. �hal-
02547663�

https://hal.science/hal-02547663v1
https://hal.archives-ouvertes.fr

A Component-based Framework for the Speci�cation, Veri�cationand Validation of Open Distributed SystemsA. Diagne & P. EstraillierUniversit�e Pierre & Marie CurieLaboratoire d'Informatique de Paris 6 (LIP6)Th�eme Syst�emes R�epartis et Coop�eratifs (SRC)4 place Jussieu, F-75252 Paris Cedex 05, FrancePhone : (+33) (0)1 44 27 73 65, Fax : (+33) (0)1 44 27 62 86e-mail : f Alioune.Diagne, Pascal.Estraillier g@lip6.frAbstractOpen distributed systems have inherent complexity related to their control that makes it necessary to have acomponent-based approach to each of the activities undertaken along their life-cycle. Such an approach allows toapply the divide and conquer principles. In this paper, we propose a framework to undertake the speci�cation, theveri�cation and the validation (V&V) of distributed systems based on those composition principles. The approachherein uses a speci�cation model which allows to describe the components of a distributed system. This modelfocuses also on the description of the interactions between the components in order to compose them into (sub-)systems. The properties expected are described and veri�ed in a compositional way from the components to the(sub-)systems. The speci�cation model is automatically transformed into a V&V model which is a modular Petrinet standing with an object-based semantics. The veri�cation of the properties is performed by model-checking onthe reachability graphs computed from these nets. Other Petri nets structural analysis tools can also be applied tothese nets as far as they support modular approaches. The compositionality allows to infer global properties frommodular ones. Based on the direct executability of nets, the speci�cation models are made executable so that theycan be validated by simulation. The formal speci�cation of a system can be validated against its informal initialrequirements while involving its end-users and owners. Speci�c scenarios can be animated on the V&V model.This allows to achieve traceability of the con�dence levels between the di�erent stages of the life-cycle.Keywords: Speci�cation of Open Distributed Systems, Petri Nets, Temporal Logic, Veri�cation & Validation.1 IntroductionOpen distributed systems have inherent complexity that makes it necessary to have a component-based approachto each of the activities undertaken along their life-cycle. Such an approach allows to apply compositionalprinciples :1. Open distributed systems are made of independently built components which can be composite of othercomponents (see [Bidoit 93]). Components can be already existing parts to integrate and systems need to beextendible to meet openness and distribution (see [Najm 97]). Bottom-up approach allows to focus at somewell-delimited parts of the system at a given time. The many concerns dealt with along open distributedsystems life-cycle can be separated. Also their inherent complexity is better managed in this compositionalway.2. Open distributed systems are built from parts which have been tailored separately. The veri�cation activitiescan not therefore be performed on the whole system. Its is necessary to be able to split the proof obligations1

on the parts and run the veri�cation in a compositional way (see [Denker 97], [Fisher 97] and [Kindler 97]).The properties of the system are inferred from the properties proved on its components.3. The validation of open distributed systems also enforces the need of a compositional approach. Parts of thesystems should be validated isolated against the requirements they must meet. A special attention shouldbe payed to validate the integration of the parts for the problematic of feature interaction well-known intelecommunication systems (see [Cameron 94]). Components that work perfectly apart from each other canhave hazardous behavior when they are put together.In this paper, we investigate a component-based approach with many di�erent formalisms which are consideredbecause of the relevance for given activities. For each set of activities, we propose a model of component whichis appropriate to handle them. The transformation between the models is achieved with su�cient traceabilityinformation in order to enable the correspondence for the semantics.The paper is organized as follows. The section 2 presents the speci�cation model. In section 3, we presentthe V&V model and how it can be obtained from the speci�cation model. The section 4 is dedicated the presentthe logic we use for veri�cation. In section , we briey discuss the validation of open distributed systems beforeconclusion.2 The Speci�cation ModelIn this section, we present the OF-Class (Object Formalism Class) model we use to describe components of adistributed system. This model focuses on the separation of the isolated behaviors of components from theway they are composed to achieve the interactions. Components can act as servers and then they supply theirfunctionalities to be used by the environment. The use of these functionalities is constrained by the notion ofservice. A service describes the behavior expected from the clients when they use the functionalities o�eredby a server (see details in section 2.2 below). Client and server roles are not exclusive for a given component.These roles composed according to the constraints enforced by the service allow to build (sub-)systems from thecomponents.The components are described with a class based language. Each class can be instantiated statically ordynamically. Dynamic creation and destruction of instances are handled by two special operations (the constructorand the destructor). The former initializes a new instance while the latter destroys it whenever it is called. Thecreation of an instance can be performed by another instance while only an instance can call the destructor onitself.2.1 Components as Structuration Units for Distribution : the BehaviorA component is an entity which manages some resources in the system and o�ers services to manipulate them.A resource is an item with a state an procedures to manipulate it. Each component describes therefore the itsown functionalities and the correct way to use them. The functionalities are described as operations which canmodel interrogations or announces according to the ODP classi�cation (see [ODP 95]). An interrogation is anoperation which produces a result for the caller. An announce is an operation which returns an acknowledgewhen the request is received and proceed latter the computation without sending a result. Beside the operations,a component can have automatically triggered operations which are not accessible from the environment. Theyare called triggers and are attached with a precondition and they are triggered whenever this precondition is met.Components can also have exceptions which are triggered to avoid propagation of faults along the interactions(see section 2.2). Exceptions also can not be invoked by the environment. Operations and exceptions can haveinput and output parameters. There is one special output parameter called the return-code. Announces haveonly input parameters. Triggers have no parameters.All these computations (operations, exceptions and triggers) use the resources of the component. A resource isequivalent to the notion of attribute in object-orientation. A resource is encapsulated into a component and canbe used only by the services of the component. Resources can be shared by the instances of the component ofduplicated. In this last case, each instance manages one copy of the resource without any consistency considerationbetween the many copies. 2

2.2 From Components to (Sub-)Systems : the InteractionsTo make the components work together to achieve properly the functionalities expected from the system, wespecify their interactions. Interactions allow to put together the behaviors of the components in order to buildmore elaborated behaviors which are the ones of the system. They are very di�cult to handle in open distributedsystems because faults and errors can be propagated from components to a�ect a whole (sub-)system. Manysolutions dedicated to avoid the propagation of faults and errors have been proposed. We adopt the notion ofcontracts realized by o�ered and required services.O�ered ServicesServices are an alternative to the limitations of pre and post conditions widely known in object-orientation. Preand post conditions are not sensitive to the history of a component (see [Matsuoka 93] and [Puntigam 97]). Theyonly determine a given state the component must be in to handle a message. If the component is not in the state,the incoming message can not yet or no longer be handled. They are not appropriate for open distributed systemsfor that reason. In such systems, trading facilities are now widely used (see [ODP 95] and we assume that it isnot a major di�culty to communicate to a client component the behavior expected by the server component asa contractual constraints.Each component describe the behavior it expects from its environment. This behavior is describe as allowedsequences of invocation of the operations of the component. The �rst bene�t from this is that the environmentshould stick to these sequences and the component o�ering the service can perform them correctly. It alleviatestherefore the uncertainty on the behavior of the environment which is very hard to handle in open distributedsystems. Another bene�t from the notion of service is that a component can be attached with many o�eredservices, each of the de�ning a coherent view on the component and hence a class of clients (e.g. readers andwriters as classes of clients for a component modeling a �le system). Each client can by this way have a coherentpartial view on a given server. Finally, to integrate existing parts into a system, what is really needed is only theway they must be used i.e. the service(s) they o�er. One can assume that their internals have been validatedand veri�ed elsewhere and they safely and reliably support the usage prescribed by means of the service(s). Ano�ered service can contain sequences of operations, alternatives between operations and/or loops on one or manyoperations.Required ServicesWhen a component is acting as client of another one, it can state some expectations on the way their interactionsoccur. If these expectations are not met, the client assumes that the server is faulty and runs some exceptionalcomputations to protect from these eventual faults. The clients subscribe the contract edicted by the o�ered serviceand re�ne it by stating expectations. So, we make sure that the interactions occurring meet the requirementsof the involved components (clients and servers). The operations of the required service can be invoked in twoways :1. synchronous invocation where the client sends the request and blocks waiting for the result. There is atransfer of the control ow from the client to the server,2. eager invocation which is a variation of asynchronous invocation (see [Di Blasio 97]). The client sends therequest and goes on processing. The result is sent back by means of an implicit future variable the clientaccesses when needed. If it is not available at that moment, the client then blocks waiting.These two ways of invocation cover the needs at client side in open distributed systems. At the server side,there is no di�erence. The server sends an acknowledge for an announce and then hanlde it. On the contrary, itprocesses an interrogation and then puts the result at the disposal of the client.ObservationIn the systems we model, we distinguish observable actions from internal ones which are non-observable. Theactions consisting of request issue and acceptance, result delivery and reception happen at interfaces of the com-ponents. The other actions occurring inside the component during the computations are not observable from the3

environment. The observable actions are those modeling the interactions between the components. This distinc-tion allows us to isolate a set of actions on which we can state and verify properties. Actually, the properties of theopen distributed systems can be expressed as combinations of their observable actions. We give an action-basedsemantics to those systems. Their states are not explicitly relevant and we avoid the problems they raise amongwhich the well-known one of the global state.2.3 Properties and HypothesisFor the needs of formal veri�cation, we take into account the expression of properties expected from systems atthe speci�cation level. The system designers should state what is expected from their models. Formal methodslike Petri nets and model-checking allow to compute and verify models of the properties like B�uchi automata andthe designers must a�ord the means necessary to correct the models when and where it is necessary.The component-based approach advocated in this paper is applied to veri�cation. As one can not master opendistributed system as a whole, we adopt a new approach of expression of properties. They are split over the com-ponents as local properties ensured and hypotheses relied on. Local properties give some kind of formal signatureof a component. The environment of the component can rely on such a signature as a truthful characterizationof the component. Hypotheses allow to characterize the interaction dependencies between components.Each component of a distributed system is characterized by a set of local properties and hypotheses it assumeson its environment. Some of the local properties are implicit because they guarantee correctness criteria for thecomponent (see sections 4.4.1 and 4.4.2 below). Other local properties can be explicitly stated by the systemdesigner as a characterization for the component. All the properties are local proof obligations on the component.The hypotheses give a local characterization of the whole system or its parts for a given component. They shouldbe proved by the other components. The hypotheses can be matched by the local properties of other componentsof the environment or be deduced from them by some proving procedure.Properties and hypotheses are expressed in a dedicated language using linear temporal logic (LTL) concepts(Alw for always, Fin for �nally, Next, Until and logic operators like not for negation, implies for implication, orfor disjunction and and for conjunction) The properties and hypotheses are related to occurrences of observableactions (see section 2.2). The logic is presented into details in the next section. To illustrate our subject, let usgive the expression of a property which will be revisited again in section 4.4. Each server must ensure reliabilityproperty (see [Sibertin-Blanc 93]) which is expressed as ::Alw :acc(#op;#sv;#cl;#p in)) Al (acc(#op;#sv;#cl;#p in)) Next F in res(#op;#sv;#cl;#p out))This property will be revisited into full details in section 4.4.1 and the logic used for its expression is fullyexplained in section 4.2. Briey, we can say that it simply means that for each request accepted, a result will bedelivered later.Properties are grouped in a section announced by the key-word ensures while hypotheses are announced byassumes. Each hypothesis is pre�xed by the statement on component-class-identifier to indicate the componentwhich is expected to ensure it.

4

2.4 An Illustration of Speci�cation ModelHere is given a small example to illustrate the language used at the speci�cation level1. Willingly, we give nosemantics to this example because we want to focus on the presentation of the language rather than on itsapplication to a case study.cmp1 ISA OFCLASSDECLARATION fTYPES f# Here are declared the types used in this component.t1 : f elt1 , elt1 , elt3 g;t2 : 0 .. 100 ;gCONSTANTS f# Here are declared the constants whose domains are the previous types.cst IN t2 is 10;ggMACRO-LEVELIMPORTS fFROM cmp2SERVICE serv req cmp2OPERATION oper1 cmp2ACCEPT-RETURN 0 Exception1 ;DEFAULT-RETURN CONTINUE ;# For the operation oper1 of the service serv1 imported from cmp2 the# current component accepts all results (which are integers) except# the value 0 for which it has an exception to rungEXPORTS fSERVICE serv off cmp1OPERATIONS fVOID : Ann (t1 : param1 IN, t1 : param2 IN-OUT, t2 : param3 OUT) ;t2 : Interrog (VOID) ;gMANUAL serv off cmp1 IS fAnn && Interrogg?INVOCATION-MODE f synch, asynch g# This exported services has two operations. The sequence authorized to# use is first Ann then Interrog and loops on that.gMICRO-LEVELRESOURCES f# This component has two resources. The first one is of type t1 and is# duplicated meaning that each instance of the component has one copy of# the resource. The second one is of type t2 and one copy of the resource# is shared by the instances.t1 : res1 DUPLICATED ;t2 : res1 DEFAULT 0 SHARED ;gINSTANCES f# the component has two instances, each one gives an initial value for the# duplicated resource.inst1 res1 elt2 ;inst2 res1 elt1 ;gOPERATIONS fVOID : Ann (t1 : param1 IN, t1 : param2 IN-OUT, t2 : param3 OUT)VARIABLES f# Here are declared the local variables of the operation if there is any gf # The body of the operation Ann.gt2 : Interrog (VOID)VARIABLES f # Here are declared the local variables of the operation if there is any gf # The body of the operation Interrog.ggEXCEPTIONS fVOID : Exception1 (# Here are declared the parameters of the exception if there is any)VARIABLES f # Here are declared the local variables of the exception if there is any gf # The body of the exception Exception1.ggTRIGGERS fVOID : Trigger1 (VOID)TRIGGERED-ON TRUEf # The body to execute for ever whenever an instance is created.gVOID : Trigger2 (VOID)TRIGGERED-ON (oself.res1 == elt3)f # The body to execute for an instance each time the copy of res1# owned by that instance reaches the value el3.ggASSUMES f# Hypotheses on the environment of the componentgENSURES f# Properties guaranteed by the componentgENDOFCLASS1The words in capital letters are the key-words of the language. The lines beginning with a # are comments.5

3 The V&V ModelThe speci�cation model is a component-based one. It makes advanced use of the modularity inherent to distributedsystems. The model presented in this section will support V&V activities for the speci�cation described in themodel presented in (see section 2). The V&V Model is tailored to take into account the bene�ts from themodularity enhanced in the speci�cation one. Let us now show how the transformation of the latter model in theformer is performed.3.1 Principles of the Transformation between Speci�cation and V&V ModelsThe transformation is based on rules which are applied to each component. They allow us to build an OF-CPNfor each OF-Class. For sake of place and simplicity, the rules are not presented into details herein but they aresketched to highlight their semantics. We build an OF-CPN modeling the behavior of the component and foreach of its o�ered services, we build a net modeling the correct use of the operations (see the remainder of thesection).The V&V model is a modular Petri net model interfaced by places. It allows to model the concepts andnotions presented in (see section 2). Among the interface places, we distinguish from input and output places Theinterface by places allows message-based interactions. A message is modeled by a token in an interface place. Inan input place, the token models a request while it models a result in an output place. The transitions in thepre and post sets of interface places are called interface transitions. They model the observable actions. On theopposite, all the other transitions model non-observable actions.3.2 Modular Petri netsNow we present the OF-CPN (Object Formalism Colored Petri Net) model. In the remainder of the section � isa set of elementary color sets. An elementary color set is a �nite set of elements called colors. A color domaincan be an elementary color set or a cartesian product of countably many such elementary color sets. Let us givesome preliminary de�nitions.Definition 1 (Preliminaries)1. �n = �� : : :� �| {z }n and �? = Sn2IN �n,2. If 1 � : : :� n is a color domain, �i denotes the projection on the ith dimension for 1 � i � n:3. C is the set of all the constants of the elementary color set , V� the set of variables over the elementarycolor set and Symb = C [V . For a color domain 1 � : : :� n 2 �, C(1�:::�n) = C1 � : : : � Cn ,V(1�:::�n) = V1 � : : : � Vn and Symb(1�:::�n) = Symb1 � : : : � Symbn :4. If a variable v = (v1; : : : ; vn) 2 (Sym(1�:::�n) n C(1�:::�n))2, a valid binding for that variable is a n-tupleof constants c = (c1; : : : ; cn) 2 C(1�:::�n) such if �i(v) 2 Ci then �i(v) = �i(c):5. For a given set S, Bag(S) is the set of multi-sets over S. Roughly speaking, a multi-set is a set where elementsmay occur several times. A multi-set over a set S is formally denoted Ps2S x(s):s where x(s) 2 IN n f 1 g.Multi-sets can be equipped with addition, subtraction, multiplication by an integer and partial order (�)3.The empty multi-set is denoted hi.6. As usually, �x and x� are the pre and post sets of a place or a transition in a Petri net. If S is a set, �S andS� are the union of pre and post sets of elements of S.42for a multi-dimensional variable, we can have constants for some components (but not for all components, in which case it is aconstant). That is why v is chosen in (Sym(1�:::�n) n C(1�:::�n)) and not in V(1�:::�n):3For further details see [Brgan 95].4Presentation of Petri nets can found in [Murata 89].
6

De�nition and characteristics of an OF-CPNNow we give the de�nition and characterization of our modular Petri net model.Definition 2 (OF-CPN)An OF-CPN is a 7-tuple (Net, Pacc, Pres, Psnd, Pget, =acc�res, =snd�get) where :1. Net is a colored Petri net (P, T, Dom, Pre, Post, Guard, M0) with :(a) P is the set of places and T the set of transitions and P \ T = ;,(b) Dom : P [T �! �? de�nes the color domains for places and transitions,(c) Pre and Post de�ne respectively the backward and forward incidence color functions :Pre , Post : P � T �! Bag(SymbDom(P)),(d) Guard de�nes the guards on transitions :8 t 2 T, Guard(t) : Bag(SymDom(t)) �! B = f True, False g,(e) M0 is a marking for Net i.e. 8 p 2 P, M0(p) 2 Bag(CDom(p)),2. Pacc � P is a set of places such that 8 pacc 2 Pacc, �pacc = ; and M0(pacc) = hi,3. Pres � P is a set of places such that 8 pres 2 Pres, pres� = ; and M0(pres) = hi,4. Psnd � P is a set of places such that 8 psnd 2 Psnd, psnd� = ; and M0(psnd) = hi,5. Pget � P is a set of places such that 8 pget 2 Pget, �pget = ; and M0(pget) = hi,6. the sets Pacc, Pres, Psnd and Pget are pairwise disjoint,7. =acc�res : Pacc �! Pres is a bijection such that :(a) 8 (pacc;=acc�res(pacc)) 2 Pacc � Pres and 8 tn 2 �(=acc�res(pacc)),9 t1 : : : tn�1 2 T such that t1 2 pacc� and ti� \ �ti+1 6= ; for 1 � i � n� 1,(b) 8 (pacc;=acc�res(pacc)) 2 Pacc � Pres and 8 t1 2 pacc�,9 t2 : : : tn 2 T such that tn 2 (=acc�res(pacc))� and ti� \ �ti+1 6= ; for 1 � i � n� 1,(c) 8 (pacc;=acc�res(pacc)) 2 Pacc � Pres, pacc� \ �(=acc�res(pacc)) = ;,8. =snd�get : Psnd �! Pget is a bijection such that :(a) 8 (psnd;=snd�get(psnd)) 2 Psnd � Pget and 8 tn 2 �(=snd�get(psnd)),9 t1 : : : tn�1 2 T such that t1 2 psnd� and ti� \ �ti+1 6= ; for 1 � i � n� 1,(b) 8 (psnd;=snd�get(psnd)) 2 Psnd � Pget and 8 t1 2 psnd�,9 t2 : : : tn 2 T such that tn 2 (=snd�get(psnd))� and ti� \ �ti+1 6= ; for 1 � i � n� 1,(c) 8 (psnd;=snd�get(psnd)) 2 Psnd � Pget, psnd� \ �(=snd�get(psnd)) = ;.An OF-CPN is a Petri net with some special subsets of places (Pacc, Pres, Psnd and Pget) called the interfaceplaces. Pacc is the the set of accept places holding the tokens modeling requests accepted from the environment.Pres is the the set of result places holding the tokens modeling results issued for requests accepted from theenvironment. The bijection =acc�res ensures the correspondence between incoming requests and outgoing results.Psnd is the the set of send places holding the tokens modeling requests sent to the environment. Pget is thethe set of result places holding the tokens modeling results for requests sent to the environment. The bijection=snd�get ensures the correspondence between outgoing requests and incoming results.The interface transitions are those in Intobs = (Pacc� [�Pres [�Psnd [Pget�). Firing these transitionsconsumes or produces tokens in the interface places. We assume that there is a naming facility mapping theinterface places to di�erent names. The interface transitions are named according to the names of places they areconnected with. 7

The points (7) and (8) of the de�nition give an operational semantics to OF-CPN. Point (7a) ensures that everytransition producing an outgoing result belongs to a potential sequence containing a transition that consumes anincoming request. Point (7b) states the symmetrical assertion. Point (8a) is similar to point (7a) for outgoingrequests and incoming results. Point (8b) is the symmetrical of point (8a). Point (8c) ensures that the computationof request is not immediate i.e. one can not send a request and expect the result by the same transition. Thispoint has equivalent (point 7c) for incoming requests (it means that even for announces in 2.1, the acknowledgemust not be issued at the same time than the request is accepted). This operational semantics is a structuralone. Behavioral operational semantics is also ensured (see sections 2.3 and 4.4).Definition 3 (Composition of OF-CPNs)Two OF-CPNs O1 and O2 can be combined if there is a mapping� : Psnd(O1) [Pget(O1) �! Pacc(O2) [Pget(O2) verifying :1. �(Psnd(O1)) � Pacc(O2) and �(Pget(O1)) � Pres(O2);2. 8 p 2 Psnd(O1), if �(p) is de�ned then �(=O1snd�get(p)) is also de�ned and �(=O1snd�get(p)) = =O2acc�res(�(p));3. 8 p 2 Psnd(O1) [Pget(O1), Dom(�(p)) = Dom(p):In the previous con�guration, O1 is the client and O2 is the server. We can build a union of the two OF-CPNs and merge each place p with �(p) if the mapping is de�ned. The resulting OF-CPN is denoted O1�O2These merged places are dropped out from the interface places of the composite OF-CPN. This operation can beperformed for one server (resp. one client) and many of its clients (resp. its many servers). Such constructionsallow to build ad-hoc composite components and sub-systems. Its this way we can validate a given scenarioinvolving many objects (see section 5 below). We call Clients(O1) = f Oi such that 9 �O1!Oi g. It is the set ofcomponents that can act as clients of O1. Similarly, we call Servers(O1) = f Oi such that 9 �Oi!O1 g the set ofcomponents that can act as servers of O1.Component BehaviorThe general way we handle the component behavior is shown in (see �gure 1). This is at a coarse grain thecomponent we derive from the example given in (see 2.4).
<oself,x>

<oself,x>

<0>

t2

<inst1,elt1>+<inst2,elt1>

t1

res2

res1

<oself><oself>

[x == elt3][True]

<result>

[res == 0]

<result>

Ann

Instances

Pacc1

Pres1

Pacc2

Pres2

Interrog

Trigger1 Trigger2

InstancesInstances

Psnd

Pget

Exception1

Figure 1: Intuitive Example of an OF-CPN
8

This OF-CPN in �gure 1 models a component which has two operations: an Interrogation and an Announce5 .The Interrogation accepts a requests in the place Pacc2 and computes a results sent back in Pres2. The Announceaccepts a request and issue immediately after an acknowledge. The request is processed after and causes anotherone to be sent to a remote component in the place Psnd. The result of this last request is got from the place Pgetand it may trigger an Exception.ServicesThe service of a component gives the sequences allowed whenever calling its operations. They can be expressedusing the two building patterns presented hereafter. Conicting transitions models operations (or sub-parts ofa service) for which there is an alternative. Compositions of such patterns are possible. The patterns and theircomposition can be used within loops to models repetitive behaviors.
State1

State2

State3

Bloc1

Bloc2

State4

State5 State6

Bloc1 Bloc2Figure 2: Model of a Service in Petri netsReachability graph of an OF-CPNThe OF-CPN is a Petri net for which we can build a reachability graph. For that purpose, we must give anabstraction of the environment by putting tokens in the interface places. This abstraction determines what canhappen in the interface places of an OF-CPN. It can therefore be tuned according to a given target environmentbut in general, as the color domains of places are �nite, we just overload the interface places by all their possiblemarkings. We build the reachability graph of the overloaded component where the edges are labeled as follows:1. edges corresponding to �ring transitions of Tinterface are labeled according to their status :(a) if t 2 �Pacc and (x1; : : : ; xk) 2 Bag(CDom(t)) is the binding for the �ring, then the edge is labeledacc #x1;:::;xk ,(b) if t 2 Pres� and (y1; : : : ; yl) 2 Bag(CDom(t)) is the binding for the �ring, then the edge is labeledres #y1;:::;yl ,(c) if t 2 �Psnd and (z1; : : : ; zm) 2 Bag(CDom(t)) is the binding for the �ring, then the edge is labeledsnd #z1;:::;zm ,(d) if t 2 Pget� and (s1; : : : ; sn) 2 Bag(CDom(t)) is the binding for the �ring, then the edge is labeledget #s1;:::;sn .2. edges corresponding to �ring transitions in T n Tinterface are labeled � .Let us notice that the caller, callee and the selector of an operation are implicit parameters of the call. Theyallow to distinguish between the many transitions labelled acc #x1;:::;xk , res #y1;:::;yl , snd #z1;:::;zm and get #s1;:::;sn .This reachability graph models exhaustively the information about the interactions between components whileit hides internal activities (� labelling). It carries no information about the internal activities of components.But we assume that such information have been validated by simulation and the reachabilty graph should onlysupport veri�cation activities.5The long-sized transitions model sub-nets.
9

4 Veri�cationThe veri�cation is based on model-checking. For each component, we build a reachability graph after overloadingthe interface places. We consider from this reachability graph all paths form the initial marking which simulate(see section 4.1) the reachability graph of the o�ered service of the component. The other paths are not relevantbecause they correspond to faulty behaviors from the environment. However, we keep them to be able to stateabout such behaviors.For the remaining paths, we check for divergences and blocking states. A divergence is an in�nite sequencewhich has a post�x containing only non-observable actions � . Such divergences should not occur because theymodel in�nite loops in which a given component does no longer support its interactions. A blocking state is astate in which the component is no longer able to handle any kind of action (observable or not). Though theyshould be corrected or at least validated as expectations for the system designers (think about components with�nal state).For each remaining path of the reachability graph, we check if it simulates the reachability graph of eachrequired service whose operation calls occur in the path. This is to check the component to enforce its respect ofthe required services (which are o�ered by other components in the environment). If it is not the case, the faultypaths are exhibited as possible behaviors violating the interaction constraints. When all the paths are compliantwith interaction constraints, we consider the resulting labeled transition system � for the veri�cation of localproperties and hypotheses.4.1 Labeled Transition SystemsDefinition 4 (LTS)A labeled transition system (LTS) is a 4-tuple (Intobs [f � g, Q, �, q0) where Intobs is an alphabet of observableactions whereas � denotes a non observable action, Q is a �nite set of states, � � Q � Intobs [f � g � Q is aset of transitions and q0 is the initial state.For such an LTS, we consider an action-based semantics. A full run in that case is an in�nite sequence ofactions (a0a1a2 : : : an : : :) such that 8 i 2 IN, 9 si; si+1 2 Q with (si; ai; si+1) 2 �.Given two LTS �1 = (Intobs1 [f � g, Q, �, q01) and �2 = (Intobs2 [f � g, Q, �, q02) such that exists aninjection Inj : Intobs2 �! Intobs1 , we call projection of a full run � of Intobs1 on Intobs2 the sequence obtainedfrom � while hiding the actions of (Intobs1 n Inj(Intobs2)). We say that �1 simulates �2 if the projections of fullruns of Intobs1 are empty sequences or full runs of Intobs2 .The reachability graph of the modular Petri nets presented in (see section 3.2) can be transformed into LTS.The occurrence of internal transitions are labeled by � and the occurrences of interface transitions are labeledby the occurring action (req for a request issue, acc for a request acceptance, res for a result issue and get fora result reception) with the binding of the variables. The information about place markings in the states is nolonger relevant. We extend blocking �nite sequences to become in�nite. For that, we add another looping action� to each state of the reachability graph that has no successor and we add � to the observable actions.4.2 Temporal Logic : Syntax and SemanticsTemporal logic allows to state about the arrangements of events occurring in a system with relation to owingtime. The atomic predicates of the logic used here are related to interface transition occurrences. This alphabetis noted Intobs. Temporal properties are built over atomic predicates with logic operators and (: for negation,) for implication, _ for disjunction and ^ for conjunction) linear time operators (2 for always, � for �nally, Xfor next, U for until). We build formula as follows.Definition 5 (Temporal Logic Syntax)1. if t is a transition and (x1; : : : ; xn) 2 Bag(SymbDom(t)) then t #x1;:::;xn is a formulae.2. If � and are formula then :(a) :�; � ^ X� and � U are formula.(b) � ^ � ()def � and ::� ()def �. 10

(c) � _ ()def :(:� ^ :).(d) True ()def � _ :�.(e) False ()def :True.(f) �) ()def :� _ .(g) �� ()def True U �.(h) 2� ()def : � :�.Let us give some notations useful for the remainder of the paper. For a maximal sequence � = (t0t1:::tn:::), wenote �(1) the post�x (t1:::tn:::). Recurrently we de�ne �(n) = (�(n�1))(1) for n � 2 and �(0) = �.For a maximal sequence �, a transition occurrence t ##op;#sv;#cl;#params and two formula � and related totransition occurrences, the semantics is the following.Definition 6 (Temporal Logic Semantics)1. � j= t ##op;#sv;#cl;#params ()def � = t #op;sv;cl;params �1 or � = � : : : �| {z }n t #op;sv;cl;params �1 where thebinding op; sv; cl; p in; p out is valid for the variables #op;#sv;#cl;#params.2. � j= t #op;sv;cl;params ()def � = t #op;sv;cl;params �1 or � = � : : : �| {z }n t #op;sv;cl;params �1.3. � j= � ^ ()def � j= � and � j= .4. � j= :� ()def it is not the case that � j= �.5. � j= X� ()def �(1) j= �.6. � j= 2� ()def 8n 2 IN, �(n) j= �.7. � j= �� ()def 9n 2 IN, �(n) j= �.8. � j= � U ()def 9n 2 IN, �(n) j= and 8i 2 IN, i � n) �(i) j= �.9. � j= � ()def 8� 2 �, � j= �.The logic we present is a fully interpreted �rst order logic according to the classi�cation of Emerson (see[Emerson 90, page 998]) without quanti�cation over temporal operators. For that purpose, in point (1), thevariables can be local or global (always see [Emerson 90]). Local variables can be assigned di�erent values indi�erent states while global ones are assigned the same values over all states. In the remainder of the paper, weconsider variables as global ones (see De�nition and Algorithm 8). For a given formula �, we call L(�) the set ofin�nite words � such that � j= �.4.3 Model CheckingIts is shown in [Kupferman 96] that the model checking algorithms used for closed systems are not appropriatefor open ones. In this paper, we alleviate the uncertainty regarding the environment by the notion of service. Aservice constrains the behaviors expected from the environment of a given component. So we apply classical modelchecking techniques while taking into account the distribution. Properties are proved locally on the componentswhich have strong expectations on the behavior played by their environment.To verify a property, we build a B�uchi automata for the negation of the formulae as shown in (see [Wolper 89]).We build the synchronization of this B�uchi automata and the LTS of the component as a labeled product automata(see [Esparza 97] where the product is an unlabeled automata). The validity of the property depends on theemptiness of the product automata.Definition 7 (Labeled B�uchi Automata)A labeled B�uchi automata over this alphabet is a tuple B = (2Intobs , Q, �, q0, F) where Q is a �nite set of states,� � Q � 2Intobs � Q is the transition relation, q0 is the initial state and F � Q is the set of accepting states.An accepting run of the B�uchi automata is an in�nite sequence � = q0t0q1t1q2 : : : such that (qi; ti; qi+1) 2 � andsome accepting state appears in�nitely often in �. 11

The B�uchi automata accepts an in�nite word t0t1t2 : : : if there is an accepting run q0t0q1t1q2 : : :. The set ofin�nite words accepted by a B�uchi automata B is called the language of the automata and noted L(B).It is shown in (see [Wolper 89]) that for every LTL formulae �, one can build a B�uchi automata acceptingthe language L(�). This important result allows us to build a B�uchi automata for the negation of a given LTLformulae and then synchronize it with a transition system to check if the language of the resulting automata isempty or not. In case of emptiness, the transition system veri�es the initial formulae.Definition and Algorithm 8 (Product Automata)Given a LTS � = (Intobs [f � g, Q, �, q0) and a labeled B�uchi automata B:� = (2Intobs , Q:�, �:�, q0:� , F:�),the product automata is a labeled B�uchi automata Bprod = (Qprod;�prod; q0prod ; Fprod) given by :1. Qprod = Q � Q:�,2. �prod is the smallest set de�ned as follows :(a) if (q1:� ; t #op;sv;cl;params; q2:�) 2 �:�, (q1; t #op;sv;cl;params; q20) 2 �and 9 q21 ; : : : ; q2n 2 Q such that q2i 6= q2j and (q2i ; �; q2i+1) 2 � for 0 � i 6= j � n� 1then ((q1; q1:�); t #op;sv;cl;params; (q2n ; q2:�)) 2 �prod,(b) if (q1:� , t ##op;#sv;#cl;#params, q2:�) 2 �:�, (q1n , t #op;sv;cl;params, q2) 2 �where the binding is valid for the global variablesand 9 q10 ; : : : ; q1n�1 2 Q such that q1i 6= q1j and (q1i ; �; q1i+1) 2 � for 0 � i 6= j � n� 1then ((q10 ; q1:�), t #op;sv;cl;params; (q2; q2:�)) 2 �prod.3. q0prod = (q0, q0:�),4. Fprod = Q � F:�.In the construction of �prod, the transition occurrences state about variable bindings (see point 2b above).Actually, the transitions can have free variables in the B�uchi automata B:� but only valid bindings in the LTS �.The synchronization assumes that for a given transition, the binding in � is valid for the eventual free variablesin B:� (see point 2b above). If there is no free variables in B:�, the binding should be the same than in � (seepoint 2a above). The product automata does not have transitions with free variables.The product automata allows to hide non-observable sequences. Its language is empty if the LTS veri�es theformulae �. The product automata herein is a labeled one. This allows to exhibit, in case of nonemptiness,sequences violating the formulae. Such sequences help the system designers to correct their speci�cations. Thisis valuable for implicit properties which are checked but not speci�ed by the designers.4.4 Implicit Properties for ComponentsComponents have correctness criterion attached to the roles they play (client or server) (see [Sibertin-Blanc 93]).Each component, acting as a server, has to ful�ll some basic properties necessary to its correct operation . Asfor servers, each component, acting as a client, has also to ful�ll some basic properties necessary to its correctoperation.4.4.1 Basic Properties of a ServerThe �rst criterion a server must ensure is reliability. It means that it will issue a result for each request itaccepts. Reliability is captured by the following formulae which means that on a given sequence, an operation isnot called or when its is called, the post�x after the call contains the result. This formulae captures reliabilityfor a sequential object which does not have internal concurrency 6. Actually, the formulae does not ensure thecorrespondence between a request and its result. In case of concurrency, the formulae remains valid even if thereis many requests followed by only one result. However, the case of concurrency can be handled easily by a localclock. This property is referred to as (}srv�rel).6The same holds for Client Discretion below 12

(Server Reliability)j= :2:acc ##op;#sv;#cl;#p in) 2(acc ##op;#sv;#cl;#p in) X � res ##op;#sv;#cl;#p out)The second necessary criterion for a server is honesty. It means that a server issues results only for previouslyaccepted requests. Honesty is captured by the following formulae. Once again, the binding is not the same for theoutput parameters for the same reason than in the case of reliability. This property is referred to as (}srv�hon).(Server Honesty)j= 2:(:acc ##op;#sv;#cl;#p in U res ##op;#sv;#cl;#p out)Reliability and honesty are very strong properties that ensure the a server is faithful for its environment.However, they are somewhat general properties because the statement is to produce \a result" for \each acceptedrequest" without any expectation on the request and the result unless type correctness. They can be re�nedfor a given client which issues one \speci�c request" and expects \one among many speci�c results". This tightcorrespondence is not ensured by the formulae we gave before. This kind of expectations is stated by the clientas contextual \hypothesis" the server must ensure (see sections 2 and 4.6).4.4.2 Basic Properties of a ClientThe �rst criterion for a client is discretion. It means that the client does not query a server for fun. Whenever itrequests an operation, it will later get the result produced. This property is referred to as (}cl�dsc).(Client Discretion)j= :2:req ##op;#sv;#cl;#p in) 2(req ##op;#sv;#cl;#p in) X � get ##op;#sv;#cl;#p out)The second criterion for a client is honesty and it has the same meaning than for a server. A client expectsresults only for requests it has issued previously. This property is referred to as (}cl�hon).(Client Honesty)j= 2:(:req ##op;#sv;#cl;#p in U get ##op;#sv;#cl;#p out)These correctness criteria are the equivalent at the client side of those given for a server in section 4.4.1. Eachbinding valid for the (}cl�dsc) property implies an hypothesis the client makes on the server (see end of section4.4.1). Such a binding establishes a tight correspondence between a \given request" and an \expected result. Isthe server able to ensure this correspondence ? This is a question for which the client needs a positive answer toensure that it relies on statements that make sense. This kind of hypotheses are automatically computed duringthe veri�cation of the client correctness criteria.4.5 Explicit Properties and Hypothesis RevisitedThe explicit properties are expressed using the temporal logic presented in section 4.2. They should be safety orfairness properties or complex compositions of such properties (see [Lamport 95]). A safety property states that\something bad" will never occur while a fairness property states that \something good" will �nally occur. Theproperties are not related to the states of the components. They are related to the occurrences of transitions andmainly occurrences of interface transitions (see section 4.4). By the way, the properties are implicitly related tothe states that enable the occurring transitions.Hypotheses are expressed on the same basis and in a similar way than properties. The only di�erence is thatthe component making the hypothesis indicates the one concerned with it. We denote (C1 `C2 H) to mean thatC1 makes the hypothesis that C2 ensures H .4.6 Compositional Approach to Veri�cationThe compositional approach in veri�cation is similar to the rely/guarantee approach of Unity (see [Colette 93]).For a given component O1, we �rst verify that its behavior is correct for the servers towards whom it is client. Inother terms, for each component acting as a client and for each o�ered service it uses, we must prove that its LTSdenoted �O1 simulates the one of the concerned o�ered service modulo hiding all the actions other than calls tothe operations of that service (see section 4.1). 13

Local ProofOnce the behavioral correctness towards the environment veri�ed, we can verify the implicit properties andhypotheses as well as the explicit ones (see section 4.3). Let us denote P(O) and H(O) respectively the set ofproperties and the set of hypotheses for a given component O. The local proof must ensures that :1. 8 P 2 P(O); �O j= P . The language of P is denoted L(P),2. 8 H 2 H(O); �O j= H . The language of H is denoted L(H).This proves that O ensures its local properties and the consequences induced by the hypotheses it assumes onits environment. It remains to verify whether the consequences on the environment is ensured or not. Actuallycomponents have proof obligations enforced by their environment.Proof Obligations from the EnvironmentHere we distinguish safety properties (2:P) from the others (see [Lamport 95]). For safety properties, it issu�cient to prove them locally on the concerned component. It is the case for (}cl�hon) and (}srv�hon). Actually,it is su�cient that the concerned component ensures that the bad happening does not occur. If such a propertyis true, its language is the whole LTS of the component and we know that its restrictions on occurrences oftransitions of a given server is simulated by the server. It is a consequence of the correctness criteria towardthe server enforced at the begining of this section. For the others properties, we must ensure that local goodhappenings are coherent with what they imply on the environment.Let us consider the property }cl�dsc. For a given component O1, these formula correspond to the projectionswith some rewriting on occurrences of interface transitions of the servers of the language L(}O1cl�dsc). The rewriting(acc rewritted into req and res rewritted into get and vice versa) allows us to enforce the request � resultcorrespondence between a client and a server.In other words, for the component O1, we have : 8 Osi 2 Servers(O1), O1 assumes that Osi ensures the sequencingof their interactions as they occur in L(}O1cl�dsc)=Intobs(Osi)[acc�req;res�get]7.This means that we must prove that �Osi simulates L(}O1cl�dsc)=Intobs(Osi)[acc�req;res�get], By this way, we provethat the server Osi ensures the hypotheses made on it by the client O1. This should be done for each propertywhich is not a safety property.Proof of InteractionsOnce we achieve our proof obligations for properties and hypotheses, we should state that the interactions betweenthe components are safe. Components can require the service of each other without any constraints other thanrespect of usage pattern. The relation induced between the component by the o�er/require relationship can havecycles which carry potential deadlocks. We must ensure that these deadlocks are not e�ective.After some notations, we give hereafter an algorithm to check for deadlocks. Lets us consider a set of n LTSdenoted LTSi = (T i;�i; Qi; qi0). Modulo rewritting, we consider that the interactions between these LTS isdone along Tsynchro = T i \ : : : \ Tn. We denote Synchro(i;j) = f(qi1; �?t; qi2) , (qj1; �?t; qj2)g 8 and Synchro =Si;j21:::n Synchro(i;j).Algorithm 9 (Deadlock Detection Algorithm)Init Q = f qi0, . . . , qn0 g ; � = ; ; T = ; ;Loop :If there is no element ((qi1; t; qi2) , (qj1; t; qj2)) in Synchrosuch that (qi1, qj1, q3, : : :, qn�2) 2 Q modulo permutations on QThen Goto End ;7First [acc � req; res � get] denotes the rewritting on the common interfaces. Second, the language is not really a formulae. Thisis just a notation facility.8(qi1; �?t; qi2) is also noted (qi1; t; qi2) because of the hiding of autonomous actions14

Else Forall ((qi1; t; qi2) , (qj1; t; qj2)) in Synchrosuch that (qi1, qj1, q3, : : :, qn�2) 2 Q modulo permutations on QDo Q = Q [f (qi2, qj2, q3, : : :, qn�2) g ;T = T [ftg ;� = � [f ((qi1, qj1, q3, : : :, qn�2), t, (qi2, qj2, q3, : : :, qn�2)) g ;Synchro = Synchro n f(qi1; t; qi2), (qj1; t; qj2)g ;DoneGoto Loop ;End : If Synchro 6= ;Then There are deadlocks caused by interactions ;Else There is no deadlock caused by interactions ;If there are deadlocks, the projections of the paths in � on the ith component give the synchronisationsexecuted by that component and that lead to the deadlocking state. Such traces allow to re�ne the interactionsbetween the components involved in the causes of the deadlocks.Proof and Correctness of Speci�cationsA failure on proving local properties (implicit as well as explicit ones) needs a local solution (correction orre�nement of the speci�cation of the component). We can exhibit a sequence violating the property as a diagnosticto aid the correction. A failure on proving the hypotheses is more complex to handle. It condemns the behaviorof the both components (the one making the postulate and the one not able to ensure it). No correction could beindicated a priori and it needs most complex solutions which can have impacts on the other parts of the model.5 ValidationBased on the direct executability of nets, the speci�cation models can be made executable. Executable speci�-cation models allow to validate a formal speci�cation against the often informal requirements for which it aimsto stand for a solution. One of the net representation we use allows simulation (see [MARS 94]). We have shownin another paper a way to manage libraries of abstracted components (see [Diagne 97b]). A reduction methodallows to build minimal representations of components which can be used as black-boxes in the validation phase.The main bene�t from simulation is to run the speci�cation model against speci�c scenarios supplied by theend-users, the owners of the system or the experts of the application domain. So, they are involved in the designphase of the system and misconceptions can be corrected earlier. Such misconceptions can not be detected byformal veri�cation. Actually, veri�cation does not state on the correctness and the accuracy of the speci�cationas a result of a conception activity. Also, some results of veri�cation (e.g. the failure to prove a property withthe exhibition of a violating sequence) can imply some changes on the models. These changes enforce need tovalidate again the speci�cation model against the initial requirements.Validation allows to involve formal methodists and experts of an application domain who are not necessaryformal methodists in software engineering teams. The formal methodists are responsible for the correct formal-ization of the models while the application domain experts guarantee the compliance and the accuracy of themodels. The application domain experts can produce scenarios they suspect to produce feature interaction. Thesescenarios are validated by building the aggregation of involved components as sub-systems.We do not state about the open distributed systems life-cycle. At least, we suppose that we begin buildingmodels to match informal requirements. The �rst draft of the model is then validated by simulation. Building and15

simulating models are performed until reaching a satisfactory level of compliance and coherence. The veri�cationactivity can then be performed and its results can imply modi�cation on the models. Each modi�cation on themodels should be followed by a validation process to ensure that the informal requirements are still matched bythe proposed solution.6 Conclusions and Future WorkThe framework presented in this paper allows to formalize software production processes for open distributed sys-tems. The framework itself is open in the sense that there is no strong requirements or expectations of the modelingand speci�cation activities. The only prescription is the structure of the components. The multi-formalisms ap-proach allows to use for each set of activities the most appropriate component model. The speci�cation is generallyperformed by application domain experts who are not always formal methodists. They can use the class-basedlanguage to describe their models as set of OF-Classes. They can express properties for veri�cation and andsupply speci�c scenarios for validation. Veri�cation and validation can be run using nets in the background. Ifformal methodists are involved, they can tailor the V&V model to �t the speci�cities of the concerned applicationdomain while ensuring the necessary formal semantics.Veri�cation and validation give a formal characterization for components in a way that enhances reuse. Foreach component, one knows what it does (its o�ered services), what it requires (its required services), what toexpect from it (its properties) at which cost (its hypotheses). Hypotheses and required services characterize theenvironment in which a component can operate. Properties and o�ered services indicate what would be achievedand how it would be achieved. The scenarios validated on the component give usefull indications about itsbehavior against other components.This component-based framework has been positively experienced on real size industrial projects concernedwith security dependable properties. It stands also as the basis for an ongoing work about formal speci�cationmethodologies for multi-agent systems. This project involves formal methodists working on nets, experts ofmulti-agent systems and experts of telecommunication systems where the agent approach should be applied. Theveri�cation tools are not yet fully implemented and meanwhile,we use Prod to handle the proofs. Prod is amodel-checker based on P/tr nets developped at the Helsinki University of Technology (see [Prod 95]). We planto build a modeling approach dedicated to adatative open distributed systems integrating the notions emergingin aspect-oriented programming (see [Kiczales 97]).References[Bidoit 93] Bidoit M. & Hennicker R., \A General Framework for Modular Implementations of ModularSystem Speci�cations", In Proceedings of TAPSOFT'93, Orsay, France, April 1993, GaudelM.-C. & Jouannaud J.-P. Eds., Springer Verlag, LNCS vol. 668, pages 199-214.[Best 95] Best E., Fleischhack H., Fr�aczak W., Hopkins R. P., Klaudel H. & Pelz E., \A Class ofComposable High level Petri Nets", In Proceedings of ICATPN'95, Turin, Italy, June 1995,De Michelis G. & Diaz M. Eds., Springer Verlag, LNCS vol. 935, pages 103-120.[Brgan 95] Brgan R. & Poitrenaud D., \An E�cient Algorithm for the Computation of Stubborn Setsof Well-formed Petri Nets", In Proceedings of ICATPN'95, Turin, Italy, June 1995, DeMichelis G. & Diaz M. Eds., Springer Verlag, LNCS vol. 935, pages 121-140.[Cameron 94] Cameron E.J., Gri�th N. D., Lin Y.-J., Nelson M. E., Shnure W. K. & Velthuijsen H., \AFeature Interaction Benchmark in IN and Beyond", In Feature Interactions in Telecommu-nications Systems, IOS Press, Amsterdam, Holland, 1994.[Colette 93] Colette P., \Application of the Composition Principle to Unity-Like Speci�cation", In Pro-ceedings of TAPSOFT'93, Orsay, France, April 1993, Gaudel M.-C. & Jouannaud J.-P.Eds., Springer Verlag, LNCS vol. 668, pages 230-242.16

[Denker 97] Denker G. & Ehrich H.-D., \Specifying Distributed Information Systems : Fundamen-tals of an Object-oriented Approach using Distributed Temporal Logic", In Proceedings ofFMOODS'97, Canterbury, UK, July 1997, Bowman H. & Derrick J. Eds., Chapmann &Hall, pages 89-106.[Diagne 97a] Diagne A., \Une Approche Multi-Formalismes de Sp�eci�cation de Syst�emes R�epar-tis : Transformation de Composants Modulaires en R�eseaux de Petri Color�es",Ph.D. Thesis (in french), Universit�e Pierre & Marie Curie, 1997. Available atftp://ftp.lip6.fr/lip6/reports/1997/lip6.1997.007.ps.tar.gz.[Diagne 97b] Diagne A., \Control Properties in Object-Oriented Speci�cations", To appear in Advancesin Petri Nets on Object-Orientation, Agha G. & De Cindio F. Eds, Springer Verlag .[Di Blasio 97] Di Blasio P., Fisher K. & Talcott C., \Analysis of Concurrent Objects", In Proceedings ofFMOODS'97, Canterbury, UK, July 1997, Bowman H. & Derrick J. Eds., Chapmann &Hall, pages 73-88.[Emerson 90] Emerson E. A., \Temporal and Modal Logic", In Proceedings of ICATPN'97, In Handbookof Theoretical Computer Science, van Leeuwen J. Ed., volume B, chapter 16, MIT Press1990, pages 995-1072.[Esparza 97] Esparza J. & Melzer, S., \Model Checking LTL Using Constraint Programming", In Pro-ceedings of ICATPN'97, Invited Talk, Toulouse, France, June 1997, Azema P. & Balbo G.Eds., Springer Verlag, LNCS vol. 1248, pages 1-20.[Fisher 97] Fisher M., \Towards the Re�nement of Executable Temporal Objects", In Proceedings ofFMOODS'97, Canterbury, UK, July 1997, Bowman H. & Derrick J. Eds., Chapmann &Hall, pages 439-454.[Kiczales 97] Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J.-M. & Irwin J.,\Aspect-oriented Programming", In Proceedings of ECOOP'97, Jyv�askyl�a, Finland, June1997, Ak�sit M. & Matsuoaka S. Eds., Springer Verlag, LNCS 1241, pages 220-242.[Kindler 97] Kindler E., \A Compositional Partial Order Semantics for Petri Nets Components", InProceedings of ICATPN'97, Toulouse, France, June 1997, Azema P. & Balbo G. Eds.,Springer Verlag, LNCS vol. 1248, pages 235-252.[Kupferman 96] Kupferman O. & Vardi M.Y., \Module Checking", In Proceedings of CAV'96, NewBrunswick, NJ, USA, July 1996, Alu, R. & Henzinger T. A. Eds., Springer Verlag, LNCSvol. 1102, pages 75-86.[Lamport 95] Lamport L., \Proving Possibility Properties", Research Report, Systems Research Center,130 Lytton Avenume, Paolo Alto, California 94301, July 1995.[MARS 94] MARS Team, \The CPN-AMI Environment Version 1.3", Research Report, Laboratoired'Informatique de Paris 6, Th�eme Syst�emes R�epartis et Coop�eratifs, Universit�e Pierre &Marie Curie (Paris VI), 4 place Jussieu, 75252 Paris Cedex 05, France, 1994.[Matsuoka 93] Matsuoka S. & Yonezawa A. Analysis of Inheritance Anomaly in Object-Oriented Con-current Programming Languages, In Research Directions in Concurrent Object-OrientedProgramming, Agha G. Wegner P. & Yonezawa A. Eds., MIT Press, 1993, pages 107-150.[Murata 89] Murata T., \Petri Nets : Properties, Analysis and Applications", In Proceedings IEEE77(4), April 1989, pages 541-580.[Najm 97] Najm E. & Stefani J.-B., \Computational Models for Open Distributed Systems", In Pro-ceedings of FMOODS'97, Invited Talk, Canterbury, UK, July 1997, Bowman H. & DerrickJ. Eds., Chapmann & Hall, pages 157-176.17

[ODP 95] ITU X.901..904 & ISO/IEC 10746-1..4, \Basic Reference Model of Open Distributed Pro-cessing, Part 1 : Overview and Guide to Use, Part 2 : Foundations, Part 3 : Architecture,Part 4 : Architectural Semantics ", Draft International Standards, Geneva, Switzerland,1995.[Puntigam 97] Puntigam F., \Coordination Requirements Expressed in Types for Active Objects", In Pro-ceedings of ECOOP'97, Jyv�askyl�a, Finland, June 1997, Ak�sit M. & Matsuoka S. Eds.,Springer Verlag, LNCS vol. 1241, pages 367-388.[Sibertin-Blanc 93] Sibertin-Blanc C., \A Client-Server Protocol for the Composition of Petri Nets", In Pro-ceedings of ICATPN'93, Chicago, Illinois, USA, June 1993, Ajmone Marsan M. Ed.,Springer Verlag, LNCS vol. 691, pages 377-396.[Sibertin-Blanc 94] Sibertin-Blanc C., \Cooperative Nets", In Proceedings of ICATPN'94, Zaragoza, Spain,June 1994, Valette R. Ed., Springer Verlag, LNCS vol. 815, pages 471-490 .[Valmari 94] Valmari A., \Compositional Analysis with Bordered Places Subnets", In Proceedings ofICATPN'94, Zaragoza, Spain, June 1994, Valette R. Ed., Springer Verlag, LNCS vol. 815,pages 531-547.[Prod 95] Varpaaniemi K., Halme J., Hiekkanen K. & Pyssyysalo T., \Prod Reference Manual", Tech-nical Report B-13, August 1995, Helsinki University of Technology, ISBN 951-22-2707-X.[Wolper 89] Wolper P., \On the Relation of Programs and Computations to Models of Temporal Logic",In Proceedings of Temporal Logic in Speci�cation, Oxford, UK, 1989, Banieqbal B., Bar-ringer H. & Pnueli A. Eds., Springer Verlag, LNCS vol. 398, pages 75-123.

18

