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Abstract

Open distributed systems have inherent complexity related to their control that makes it necessary to have a
component-based approach to each of the activities undertaken along their life-cycle. Such an approach allows to
apply the divide and conquer principles. In this paper, we propose a framework to undertake the specification, the
verification and the validation (VEV) of distributed systems based on those composition principles. The approach
herein uses a specification model which allows to describe the components of a distributed system. This model
focuses also on the description of the interactions between the components in order to compose them into (sub-
)systems. The properties expected are described and verified in a compositional way from the components to the
(sub-)systems. The specification model is automatically transformed into a VEV model which is a modular Petri
net standing with an object-based semantics. The verification of the properties is performed by model-checking on
the reachability graphs computed from these nets. Other Petri nets structural analysis tools can also be applied to
these nets as far as they support modular approaches. The compositionality allows to infer global properties from
modular ones. Based on the direct executability of nets, the specification models are made executable so that they
can be validated by simulation. The formal specification of a system can be validated against its informal initial
requirements while involving its end-users and owners. Specific scenarios can be animated on the VEV model.
This allows to achieve traceability of the confidence levels between the different stages of the life-cycle.

Keywords: Specification of Open Distributed Systems, Petri Nets, Temporal Logic, Verification & Validation.

1 Introduction

Open distributed systems have inherent complexity that makes it necessary to have a component-based approach
to each of the activities undertaken along their life-cycle. Such an approach allows to apply compositional
principles :

1. Open distributed systems are made of independently built components which can be composite of other
components (see [Bidoit 93]). Components can be already existing parts to integrate and systems need to be
extendible to meet openness and distribution (see [Najm 97]). Bottom-up approach allows to focus at some
well-delimited parts of the system at a given time. The many concerns dealt with along open distributed
systems life-cycle can be separated. Also their inherent complexity is better managed in this compositional
way.

2. Open distributed systems are built from parts which have been tailored separately. The verification activities
can not therefore be performed on the whole system. Its is necessary to be able to split the proof obligations



on the parts and run the verification in a compositional way (see [Denker 97], [Fisher 97] and [Kindler 97]).
The properties of the system are inferred from the properties proved on its components.

3. The validation of open distributed systems also enforces the need of a compositional approach. Parts of the
systems should be validated isolated against the requirements they must meet. A special attention should
be payed to validate the integration of the parts for the problematic of feature interaction well-known in
telecommunication systems (see [Cameron 94]). Components that work perfectly apart from each other can
have hazardous behavior when they are put together.

In this paper, we investigate a component-based approach with many different formalisms which are considered
because of the relevance for given activities. For each set of activities, we propose a model of component which
is appropriate to handle them. The transformation between the models is achieved with sufficient traceability
information in order to enable the correspondence for the semantics.

The paper is organized as follows. The section 2 presents the specification model. In section 3, we present
the V&V model and how it can be obtained from the specification model. The section 4 is dedicated the present
the logic we use for verification. In section , we briefly discuss the validation of open distributed systems before
conclusion.

2 The Specification Model

In this section, we present the OF-Class (Object Formalism Class) model we use to describe components of a
distributed system. This model focuses on the separation of the isolated behaviors of components from the
way they are composed to achieve the interactions. Components can act as servers and then they supply their
functionalities to be used by the environment. The use of these functionalities is constrained by the notion of
service. A service describes the behavior expected from the clients when they use the functionalities offered
by a server (see details in section 2.2 below). Client and server roles are not exclusive for a given component.
These roles composed according to the constraints enforced by the service allow to build (sub-)systems from the
components.

The components are described with a class based language. Each class can be instantiated statically or
dynamically. Dynamic creation and destruction of instances are handled by two special operations (the constructor
and the destructor). The former initializes a new instance while the latter destroys it whenever it is called. The
creation of an instance can be performed by another instance while only an instance can call the destructor on
itself.

2.1 Components as Structuration Units for Distribution : the Behavior

A component is an entity which manages some resources in the system and offers services to manipulate them.
A resource is an item with a state an procedures to manipulate it. Each component describes therefore the its
own functionalities and the correct way to use them. The functionalities are described as operations which can
model interrogations or announces according to the ODP classification (see [ODP 95]). An interrogation is an
operation which produces a result for the caller. An announce is an operation which returns an acknowledge
when the request is received and proceed latter the computation without sending a result. Beside the operations,
a component can have automatically triggered operations which are not accessible from the environment. They
are called triggers and are attached with a precondition and they are triggered whenever this precondition is met.
Components can also have ezceptions which are triggered to avoid propagation of faults along the interactions
(see section 2.2). Exceptions also can not be invoked by the environment. Operations and exceptions can have
input and output parameters. There is one special output parameter called the return-code. Announces have
only input parameters. Triggers have no parameters.

All these computations (operations, exceptions and triggers) use the resources of the component. A resource is
equivalent to the notion of attribute in object-orientation. A resource is encapsulated into a component and can
be used only by the services of the component. Resources can be shared by the instances of the component of
duplicated. In this last case, each instance manages one copy of the resource without any consistency consideration
between the many copies.



2.2 From Components to (Sub-)Systems : the Interactions

To make the components work together to achieve properly the functionalities expected from the system, we
specify their interactions. Interactions allow to put together the behaviors of the components in order to build
more elaborated behaviors which are the ones of the system. They are very difficult to handle in open distributed
systems because faults and errors can be propagated from components to affect a whole (sub-)system. Many
solutions dedicated to avoid the propagation of faults and errors have been proposed. We adopt the notion of
contracts realized by offered and required services.

Offered Services

Services are an alternative to the limitations of pre and post conditions widely known in object-orientation. Pre
and post conditions are not sensitive to the history of a component (see [Matsuoka 93] and [Puntigam 97]). They
only determine a given state the component must be in to handle a message. If the component is not in the state,
the incoming message can not yet or no longer be handled. They are not appropriate for open distributed systems
for that reason. In such systems, trading facilities are now widely used (see [ODP 95] and we assume that it is
not a major difficulty to communicate to a client component the behavior expected by the server component as
a contractual constraints.

Each component describe the behavior it expects from its environment. This behavior is describe as allowed
sequences of invocation of the operations of the component. The first benefit from this is that the environment
should stick to these sequences and the component offering the service can perform them correctly. It alleviates
therefore the uncertainty on the behavior of the environment which is very hard to handle in open distributed
systems. Another benefit from the notion of service is that a component can be attached with many offered
services, each of the defining a coherent view on the component and hence a class of clients (e.g. readers and
writers as classes of clients for a component modeling a file system). Each client can by this way have a coherent
partial view on a given server. Finally, to integrate existing parts into a system, what is really needed is only the
way they must be used i.e. the service(s) they offer. One can assume that their internals have been validated
and verified elsewhere and they safely and reliably support the usage prescribed by means of the service(s). An
offered service can contain sequences of operations, alternatives between operations and/or loops on one or many
operations.

Required Services

When a component is acting as client of another one, it can state some expectations on the way their interactions
occur. If these expectations are not met, the client assumes that the server is faulty and runs some exceptional
computations to protect from these eventual faults. The clients subscribe the contract edicted by the offered service
and refine it by stating expectations. So, we make sure that the interactions occurring meet the requirements
of the involved components (clients and servers). The operations of the required service can be invoked in two
ways :

1. synchronous invocation where the client sends the request and blocks waiting for the result. There is a
transfer of the control flow from the client to the server,

2. eager invocation which is a variation of asynchronous invocation (see [Di Blasio 97]). The client sends the
request and goes on processing. The result is sent back by means of an implicit future variable the client
accesses when needed. If it is not available at that moment, the client then blocks waiting.

These two ways of invocation cover the needs at client side in open distributed systems. At the server side,
there is no difference. The server sends an acknowledge for an announce and then hanlde it. On the contrary, it
processes an interrogation and then puts the result at the disposal of the client.

Observation

In the systems we model, we distinguish observable actions from internal ones which are non-observable. The
actions consisting of request issue and acceptance, result delivery and reception happen at interfaces of the com-
ponents. The other actions occurring inside the component during the computations are not observable from the



environment. The observable actions are those modeling the interactions between the components. This distinc-
tion allows us to isolate a set of actions on which we can state and verify properties. Actually, the properties of the
open distributed systems can be expressed as combinations of their observable actions. We give an action-based
semantics to those systems. Their states are not explicitly relevant and we avoid the problems they raise among
which the well-known one of the global state.

2.3 Properties and Hypothesis

For the needs of formal verification, we take into account the expression of properties expected from systems at
the specification level. The system designers should state what is expected from their models. Formal methods
like Petri nets and model-checking allow to compute and verify models of the properties like Biichi automata and
the designers must afford the means necessary to correct the models when and where it is necessary.

The component-based approach advocated in this paper is applied to verification. As one can not master open
distributed system as a whole, we adopt a new approach of expression of properties. They are split over the com-
ponents as local properties ensured and hypotheses relied on. Local properties give some kind of formal signature
of a component. The environment of the component can rely on such a signature as a truthful characterization
of the component. Hypotheses allow to characterize the interaction dependencies between components.

Each component of a distributed system is characterized by a set of local properties and hypotheses it assumes
on its environment. Some of the local properties are implicit because they guarantee correctness criteria for the
component (see sections 4.4.1 and 4.4.2 below). Other local properties can be explicitly stated by the system
designer as a characterization for the component. All the properties are local proof obligations on the component.
The hypotheses give a local characterization of the whole system or its parts for a given component. They should
be proved by the other components. The hypotheses can be matched by the local properties of other components
of the environment or be deduced from them by some proving procedure.

Properties and hypotheses are expressed in a dedicated language using linear temporal logic (LTL) concepts
(Alw for always, Fin for finally, Nezt, Until and logic operators like not for negation, implies for implication, or
for disjunction and and for conjunction) The properties and hypotheses are related to occurrences of observable
actions (see section 2.2). The logic is presented into details in the next section. To illustrate our subject, let us
give the expression of a property which will be revisited again in section 4.4. Each server must ensure reliability
property (see [Sibertin-Blanc 93]) which is expressed as :

—Alw —acc(#op, #sv, #cl, #p_in) = Al (acc(F#op, #sv, #cl, #p-in) = Next Fin res(#op, #sv, #cl, #p_out))

This property will be revisited into full details in section 4.4.1 and the logic used for its expression is fully
explained in section 4.2. Briefly, we can say that it simply means that for each request accepted, a result will be
delivered later.

Properties are grouped in a section announced by the key-word ensures while hypotheses are announced by
assumes. Each hypothesis is prefixed by the statement on component-class-identi fier to indicate the component
which is expected to ensure it.



2.4 An Illustration of Specification Model

Here is given a small example to illustrate the language used at the specification level'. Willingly, we give no
semantics to this example because we want to focus on the presentation of the language rather than on its

application to a case study.
cmpl ISA OFCLASS
DECLARATION {
TYPES {
# Here are declared the types used in this component.
t1 : { eltl , eltl , elt3 };
t2: 0 .. 100 ;

¥

CONSTANTS {
# Here are declared the constants whose domains are the previous types.
cst IN t2 is 10;

}

H
MACRO-LEVEL
IMPORTS {
FROM cmp2
SERVICE serv_reg-cmp2
OPERATION operl_cmp2
ACCEPT-RETURN 0 Exceptionl ;
DEFAULT-RETURN CONTINUE ;

# For the operation operl of the service servl imported from cmp2 the
# current component accepts all results (which are integers) except
# the value O for which it has an exception to run

}
EXPORTS {
SERVICE serv_of f_empl
OPERATIONS {
VOID : Ann ( t1 : paraml IN, tl1 : param2 IN-OUT, t2 : param3 OUT ) ;
t2 : Interrog ( VOID ) ;

H

MANUAL serv-of f-cmpl IS {Ann && Interrog}
INVOCATION-MODE { synch, asynch }

# This exported services has two operations. The sequence authorized to
# use is first Ann then Interrog and loops on that.

}
MICRO-LEVEL

RESOURCES {
# This component has two resources. The first one is of type t1 and is
# duplicated meaning that each instance of the component has one copy of
# the resource. The second one is of type t2 and one copy of the resource
# is shared by the instances.
t1 : resl DUPLICATED ;
t2 : resl DEFAULT 0 SHARED ;

}
INSTANCES {
# the component has two instances, each one gives an initial value for the
# duplicated resource.
instl resl elt2 ;
inst2 resl eltl ;
}
OPERATIONS {
VOID : Ann ( t1 : paraml IN, t1 : param2 IN-OUT, t2 : param3 OUT )
VARIABLES {# Here are declared the local variables of the operation if there is any }

# The body of the operation Ann.

t2 : Interrog ( VOID )
VARIABLES { # Here are declared the local variables of the operation if there is any }

# The body of the operation Interrog.
}

¥

EXCEPTIONS {
VOID : Exceptionl ( # Here are declared the parameters of the exception if there is any )
VARIABLES { # Here are declared the local variables of the exception if there is any }

# The body of the exception Exceptionl.

}

TRIGGERS {
VOID : Triggerl ( VOID )
TRIGGERED-ON TRUE

# The body to execute for ever whenever an instance is created.

}
VOID : Trigger2 ( VOID )
TRIGGERED-ON ( oself.resl == elt3 )

# The body to execute for an instance each time the copy of resl
# owned by that instance reaches the value el3.

}

H
ASSUMES {
# Hypotheses on the environment of the component

+
ENSURES {
# Properties guaranteed by the component

+
ENDOFCLASS

IThe words in capital letters are the key-words of the language. The lines beginning with a # are comments.



3 The V&V Model

The specification model is a component-based one. It makes advanced use of the modularity inherent to distributed
systems. The model presented in this section will support V&V activities for the specification described in the
model presented in (see section 2). The V&V Model is tailored to take into account the benefits from the
modularity enhanced in the specification one. Let us now show how the transformation of the latter model in the
former is performed.

3.1 Principles of the Transformation between Specification and V&V Models

The transformation is based on rules which are applied to each component. They allow us to build an OF-CPN
for each OF-Class. For sake of place and simplicity, the rules are not presented into details herein but they are
sketched to highlight their semantics. We build an OF-CPN modeling the behavior of the component and for
each of its offered services, we build a net modeling the correct use of the operations (see the remainder of the
section).

The V&V model is a modular Petri net model interfaced by places. It allows to model the concepts and
notions presented in (see section 2). Among the interface places, we distinguish from input and output places The
interface by places allows message-based interactions. A message is modeled by a token in an interface place. In
an input place, the token models a request while it models a result in an output place. The transitions in the
pre and post sets of interface places are called interface transitions. They model the observable actions. On the
opposite, all the other transitions model non-observable actions.

3.2 Modular Petri nets

Now we present the OF-CPN (Object Formalism Colored Petri Net) model. In the remainder of the section I' is
a set of elementary color sets. An elementary color set is a finite set of elements called colors. A color domain
can be an elementary color set or a cartesian product of countably many such elementary color sets. Let us give
some preliminary definitions.

DEFINITION 1 (PRELIMINARIES)
L. T"=Ix...xCandI* =, . NI,

n

2. If y1 X ... X 7, is a color domain, 7; denotes the projection on the it" dimension for 1 < i < n.

3. C, is the set of all the constants of the elementary color set vy, Vi the set of variables over the elementary
color set v and Symb., = C, U V,,. For a color domain 1 X ... X ¥, € T', C(yyx..xy,) = Cyy X ... X Oy,
Viixoxym) = Vo X oo X Vo and Symb(y, x.. . x~,) = Symb,, x ... X Symb,, .

4. If a variablev = (v1,...,v,) € (SYM(y;x...xya) \ C(le,_,x%))a a valid binding for that variable is a n-tuple
of constants ¢ = (c1,...,cn) € C(y,x...x~,) such if m;(v) € C,, then m;(v) = m;(c).

5. For a given set S, Bag(S) is the set of multi-sets over S. Roughly speaking, a multi-set is a set where elements
may occur several times. A multi-set over a set S is formally denoted ) ¢ x(s).s where x(s) € IN\ { oo }.
Multi-sets can be equipped with addition, subtraction, multiplication by an integer and partial order (<)3.
The empty multi-set is denoted ().

6. As usually, ®x and x® are the pre and post sets of a place or a transition in a Petri net. If S is a set, *S and
S® are the union of pre and post sets of elements of S.*

2for a multi-dimensional variable, we can have constants for some components (but not for all components, in which case it is a
constant). That is why v is chosen in (SYM(y; x...xyn) \ Cly1x...xvn)) a0nd 00t in Vg, x. xyn)-

3For further details see [Brgan 95].

4Presentation of Petri nets can found in [Murata 89].



Definition and characteristics of an OF-CPN

Now we give the definition and characterization of our modular Petri net model.

DEFINITION 2 (OF-CPN)
An OF-CPN is a 7-tuple (Net, Poce, Pres, Psna; Pyet, Sacc—res» Ssnd—get) where :

1. Net is a colored Petri net (P, T, Dom, Pre, Post, Guard, M) with :

(a) P is the set of places and T the set of transitions and PNT = {,
(b) Dom : PU T — I'™* defines the color domains for places and transitions,

(c) Pre and Post define respectively the backward and forward incidence color functions :
Pre , Post : P x T — Bag(Symbp,m(p)),

(d) Guard defines the guards on transitions :
vVt € T, Guard(t) : Bag(Sympom()) — B = { True, False },

(e) My is a marking for Net i.e. ¥ p € P, Mo(p) € Bag(Cpom(p)),
P,.. C P is a set of places such that ¥V paec € Pace, *Pace = 0 and My (Dace) = (),
P,es C P is a set of places such that ¥ pres € Pres, press = 0 and Mo (pres) = (),
Pgnq C P is a set of places such that ¥V pspg € Pspa, Psnd® = 0 and Mo (psna) = (),
Pyei C P is a set of places such that ¥ pger € Pyet, *pger = 0 and Moy (pget) = (),

the sets Pyec, Pres, Psna and Py are pairwise disjoint,

NS vk N

Sace—res : Pace — Pres is a bijection such that :

(a‘) v (pacc; %accfres(pacc)) € Pacc X Pres and VY t, € .(%accfres(pacc)x
Jty...t,_1 € T such that t; € pee® and t N %1 AP for1 <i<n-—1,

(b) v (pacc: %acc—res(pacc)) € Pyee X Pres and V t1 € pacc”,
dty...t, € T such that t,, € (Sace—res(Pace))” and t N *%ip1 # O for 1 <i<n -1,

(C) v (pacc: %acc—res(pacc)) € Puce X Pres, Pace N .(%acc—res(pacc)) = @,

8. Ssnd—get : Psnda — Pyet is a bijection such that :

(a) v (psnd7 %sndfget(psnd)) S Psnd X Pget and V tn S .(%sndfget (psnd));
Ity ...th—1 € T such that t; € pspd® and t® N %1 AP for 1 <i<n-—1,

(b) v (psnd7 %sndfget(psnd)) S Psnd X Pget and V tl S psnd.7
dty...t, € T such that t,, € (Ssnd—get(Psna))® and t* N g1 # O for 1 <i<n-—1,

(C) v (psnd7 %sndfget(psnd)) S Psnd X Pget; psnd. N .(%sndfget (psnd)) = @

An OF-CPN is a Petri net with some special subsets of places (Pace, Pres, Psna and Pyet) called the interface
places. P,.. is the the set of accept places holding the tokens modeling requests accepted from the environment.
P, s is the the set of result places holding the tokens modeling results issued for requests accepted from the
environment. The bijection Syee—res €nsures the correspondence between incoming requests and outgoing results.

P,pq is the the set of send places holding the tokens modeling requests sent to the environment. P is the
the set of result places holding the tokens modeling results for requests sent to the environment. The bijection
Ssnd—get ensures the correspondence between outgoing requests and incoming results.

The interface transitions are those in Intops = (Pace U *Pres U *Psng U Pye® ). Firing these transitions
consumes or produces tokens in the interface places. We assume that there is a naming facility mapping the
interface places to different names. The interface transitions are named according to the names of places they are
connected with.



The points (7) and (8) of the definition give an operational semantics to OF-CPN. Point (7a) ensures that every
transition producing an outgoing result belongs to a potential sequence containing a transition that consumes an
incoming request. Point (7b) states the symmetrical assertion. Point (8a) is similar to point (7a) for outgoing
requests and incoming results. Point (8b) is the symmetrical of point (8a). Point (8c) ensures that the computation
of request is not immediate i.e. one can not send a request and expect the result by the same transition. This
point has equivalent (point 7c) for incoming requests (it means that even for announces in 2.1, the acknowledge
must not be issued at the same time than the request is accepted). This operational semantics is a structural
one. Behavioral operational semantics is also ensured (see sections 2.3 and 4.4).

DEFINITION 3 (COMPOSITION OF OF-CPNS5)
Two OF-CPNs Oy and Oy can be combined if there is a mapping
C 1 Pspg(O1) U Pyet(01) — Poec(O2) U Pyt (O2) verifying :

L C(Psnd(ol)) C Pacc(02) and C(Pget(ol)) C Pres(02):
2.V p € Pyna(Oy), if C(p) is defined then ¢(S<! (p)) is also defined and ¢(I9* (p)) = 32 (¢(p)),

snd—get snd—get acc—res

3. V p € Pypa(0O1) U Pyet(01), Dom({(p)) = Dom(p).

In the previous configuration, O; is the client and Oz is the server. We can build a union of the two OF-
CPNs and merge each place p with ((p) if the mapping is defined. The resulting OF-CPN is denoted O1 &0,
These merged places are dropped out from the interface places of the composite OF-CPN. This operation can be
performed for one server (resp. one client) and many of its clients (resp. its many servers). Such constructions
allow to build ad-hoc composite components and sub-systems. Its this way we can validate a given scenario
involving many objects (see section 5 below). We call Clients(O1) = { O; such that 3 (o, 0, }. It is the set of
components that can act as clients of O;. Similarly, we call Servers(O;) = { O; such that 3 (o,0, } the set of
components that can act as servers of Oj.

Component Behavior

The general way we handle the component behavior is shown in (see figure 1). This is at a coarse grain the
component we derive from the example given in (see 2.4).

Figure 1: Intuitive Example of an OF-CPN



This OF-CPN in figure 1 models a component which has two operations: an Interrogation and an Announce® .
The Interrogation accepts a requests in the place Pacc2 and computes a results sent back in Pres2. The Announce
accepts a request and issue immediately after an acknowledge. The request is processed after and causes another
one to be sent to a remote component in the place Psnd. The result of this last request is got from the place Pget

and it may trigger an Ezception.

Services

The service of a component gives the sequences allowed whenever calling its operations. They can be expressed
using the two building patterns presented hereafter. Conflicting transitions models operations (or sub-parts of
a service) for which there is an alternative. Compositions of such patterns are possible. The patterns and their
composition can be used within loops to models repetitive behaviors.

Statel Stated

Blocl

State2 Blocl Bloc2

Bloc2

State3 States State6

Figure 2: Model of a Service in Petri nets

Reachability graph of an OF-CPN

The OF-CPN is a Petri net for which we can build a reachability graph. For that purpose, we must give an
abstraction of the environment by putting tokens in the interface places. This abstraction determines what can
happen in the interface places of an OF-CPN. It can therefore be tuned according to a given target environment
but in general, as the color domains of places are finite, we just overload the interface places by all their possible
markings. We build the reachability graph of the overloaded component where the edges are labeled as follows:

1. edges corresponding to firing transitions of Tinterface are labeled according to their status :

(a) if t € *Pyee and (x1,...,21) € Bag(Cpom(y)) is the binding for the firing, then the edge is labeled
acc ~Lz1,...,zk>

(b) if t € Pres® and (y1,...,u1) € Bag(Cpom(r)) is the binding for the firing, then the edge is labeled
Tes Lyi. .y

(c) if t € *Pspa and (z1,...,2m) € Bag(Cpom(s)) is the binding for the firing, then the edge is labeled
snd Lz, 2

(d) if t € Pye® and (s1,...,5,) € Bag(Cpom(t)) is the binding for the firing, then the edge is labeled
get Lsy,....s,-

2. edges corresponding to firing transitions in T" \ Tipterface are labeled 7.

Let us notice that the caller, callee and the selector of an operation are implicit parameters of the call. They
allow to distinguish between the many transitions labelled acc |z, ... 2., 7€8 Lyi,. . y» SRA L2y -, and get L,

This reachability graph models exhaustively the information about the interactions between components while
it hides internal activities (7 labelling). It carries no information about the internal activities of components.
But we assume that such information have been validated by simulation and the reachabilty graph should only
support, verification activities.

8n "

5The long-sized transitions model sub-nets.



4 Verification

The verification is based on model-checking. For each component, we build a reachability graph after overloading
the interface places. We consider from this reachability graph all paths form the initial marking which simulate
(see section 4.1) the reachability graph of the offered service of the component. The other paths are not relevant
because they correspond to faulty behaviors from the environment. However, we keep them to be able to state
about such behaviors.

For the remaining paths, we check for divergences and blocking states. A divergence is an infinite sequence
which has a postfix containing only non-observable actions 7. Such divergences should not occur because they
model infinite loops in which a given component does no longer support its interactions. A blocking state is a
state in which the component is no longer able to handle any kind of action (observable or not). Though they
should be corrected or at least validated as expectations for the system designers (think about components with
final state).

For each remaining path of the reachability graph, we check if it simulates the reachability graph of each
required service whose operation calls occur in the path. This is to check the component to enforce its respect of
the required services (which are offered by other components in the environment). If it is not the case, the faulty
paths are exhibited as possible behaviors violating the interaction constraints. When all the paths are compliant
with interaction constraints, we consider the resulting labeled transition system X for the verification of local
properties and hypotheses.

4.1 Labeled Transition Systems

DEFINITION 4 (LTS)

A labeled transition system (LTS) is a 4-tuple (Intqps U { 7 }, Q, A, qo) where Intqs is an alphabet of observable
actions whereas T denotes a non observable action, Q is a finite set of states, A C Q X Intys U{ 7} x Qisa
set of transitions and qq is the initial state.

For such an LTS, we consider an action-based semantics. A full run in that case is an infinite sequence of

actions (apa1as ...a,...) such that Vi € IN, 3 s;, 5,41 € Q with (s;,a;,si+1) € A.
Given two LTS X1 = (Inters, U { 7 }, @, A, qo,) and X3 = (Inteps, U { 7 }, @, A, go,) such that exists an
injection Inj : Int,ps, —> Intyps,, we call projection of a full run o of Intys, on Intys, the sequence obtained
from o while hiding the actions of (Inteps, \ Inj(Inteps,)). We say that ¥; simulates ¥, if the projections of full
runs of Intyps, are empty sequences or full runs of Int,ps,-

The reachability graph of the modular Petri nets presented in (see section 3.2) can be transformed into LTS.
The occurrence of internal transitions are labeled by 7 and the occurrences of interface transitions are labeled
by the occurring action (req for a request issue, acc for a request acceptance, res for a result issue and get for
a result reception) with the binding of the variables. The information about place markings in the states is no
longer relevant. We extend blocking finite sequences to become infinite. For that, we add another looping action
0 to each state of the reachability graph that has no successor and we add ¢ to the observable actions.

4.2 Temporal Logic : Syntax and Semantics

Temporal logic allows to state about the arrangements of events occurring in a system with relation to flowing
time. The atomic predicates of the logic used here are related to interface transition occurrences. This alphabet
is noted Int,ps. Temporal properties are built over atomic predicates with logic operators and (— for negation,
= for implication, V for disjunction and A for conjunction) linear time operators (O for always, ¢ for finally, X
for next, U for until). We build formula as follows.

DEFINITION 5 (TEMPORAL LOGIC SYNTAX)
1. if t is a transition and (zy,...,z,) € Bag(Symbpom(y)) thent ., . ., is a formulae.

n

2. If ¢ and 1 are formula then :

(a) =¢,p ANy X¢ and ¢ U ¢ are formula.
(b) GNP def ¢ and ¢ <—>def 0.
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(c) oV rdey —(mdA—).
(d) True <=>g4ey OV 0.
(e) False <=g.; —True.
() ¢=¢ rief VY.
(g) o¢p <=aey TrueU ¢.
{h) O¢ def T =g,
Let us give some notations useful for the remainder of the paper. For a maximal sequence o = (toti...t,...), we
note o1 the postfix (¢1...t,...). Recurrently we define o™ = (¢(*=1)" for n > 2 and ¢ =o.
For a maximal sequence o, a transition occurrence t |xop, #sv,#cl,#params and two formula ¢ and ¢ related to
transition occurrences, the semantics is the following.
DEFINITION 6 (TEMPORAL LOGIC SEMANTICS)
1o ': t J«#op,#sv,#cl,#params def 0=t Jfop,sv,chparams 01 0ro = u t Jfop,sv,chparams o1 where the

n
binding op, sv, cl, p_in, p-out is valid for the variables #op, #sv, #cl, #params.

2.0 |= t ~L0p7sv7cl,pm’ams <:def o=1 Jfop,sv,chparams 0p0ro=7m...T t ~L0p7sv7cl,pm’ams g1.

3 0FEPANY gy oFE¢ando =Y.

4. 0= ¢ <=qef It is not the case that o |= ¢.

5 0 X < o E¢.

6. 0 EOp <=4y Vn€ N, o™ | ¢.

7. 0 F0p <4y IneIN, o™ = o.

8 0F¢p Uty <4y IMEIN, 0™ |ty andVi € IN,i < n = o) ¢
9. X =¢ <=4y Vo€EX, o0

The logic we present is a fully interpreted first order logic according to the classification of Emerson (see
[Emerson 90, page 998]) without quantification over temporal operators. For that purpose, in point (1), the
variables can be local or global (always see [Emerson 90]). Local variables can be assigned different values in
different states while global ones are assigned the same values over all states. In the remainder of the paper, we
consider variables as global ones (see Definition and Algorithm 8). For a given formula ¢, we call £(¢) the set of
infinite words o such that o = ¢.

4.3 Model Checking

Its is shown in [Kupferman 96] that the model checking algorithms used for closed systems are not appropriate
for open ones. In this paper, we alleviate the uncertainty regarding the environment by the notion of service. A
service constrains the behaviors expected from the environment of a given component. So we apply classical model
checking techniques while taking into account the distribution. Properties are proved locally on the components
which have strong expectations on the behavior played by their environment.

To verify a property, we build a Biichi automata for the negation of the formulae as shown in (see [Wolper 89]).
We build the synchronization of this Biichi automata and the LTS of the component as a labeled product automata
(see [Esparza 97] where the product is an unlabeled automata). The validity of the property depends on the
emptiness of the product automata.

DEFINITION 7 (LABELED BUCHI AUTOMATA)

A labeled Biichi automata over this alphabet is a tuple B = (2/"tets  Q, A, qo, F) where Q is a finite set of states,
A C Q x 2nters x ) is the transition relation, gy is the initial state and F C Q is the set of accepting states.
An accepting run of the Biichi automata is an infinite sequence o = qotoqit1qs - .. such that (q;,t;,q;+1) € A and
some accepting state appears infinitely often in o.
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The Biichi automata accepts an infinite word totyts ... if there is an accepting run qgotoqiti1qs . ... The set of
infinite words accepted by a Biichi automata B is called the language of the automata and noted £(B).

It is shown in (see [Wolper 89]) that for every LTL formulae ¢, one can build a Biichi automata accepting
the language £(¢). This important result allows us to build a Biichi automata for the negation of a given LTL
formulae and then synchronize it with a transition system to check if the language of the resulting automata is
empty or not. In case of emptiness, the transition system verifies the initial formulae.

DEFINITION AND ALGORITHM 8 (PRODUCT AUTOMATA)
Given a LTS Y = (Intys U { 7 }, Q, A, qo) and a labeled Biichi automata B, = (21™ets Q_ 4, Ay, Qo> Flg),
the product automata is a labeled Biichi automata Bproq = (Qprod Aprods 90,0 Fproa) given by :

1 Qprod = Q X Qﬁd),

2. Appoq is the smallest set defined as follows :

(a‘) if (ql-@;t ~Irop7sv7cl,params;q2_.¢) S A—'(ﬁ; ((I1,t ~Lop,sv,d7paramsa (I20) S A
and 3 qa,,...,q2, € Q such that g2, # q2; and (q2;,7,q2,,,) €EAfor0<i#j<n-—1
then ((QI , q1ﬁ¢):t J«op,sv,clmarams: (112n y q2ﬁ¢)) € Aprod,

(b) if (ql_@, t \L#op,#sm#ch#params; q2-‘¢) € Aﬁ(f’? (qln; t ~Irop7sv7cl,pm’ams; (Iz) €A
where the binding is valid for the global variables
and 3 qiy,-..,q1,_, € Q such that q1, # q; and (q1,, T,q1,,,) EAfor0<i#j<n-1
then ((QI0>q1ﬁ¢), t J«op,sv,clmarams: (Q2, q2ﬁ¢)) € Aprod-

3. qo,,00 = (20, Q0_, ),
4, Fp’r’od = Q X F_.¢.

In the construction of Ap..q, the transition occurrences state about variable bindings (see point 2b above).
Actually, the transitions can have free variables in the Biichi automata B4 but only valid bindings in the LTS X.
The synchronization assumes that for a given transition, the binding in ¥ is valid for the eventual free variables
in B4 (see point 2b above). If there is no free variables in B4, the binding should be the same than in ¥ (see
point 2a above). The product automata does not have transitions with free variables.

The product automata allows to hide non-observable sequences. Its language is empty if the LTS verifies the
formulae ¢. The product automata herein is a labeled one. This allows to exhibit, in case of nonemptiness,
sequences violating the formulae. Such sequences help the system designers to correct their specifications. This
is valuable for implicit properties which are checked but not specified by the designers.

4.4 Implicit Properties for Components

Components have correctness criterion attached to the roles they play (client or server) (see [Sibertin-Blanc 93]).
Each component, acting as a server, has to fulfill some basic properties necessary to its correct operation . As
for servers, each component, acting as a client, has also to fulfill some basic properties necessary to its correct
operation.

4.4.1 Basic Properties of a Server

The first criterion a server must ensure is reliability. It means that it will issue a result for each request it
accepts. Reliability is captured by the following formulae which means that on a given sequence, an operation is
not called or when its is called, the postfix after the call contains the result. This formulae captures reliability
for a sequential object which does not have internal concurrency 6. Actually, the formulae does not ensure the
correspondence between a request and its result. In case of concurrency, the formulae remains valid even if there
is many requests followed by only one result. However, the case of concurrency can be handled easily by a local
clock. This property is referred to as (Qsyv—rer)-

6The same holds for Client Discretion below
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(Server Reliability)
F —O-ace Lgop, s, stct,gpin = 0(ace Lgop s el gtpin = X 0T€S Liop #sv, sl #p_out)

The second necessary criterion for a server is honesty. It means that a server issues results only for previously
accepted requests. Honesty is captured by the following formulae. Once again, the binding is not the same for the
output parameters for the same reason than in the case of reliability. This property is referred to as (@srv—nhon)-

(Server Honesty)
= O(mace Lgop,#sv, et #tp-in UTeS Lpop ssv gl #p_out)

Reliability and honesty are very strong properties that ensure the a server is faithful for its environment.
However, they are somewhat general properties because the statement is to produce “a result” for “each accepted
request” without any expectation on the request and the result unless type correctness. They can be refined
for a given client which issues one “specific request” and expects “one among many specific results”. This tight
correspondence is not ensured by the formulae we gave before. This kind of expectations is stated by the client
as contextual “hypothesis” the server must ensure (see sections 2 and 4.6).

4.4.2 Basic Properties of a Client

The first criterion for a client is discretion. It means that the client does not query a server for fun. Whenever it
requests an operation, it will later get the result produced. This property is referred to as (p—asc)-

(Client Discretion)
F —O-req dgop,#sv,gctpin = O(req dgop ssv,sct,#pin = X © get Lgop s, sl #p_out)

The second criterion for a client is honesty and it has the same meaning than for a server. A client expects
results only for requests it has issued previously. This property is referred to as (pci—non)-

(Client Honesty)
F O-(=req Lgop,#so, el #tpin U g€t Liop,#sv,#cl #tp_out)

These correctness criteria are the equivalent at the client side of those given for a server in section 4.4.1. Each
binding valid for the (pc—g4sc) property implies an hypothesis the client makes on the server (see end of section
4.4.1). Such a binding establishes a tight correspondence between a “given request’” and an “ezpected result. Is
the server able to ensure this correspondence 7 This is a question for which the client needs a positive answer to
ensure that it relies on statements that make sense. This kind of hypotheses are automatically computed during
the verification of the client correctness criteria.

4.5 Explicit Properties and Hypothesis Revisited

The explicit properties are expressed using the temporal logic presented in section 4.2. They should be safety or
fairness properties or complex compositions of such properties (see [Lamport 95]). A safety property states that
“something bad” will never occur while a fairness property states that “something good” will finally occur. The
properties are not related to the states of the components. They are related to the occurrences of transitions and
mainly occurrences of interface transitions (see section 4.4). By the way, the properties are implicitly related to
the states that enable the occurring transitions.

Hypotheses are expressed on the same basis and in a similar way than properties. The only difference is that
the component making the hypothesis indicates the one concerned with it. We denote (Cy F¢, H) to mean that
C1 makes the hypothesis that C> ensures H.

4.6 Compositional Approach to Verification

The compositional approach in verification is similar to the rely/guarantee approach of Unity (see [Colette 93]).
For a given component Oy, we first verify that its behavior is correct for the servers towards whom it is client. In
other terms, for each component acting as a client and for each offered service it uses, we must prove that its LTS
denoted X, simulates the one of the concerned offered service modulo hiding all the actions other than calls to
the operations of that service (see section 4.1).
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Local Proof

Once the behavioral correctness towards the environment verified, we can verify the implicit properties and
hypotheses as well as the explicit ones (see section 4.3). Let us denote P(0) and H(O) respectively the set of
properties and the set of hypotheses for a given component O. The local proof must ensures that :

1. VP € P(O), o | P. The language of P is denoted L(P),
2. VH € H(0), ¥o E H. The language of H is denoted L(H).

This proves that O ensures its local properties and the consequences induced by the hypotheses it assumes on
its environment. It remains to verify whether the consequences on the environment is ensured or not. Actually
components have proof obligations enforced by their environment.

Proof Obligations from the Environment

Here we distinguish safety properties (O-P) from the others (see [Lamport 95]). For safety properties, it is
sufficient to prove them locally on the concerned component. It is the case for (pci—non) and (@srv—non)- Actually,
it is sufficient that the concerned component ensures that the bad happening does not occur. If such a property
is true, its language is the whole LTS of the component and we know that its restrictions on occurrences of
transitions of a given server is simulated by the server. It is a consequence of the correctness criteria toward
the server enforced at the begining of this section. For the others properties, we must ensure that local good
happenings are coherent with what they imply on the environment.

Let us consider the property @ —_gsc. For a given component O;, these formula correspond to the projections
with some rewriting on occurrences of interface transitions of the servers of the language L(pgl_ 4sc)- The rewriting
(acc rewritted into req and res rewritted into get and vice versa) allows us to enforce the request — result
correspondence between a client and a server.

In other words, for the component Oy, we have : ¥ Of € Servers(01), Oy assumes that Of ensures the sequencing
of their interactions as they occur in ﬁ(pgidsc)/lntobs(Of)[acczreq,resgget]7.

This means that we must prove that ¥o: simulates L’(pgid“)/lntobs(ol_s)[acczreweszget], By this way, we prove
that the server O] ensures the hypotheses made on it by the client O;. This should be done for each property
which is not a safety property.

Proof of Interactions

Once we achieve our proof obligations for properties and hypotheses, we should state that the interactions between
the components are safe. Components can require the service of each other without any constraints other than
respect of usage pattern. The relation induced between the component by the offer/require relationship can have
cycles which carry potential deadlocks. We must ensure that these deadlocks are not effective.

After some notations, we give hereafter an algorithm to check for deadlocks. Lets us consider a set of n LTS
denoted LTS? = (T%, A%, Q% ¢}). Modulo rewritting, we consider that the interactions between these LTS is
done along Tsynchro = TN ...NT". We denote Synchrog; jy = {(¢t,7*t,¢%) , (¢f,7*t,¢3)} ® and Synchro =
Ui jer...n Synchrog .

ALGORITHM 9 (DEADLOCK DETECTION ALGORITHM)
Init Q={qp, ..., q0 }; A=0;T=0;

Loop :
it -
there is no element ((¢%,t,q5) , (q1,t,q3)) in Synchro
such that (qi, q{, g3, -+ qn—2) € Q modulo permutations on Q)
Then
Goto End ;

TFirst [acc = req,res = get] denotes the rewritting on the common interfaces. Second, the language is not really a formulae. This
is just a notation facility. _ )
8(qt,7*t,qb) is also noted (gt,t,¢5) because of the hiding of autonomous actions
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Else

Forall ) '
((ai,t,45) , (ai,t,43)) in Synchro
such that (¢¢, ql, g3, - .., gn—2) € Q modulo permutations on Q
Do |
Q: QU{ (qé’ q%, q3, -- - qn—2) } 5
T=Tu{t}; .
A=AU { ((qf, (I{, qs, --- qn—2)’ i?: (q;:_ q%: q3; - -+ Qn—2)) } ;
Synchro = Synchro \ {(q},t,45), (a1, t, @)} ;
Done
Goto Loop ;
End :
If
Synchro #
Then
There are deadlocks caused by interactions ;
Else

There is no deadlock caused by interactions ;

If there are deadlocks, the projections of the paths in A on the i** component give the synchronisations
executed by that component and that lead to the deadlocking state. Such traces allow to refine the interactions
between the components involved in the causes of the deadlocks.

Proof and Correctness of Specifications

A failure on proving local properties (implicit as well as explicit ones) needs a local solution (correction or
refinement of the specification of the component). We can exhibit a sequence violating the property as a diagnostic
to aid the correction. A failure on proving the hypotheses is more complex to handle. It condemns the behavior
of the both components (the one making the postulate and the one not able to ensure it). No correction could be
indicated a priori and it needs most complex solutions which can have impacts on the other parts of the model.

5 Validation

Based on the direct executability of nets, the specification models can be made executable. Executable specifi-
cation models allow to validate a formal specification against the often informal requirements for which it aims
to stand for a solution. One of the net representation we use allows simulation (see [MARS 94]). We have shown
in another paper a way to manage libraries of abstracted components (see [Diagne 97b]). A reduction method
allows to build minimal representations of components which can be used as black-boxes in the validation phase.

The main benefit from simulation is to run the specification model against specific scenarios supplied by the
end-users, the owners of the system or the experts of the application domain. So, they are involved in the design
phase of the system and misconceptions can be corrected earlier. Such misconceptions can not be detected by
formal verification. Actually, verification does not state on the correctness and the accuracy of the specification
as a result of a conception activity. Also, some results of verification (e.g. the failure to prove a property with
the exhibition of a violating sequence) can imply some changes on the models. These changes enforce need to
validate again the specification model against the initial requirements.

Validation allows to involve formal methodists and experts of an application domain who are not necessary
formal methodists in software engineering teams. The formal methodists are responsible for the correct formal-
ization of the models while the application domain experts guarantee the compliance and the accuracy of the
models. The application domain experts can produce scenarios they suspect to produce feature interaction. These
scenarios are validated by building the aggregation of involved components as sub-systems.

We do not state about the open distributed systems life-cycle. At least, we suppose that we begin building
models to match informal requirements. The first draft of the model is then validated by simulation. Building and
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simulating models are performed until reaching a satisfactory level of compliance and coherence. The verification
activity can then be performed and its results can imply modification on the models. Each modification on the
models should be followed by a validation process to ensure that the informal requirements are still matched by
the proposed solution.

6 Conclusions and Future Work

The framework presented in this paper allows to formalize software production processes for open distributed sys-
tems. The framework itself is open in the sense that there is no strong requirements or expectations of the modeling
and specification activities. The only prescription is the structure of the components. The multi-formalisms ap-
proach allows to use for each set of activities the most appropriate component model. The specification is generally
performed by application domain experts who are not always formal methodists. They can use the class-based
language to describe their models as set of OF-Classes. They can express properties for verification and and
supply specific scenarios for validation. Verification and validation can be run using nets in the background. If
formal methodists are involved, they can tailor the V&V model to fit the specificities of the concerned application
domain while ensuring the necessary formal semantics.

Verification and validation give a formal characterization for components in a way that enhances reuse. For
each component, one knows what it does (its offered services), what it requires (its required services), what to
expect from it (its properties) at which cost (its hypotheses). Hypotheses and required services characterize the
environment in which a component can operate. Properties and offered services indicate what would be achieved
and how it would be achieved. The scenarios validated on the component give usefull indications about its
behavior against other components.

This component-based framework has been positively experienced on real size industrial projects concerned
with security dependable properties. It stands also as the basis for an ongoing work about formal specification
methodologies for multi-agent systems. This project involves formal methodists working on nets, experts of
multi-agent systems and experts of telecommunication systems where the agent approach should be applied. The
verification tools are not yet fully implemented and meanwhile,we use Prod to handle the proofs. Prod is a
model-checker based on P/tr nets developped at the Helsinki University of Technology (see [Prod 95]). We plan
to build a modeling approach dedicated to adatative open distributed systems integrating the notions emerging
in aspect-oriented programming (see [Kiczales 97]).
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