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Open distributed systems have inherent complexity related to their control that makes it necessary to have a component-based approach to each of the activities undertaken along their life-cycle. Such an approach allows to apply the divide and conquer principles. In this paper, we propose a framework to undertake the speci cation, the veri cation and the validation (V&V) of distributed systems based on those composition principles. The approach herein uses a speci cation model which allows to describe the components of a distributed system. This model focuses also on the description of the interactions between the components in order to compose them into (sub-)systems. The properties expected are described and veri ed in a compositional way from the components to the (sub-)systems. The speci cation model is automatically transformed into a V&V model which is a modular Petri net standing with an object-based semantics. The veri cation of the properties is performed by model-checking on the reachability graphs computed from these nets. Other Petri nets structural analysis tools can also be applied to these nets as far as they support modular approaches. The compositionality allows to infer global properties from modular ones. Based on the direct executability of nets, the speci cation models are made executable so that they can be validated by simulation. The formal speci cation of a system can be validated against its informal initial requirements while involving its end-users and owners. Speci c scenarios can be animated on the V&V model. This allows to achieve traceability of the con dence levels between the di erent stages of the life-cycle.

Introduction

Open distributed systems have inherent complexity that makes it necessary to have a component-based approach to each of the activities undertaken along their life-cycle. Such an approach allows to apply compositional principles :

1. Open distributed systems are made of independently built components which can be composite of other components (see Bidoit 93]). Components can be already existing parts to integrate and systems need to be extendible to meet openness and distribution (see Najm 97]). Bottom-up approach allows to focus at some well-delimited parts of the system at a given time. The many concerns dealt with along open distributed systems life-cycle can be separated. Also their inherent complexity is better managed in this compositional way. 2. Open distributed systems are built from parts which have been tailored separately. The veri cation activities can not therefore be performed on the whole system. Its is necessary to be able to split the proof obligations on the parts and run the veri cation in a compositional way (see Denker 97], Fisher 97] and Kindler 97]). The properties of the system are inferred from the properties proved on its components. 3. The validation of open distributed systems also enforces the need of a compositional approach. Parts of the systems should be validated isolated against the requirements they must meet. A special attention should be payed to validate the integration of the parts for the problematic of feature interaction well-known in telecommunication systems (see Cameron 94]). Components that work perfectly apart from each other can have hazardous behavior when they are put together. In this paper, we investigate a component-based approach with many di erent formalisms which are considered because of the relevance for given activities. For each set of activities, we propose a model of component which is appropriate to handle them. The transformation between the models is achieved with su cient traceability information in order to enable the correspondence for the semantics.

The paper is organized as follows. The section 2 presents the speci cation model. In section 3, we present the V&V model and how it can be obtained from the speci cation model. The section 4 is dedicated the present the logic we use for veri cation. In section , we brie y discuss the validation of open distributed systems before conclusion.

The Speci cation Model

In this section, we present the OF-Class (Object Formalism Class) model we use to describe components of a distributed system. This model focuses on the separation of the isolated behaviors of components from the way they are composed to achieve the interactions. Components can act as servers and then they supply their functionalities to be used by the environment. The use of these functionalities is constrained by the notion of service. A service describes the behavior expected from the clients when they use the functionalities o ered by a server (see details in section 2.2 below). Client and server roles are not exclusive for a given component. These roles composed according to the constraints enforced by the service allow to build (sub-)systems from the components.

The components are described with a class based language. Each class can be instantiated statically or dynamically. Dynamic creation and destruction of instances are handled by two special operations (the constructor and the destructor). The former initializes a new instance while the latter destroys it whenever it is called. The creation of an instance can be performed by another instance while only an instance can call the destructor on itself.

Components as Structuration Units for Distribution : the Behavior

A component is an entity which manages some resources in the system and o ers services to manipulate them. A resource is an item with a state an procedures to manipulate it. Each component describes therefore the its own functionalities and the correct way to use them. The functionalities are described as operations which can model interrogations or announces according to the ODP classi cation (see ODP 95]). An interrogation is an operation which produces a result for the caller. An announce is an operation which returns an acknowledge when the request is received and proceed latter the computation without sending a result. Beside the operations, a component can have automatically triggered operations which are not accessible from the environment. They are called triggers and are attached with a precondition and they are triggered whenever this precondition is met. Components can also have exceptions which are triggered to avoid propagation of faults along the interactions (see section 2.2). Exceptions also can not be invoked by the environment. Operations and exceptions can have input and output parameters. There is one special output parameter called the return-code. Announces have only input parameters. Triggers have no parameters.

All these computations (operations, exceptions and triggers) use the resources of the component. A resource is equivalent to the notion of attribute in object-orientation. A resource is encapsulated into a component and can be used only by the services of the component. Resources can be shared by the instances of the component of duplicated. In this last case, each instance manages one copy of the resource without any consistency consideration between the many copies.

From Components to (Sub-)Systems : the Interactions

To make the components work together to achieve properly the functionalities expected from the system, we specify their interactions. Interactions allow to put together the behaviors of the components in order to build more elaborated behaviors which are the ones of the system. They are very di cult to handle in open distributed systems because faults and errors can be propagated from components to a ect a whole (sub-)system. Many solutions dedicated to avoid the propagation of faults and errors have been proposed. We adopt the notion of contracts realized by o ered and required services.

O ered Services

Services are an alternative to the limitations of pre and post conditions widely known in object-orientation. Pre and post conditions are not sensitive to the history of a component (see Matsuoka 93] and Puntigam 97]). They only determine a given state the component must be in to handle a message. If the component is not in the state, the incoming message can not yet or no longer be handled. They are not appropriate for open distributed systems for that reason. In such systems, trading facilities are now widely used (see ODP 95] and we assume that it is not a major di culty to communicate to a client component the behavior expected by the server component as a contractual constraints.

Each component describe the behavior it expects from its environment. This behavior is describe as allowed sequences of invocation of the operations of the component. The rst bene t from this is that the environment should stick to these sequences and the component o ering the service can perform them correctly. It alleviates therefore the uncertainty on the behavior of the environment which is very hard to handle in open distributed systems. Another bene t from the notion of service is that a component can be attached with many o ered services, each of the de ning a coherent view on the component and hence a class of clients (e.g. readers and writers as classes of clients for a component modeling a le system). Each client can by this way have a coherent partial view on a given server. Finally, to integrate existing parts into a system, what is really needed is only the way they must be used i.e. the service(s) they o er. One can assume that their internals have been validated and veri ed elsewhere and they safely and reliably support the usage prescribed by means of the service(s). An o ered service can contain sequences of operations, alternatives between operations and/or loops on one or many operations.

Required Services

When a component is acting as client of another one, it can state some expectations on the way their interactions occur. If these expectations are not met, the client assumes that the server is faulty and runs some exceptional computations to protect from these eventual faults. The clients subscribe the contract edicted by the o ered service and re ne it by stating expectations. So, we make sure that the interactions occurring meet the requirements of the involved components (clients and servers). The operations of the required service can be invoked in two ways :

1. synchronous invocation where the client sends the request and blocks waiting for the result. There is a transfer of the control ow from the client to the server, 2. eager invocation which is a variation of asynchronous invocation (see Di Blasio 97]). The client sends the request and goes on processing. The result is sent back by means of an implicit future variable the client accesses when needed. If it is not available at that moment, the client then blocks waiting. These two ways of invocation cover the needs at client side in open distributed systems. At the server side, there is no di erence. The server sends an acknowledge for an announce and then hanlde it. On the contrary, it processes an interrogation and then puts the result at the disposal of the client.

Observation

In the systems we model, we distinguish observable actions from internal ones which are non-observable. The actions consisting of request issue and acceptance, result delivery and reception happen at interfaces of the components. The other actions occurring inside the component during the computations are not observable from the environment. The observable actions are those modeling the interactions between the components. This distinction allows us to isolate a set of actions on which we can state and verify properties. Actually, the properties of the open distributed systems can be expressed as combinations of their observable actions. We give an action-based semantics to those systems. Their states are not explicitly relevant and we avoid the problems they raise among which the well-known one of the global state.

Properties and Hypothesis

For the needs of formal veri cation, we take into account the expression of properties expected from systems at the speci cation level. The system designers should state what is expected from their models. Formal methods like Petri nets and model-checking allow to compute and verify models of the properties like B uchi automata and the designers must a ord the means necessary to correct the models when and where it is necessary.

The component-based approach advocated in this paper is applied to veri cation. As one can not master open distributed system as a whole, we adopt a new approach of expression of properties. They are split over the components as local properties ensured and hypotheses relied on. Local properties give some kind of formal signature of a component. The environment of the component can rely on such a signature as a truthful characterization of the component. Hypotheses allow to characterize the interaction dependencies between components.

Each component of a distributed system is characterized by a set of local properties and hypotheses it assumes on its environment. Some of the local properties are implicit because they guarantee correctness criteria for the component (see sections 4.4.1 and 4.4.2 below). Other local properties can be explicitly stated by the system designer as a characterization for the component. All the properties are local proof obligations on the component. The hypotheses give a local characterization of the whole system or its parts for a given component. They should be proved by the other components. The hypotheses can be matched by the local properties of other components of the environment or be deduced from them by some proving procedure.

Properties and hypotheses are expressed in a dedicated language using linear temporal logic (LTL) concepts (Alw for always, Fin for nally, Next, Until and logic operators like not for negation, implies for implication, or for disjunction and and for conjunction) The properties and hypotheses are related to occurrences of observable actions (see section 2.2). The logic is presented into details in the next section. To illustrate our subject, let us give the expression of a property which will be revisited again in section 4.4. Each server must ensure reliability property (see Sibertin- Blanc 93]) which is expressed as :

:Alw :acc(#op; #sv; #cl; #p in) ) Al (acc(#op; #sv; #cl; #p in) ) Next Fin res(#op; #sv; #cl; #p out))

This property will be revisited into full details in section 4.4.1 and the logic used for its expression is fully explained in section 4.2. Brie y, we can say that it simply means that for each request accepted, a result will be delivered later.

Properties are grouped in a section announced by the key-word ensures while hypotheses are announced by assumes. Each hypothesis is pre xed by the statement on component-class-identifier to indicate the component which is expected to ensure it.

An Illustration of Speci cation Model

Here is given a small example to illustrate the language used at the speci cation level1 . Willingly, we give no semantics to this example because we want to focus on the presentation of the language rather than on its application to a case study. The speci cation model is a component-based one. It makes advanced use of the modularity inherent to distributed systems. The model presented in this section will support V&V activities for the speci cation described in the model presented in (see section 2). The V&V Model is tailored to take into account the bene ts from the modularity enhanced in the speci cation one. Let us now show how the transformation of the latter model in the former is performed.

Principles of the Transformation between Speci cation and V&V Models

The transformation is based on rules which are applied to each component. They allow us to build an OF-CPN for each OF-Class. For sake of place and simplicity, the rules are not presented into details herein but they are sketched to highlight their semantics. We build an OF-CPN modeling the behavior of the component and for each of its o ered services, we build a net modeling the correct use of the operations (see the remainder of the section).

The V&V model is a modular Petri net model interfaced by places. It allows to model the concepts and notions presented in (see section 2). Among the interface places, we distinguish from input and output places The interface by places allows message-based interactions. A message is modeled by a token in an interface place. In an input place, the token models a request while it models a result in an output place. The transitions in the pre and post sets of interface places are called interface transitions. They model the observable actions. On the opposite, all the other transitions model non-observable actions.

Modular Petri nets

Now we present the OF-CPN (Object Formalism Colored Petri Net) model. In the remainder of the section is a set of elementary color sets. An elementary color set is a nite set of elements called colors. A color domain can be an elementary color set or a cartesian product of countably many such elementary color sets. Let us give some preliminary de nitions. 2. If 1 : : : n is a color domain, i denotes the projection on the i th dimension for 1 i n: 3. C is the set of all the constants of the elementary color set , V the set of variables over the elementary color set and Symb = C V . For a color domain 1 : : : n 2 , C ( 1 ::: n) = C 1 : : : C n , V ( 1 ::: n) = V 1 : : : V n and Symb ( 1 ::: n) = Symb 1 : : : Symb n :

4. If a variable v = (v 1 ; : : : ; v n ) 2 (Sym ( 1 ::: n) n C ( 1 ::: n) ) 2 , a valid binding for that variable is a n-tuple of constants c = (c 1 ; : : : ; c n ) 2 C ( 1 ::: n) such if i (v) 2 C i then i (v) = i (c):
5. For a given set S, Bag(S) is the set of multi-sets over S. Roughly speaking, a multi-set is a set where elements may occur several times. A multi-set over a set S is formally denoted P s2S x(s):s where x(s) 2 IN n f 1 g.

Multi-sets can be equipped with addition, subtraction, multiplication by an integer and partial order ( )3 .

The empty multi-set is denoted hi. An OF-CPN is a 7-tuple (Net, P acc , P res , P snd , P get , = acc res , = snd get ) where :

1. Net is a colored Petri net (P, T, Dom, Pre, Post, Guard, M 0 ) with :

(a) P is the set of places and T the set of transitions and P \ T = ;, (b) Dom : P T ! ? de nes the color domains for places and transitions, (c) Pre and Post de ne respectively the backward and forward incidence color functions :

Pre , Post : P T ! Bag(Symb Dom(P) ), (d) Guard de nes the guards on transitions :

8 t 2 T, Guard(t) : Bag(Sym Dom(t) ) ! B = f True, False g, (e) M 0 is a marking for Net i.e. 8 p 2 P, M 0 (p) 2 Bag(C Dom(p) ), 2. P acc P is a set of places such that 8 p acc 2 P acc , p acc = ; and M 0 (p acc ) = hi, 3. P res P is a set of places such that 8 p res 2 P res , p res = ; and M 0 (p res ) = hi, 4. P snd P is a set of places such that 8 p snd 2 P snd , p snd = ; and M 0 (p snd ) = hi, 5. P get P is a set of places such that 8 p get 2 P get , p get = ; and M 0 (p get ) = hi, 6. the sets P acc , P res , P snd and P get are pairwise disjoint, 7. = acc res : P acc ! P res is a bijection such that :

(a) 8 (p acc ; = acc res (p acc )) 2 P acc P res and 8 t n 2 (= acc res (p acc )), 9 t 1 : : : t n 1 2 T such that t 1 2 p acc and t i \ t i+1 6 = ; for 1 i n 1, (b) 8 (p acc ; = acc res (p acc )) 2 P acc P res and 8 t 1 2 p acc , 9 t 2 : : : t n 2 T such that t n 2 (= acc res (p acc )) and t i \ t i+1 6 = ; for 1 i n 1, (c) 8 (p acc ; = acc res (p acc )) 2 P acc P res , p acc \ (= acc res (p acc )) = ;, 8. = snd get : P snd ! P get is a bijection such that :

(a) 8 (p snd ; = snd get (p snd )) 2 P snd P get and 8 t n 2 (= snd get (p snd )), 9 t 1 : : : t n 1 2 T such that t 1 2 p snd and t i \ t i+1 6 = ; for 1 i n 1, (b) 8 (p snd ; = snd get (p snd )) 2 P snd P get and 8 t 1 2 p snd , 9 t 2 : : : t n 2 T such that t n 2 (= snd get (p snd )) and t i \ t i+1 6 = ; for 1 i n 1, (c) 8 (p snd ; = snd get (p snd )) 2 P snd P get , p snd \ (= snd get (p snd )) = ;.

An OF-CPN is a Petri net with some special subsets of places (P acc , P res , P snd and P get ) called the interface places. P acc is the the set of accept places holding the tokens modeling requests accepted from the environment. P res is the the set of result places holding the tokens modeling results issued for requests accepted from the environment. The bijection = acc res ensures the correspondence between incoming requests and outgoing results. P snd is the the set of send places holding the tokens modeling requests sent to the environment. P get is the the set of result places holding the tokens modeling results for requests sent to the environment. The bijection = snd get ensures the correspondence between outgoing requests and incoming results.

The interface transitions are those in Int obs = (P acc P res P snd P get ). Firing these transitions consumes or produces tokens in the interface places. We assume that there is a naming facility mapping the interface places to di erent names. The interface transitions are named according to the names of places they are connected with.

The points ( 7) and ( 8) of the de nition give an operational semantics to OF-CPN. Point (7a) ensures that every transition producing an outgoing result belongs to a potential sequence containing a transition that consumes an incoming request. Point (7b) states the symmetrical assertion. Point (8a) is similar to point (7a) for outgoing requests and incoming results. Point (8b) is the symmetrical of point (8a). Point (8c) ensures that the computation of request is not immediate i.e. one can not send a request and expect the result by the same transition. This point has equivalent (point 7c) for incoming requests (it means that even for announces in 2.1, the acknowledge must not be issued at the same time than the request is accepted). This operational semantics is a structural one. Behavioral operational semantics is also ensured (see sections 2.3 and 4.4).

Definition 3 (Composition of OF-CPNs) Two OF-CPNs O 1 and O 2 can be combined if there is a mapping : P snd (O 1 ) P get (O 1 ) ! P acc (O 2 ) P get (O 2 ) verifying :

1. (P snd (O 1 )) P acc (O 2 ) and (P get (O 1 )) P res (O 2 ); 2. 8 p 2 P snd (O 1 ), if (p) is de ned then (= O1 snd get (p)) is also de ned and (= O1 snd get (p)) = = O2 acc res ( (p)); 3. 8 p 2 P snd (O 1 ) P get (O 1 ), Dom( (p)) = Dom(p):

In the previous con guration, O 1 is the client and O 2 is the server. We can build a union of the two OF-CPNs and merge each place p with (p) if the mapping is de ned. The resulting OF-CPN is denoted O 1 O 2 These merged places are dropped out from the interface places of the composite OF-CPN. This operation can be performed for one server (resp. one client) and many of its clients (resp. its many servers). Such constructions allow to build ad-hoc composite components and sub-systems. Its this way we can validate a given scenario involving many objects (see section 5 below). We call Clients(O 1 ) = f O i such that 9 O1!Oi g. It is the set of components that can act as clients of O 1 . Similarly, we call Servers(O 1 ) = f O i such that 9 Oi!O1 g the set of components that can act as servers of O 1 .

Component Behavior

The general way we handle the component behavior is shown in (see gure 1). This is at a coarse grain the component we derive from the example given in (see 2.4). The Interrogation accepts a requests in the place Pacc2 and computes a results sent back in Pres2. The Announce accepts a request and issue immediately after an acknowledge. The request is processed after and causes another one to be sent to a remote component in the place Psnd. The result of this last request is got from the place Pget and it may trigger an Exception.

Services

The service of a component gives the sequences allowed whenever calling its operations. They can be expressed using the two building patterns presented hereafter. Con icting transitions models operations (or sub-parts of a service) for which there is an alternative. Compositions of such patterns are possible. The patterns and their composition can be used within loops to models repetitive behaviors. 

Reachability graph of an OF-CPN

The OF-CPN is a Petri net for which we can build a reachability graph. For that purpose, we must give an abstraction of the environment by putting tokens in the interface places. This abstraction determines what can happen in the interface places of an OF-CPN. It can therefore be tuned according to a given target environment but in general, as the color domains of places are nite, we just overload the interface places by all their possible markings. We build the reachability graph of the overloaded component where the edges are labeled as follows:

1. edges corresponding to ring transitions of T interface are labeled according to their status :

(a) if t 2 P acc and (x 1 ; : : : ; x k ) 2 Bag(C Dom(t) ) is the binding for the ring, then the edge is labeled acc # x1;:::;x k , (b) if t 2 P res and (y 1 ; : : : ; y l ) 2 Bag(C Dom(t) ) is the binding for the ring, then the edge is labeled res # y1;:::;y l , (c) if t 2 P snd and (z 1 ; : : : ; z m ) 2 Bag(C Dom(t) ) is the binding for the ring, then the edge is labeled snd # z1;:::;zm , (d) if t 2 P get and (s 1 ; : : : ; s n ) 2 Bag(C Dom(t) ) is the binding for the ring, then the edge is labeled get # s1;:::;sn . 2. edges corresponding to ring transitions in T n T interface are labeled .

Let us notice that the caller, callee and the selector of an operation are implicit parameters of the call. They allow to distinguish between the many transitions labelled acc # x1;:::;x k , res # y1;:::;y l , snd # z1;:::;zm and get # s1;:::;sn . This reachability graph models exhaustively the information about the interactions between components while it hides internal activities ( labelling). It carries no information about the internal activities of components. But we assume that such information have been validated by simulation and the reachabilty graph should only support veri cation activities.

Veri cation

The veri cation is based on model-checking. For each component, we build a reachability graph after overloading the interface places. We consider from this reachability graph all paths form the initial marking which simulate (see section 4.1) the reachability graph of the o ered service of the component. The other paths are not relevant because they correspond to faulty behaviors from the environment. However, we keep them to be able to state about such behaviors.

For the remaining paths, we check for divergences and blocking states. A divergence is an in nite sequence which has a post x containing only non-observable actions . Such divergences should not occur because they model in nite loops in which a given component does no longer support its interactions. A blocking state is a state in which the component is no longer able to handle any kind of action (observable or not). Though they should be corrected or at least validated as expectations for the system designers (think about components with nal state).

For each remaining path of the reachability graph, we check if it simulates the reachability graph of each required service whose operation calls occur in the path. This is to check the component to enforce its respect of the required services (which are o ered by other components in the environment). If it is not the case, the faulty paths are exhibited as possible behaviors violating the interaction constraints. When all the paths are compliant with interaction constraints, we consider the resulting labeled transition system for the veri cation of local properties and hypotheses.

Labeled Transition Systems Definition 4 (LTS)

A labeled transition system (LTS) is a 4-tuple (Int obs f g, Q, , q 0 ) where Int obs is an alphabet of observable actions whereas denotes a non observable action, Q is a nite set of states, Q Int obs f g Q is a set of transitions and q 0 is the initial state.

For such an LTS, we consider an action-based semantics. A full run in that case is an in nite sequence of actions (a 0 a 1 a 2 : : : a n : : :) such that 8 i 2 IN, 9 s i ; s i+1 2 Q with (s i ; a i ; s i+1 ) 2 . Given two LTS 1 = (Int obs1 f g, Q, , q 01 ) and 2 = (Int obs2 f g, Q, , q 02 ) such that exists an injection Inj : Int obs2 ! Int obs1 , we call projection of a full run of Int obs1 on Int obs2 the sequence obtained from while hiding the actions of (Int obs1 n Inj(Int obs2 )). We say that 1 simulates 2 if the projections of full runs of Int obs1 are empty sequences or full runs of Int obs2 .

The reachability graph of the modular Petri nets presented in (see section 3.2) can be transformed into LTS. The occurrence of internal transitions are labeled by and the occurrences of interface transitions are labeled by the occurring action (req for a request issue, acc for a request acceptance, res for a result issue and get for a result reception) with the binding of the variables. The information about place markings in the states is no longer relevant. We extend blocking nite sequences to become in nite. For that, we add another looping action to each state of the reachability graph that has no successor and we add to the observable actions.

Temporal Logic : Syntax and Semantics

Temporal logic allows to state about the arrangements of events occurring in a system with relation to owing time. The atomic predicates of the logic used here are related to interface transition occurrences. This alphabet is noted Int obs . Temporal properties are built over atomic predicates with logic operators and (: for negation,

) for implication, _ for disjunction and ^for conjunction) linear time operators (2 for always, for nally, X for next, U for until). We build formula as follows.

Definition 5 (Temporal Logic Syntax)

1. if t is a transition and (x 1 ; : : : ; x n ) 2 Bag(Symb Dom(t) ) then t # x1;:::;xn is a formulae.

2. If and are formula then : Let us give some notations useful for the remainder of the paper. For a maximal sequence = (t 0 t 1 :::t n :::), we note (1) the post x (t 1 :::t n :::). Recurrently we de ne (n) = ( (n 1) ) (1) for n 2 and (0) = .

For a maximal sequence , a transition occurrence t # #op;#sv;#cl;#params and two formula and related to transition occurrences, the semantics is the following.

Definition 6 (Temporal Logic Semantics) 1. j = t # #op;#sv;#cl;#params () def = t # op;sv;cl;params 1 or = : : :

| {z } n t # op;sv;cl;params 1 where the binding op; sv; cl; p in; p out is valid for the variables #op; #sv; #cl; #params. 2. j = t # op;sv;cl;params () def = t # op;sv;cl;params 1 or = : : :

| {z } n t # op;sv;cl;params 1 .

3. j = ^ () def j = and j = . 4. j = : () def it is not the case that j = . 5. j = X () def (1) j = . 6. j = 2 () def 8n 2 IN, (n) j = . 7. j = () def 9n 2 IN, (n) j = . 8. j = U () def 9n 2 IN, (n) j = and 8i 2 IN, i n ) (i) j = . 9. j = () def 8 2 , j = .

The logic we present is a fully interpreted rst order logic according to the classi cation of Emerson (see Emerson 90,page 998]) without quanti cation over temporal operators. For that purpose, in point (1), the variables can be local or global (always see Emerson 90]). Local variables can be assigned di erent values in di erent states while global ones are assigned the same values over all states. In the remainder of the paper, we consider variables as global ones (see De nition and Algorithm 8). For a given formula , we call L( ) the set of in nite words such that j = .

Model Checking

Its is shown in Kupferman 96] that the model checking algorithms used for closed systems are not appropriate for open ones. In this paper, we alleviate the uncertainty regarding the environment by the notion of service. A service constrains the behaviors expected from the environment of a given component. So we apply classical model checking techniques while taking into account the distribution. Properties are proved locally on the components which have strong expectations on the behavior played by their environment.

To verify a property, we build a B uchi automata for the negation of the formulae as shown in (see Wolper 89]). We build the synchronization of this B uchi automata and the LTS of the component as a labeled product automata (see Esparza 97] where the product is an unlabeled automata). The validity of the property depends on the emptiness of the product automata.

Definition 7 (Labeled B uchi Automata)

A labeled B uchi automata over this alphabet is a tuple B = (2 Int obs , Q, , q 0 , F) where Q is a nite set of states, Q 2 Int obs Q is the transition relation, q 0 is the initial state and F Q is the set of accepting states.

An accepting run of the B uchi automata is an in nite sequence = q 0 t 0 q 1 t 1 q 2 : : : such that (q i ; t i ; q i+1 ) 2 and some accepting state appears in nitely often in .

The B uchi automata accepts an in nite word t 0 t 1 t 2 : : : if there is an accepting run q 0 t 0 q 1 t 1 q 2 : : :. The set of in nite words accepted by a B uchi automata B is called the language of the automata and noted L(B).

It is shown in (see Wolper 89]) that for every LTL formulae , one can build a B uchi automata accepting the language L( ). This important result allows us to build a B uchi automata for the negation of a given LTL formulae and then synchronize it with a transition system to check if the language of the resulting automata is empty or not. In case of emptiness, the transition system veri es the initial formulae.

Definition and Algorithm 8 (Product Automata)

Given a LTS = (Int obs f g, Q, , q 0 ) and a labeled B uchi automata B : = (2 Int obs , Q : , : , q 0 : , F : ), the product automata is a labeled B uchi automata B prod = (Q prod ; prod ; q 0 prod ; F prod ) given by : 1. Q prod = Q Q : , 2. prod is the smallest set de ned as follows :

(a) if (q 1 : ; t # op;sv;cl;params ; q 2 : ) 2 : , (q 1 ; t # op;sv;cl;params ; q 20 ) 2 and 9 q 21 ; : : : ; q 2n 2 Q such that q 2i 6 = q 2j and (q 2i ; ; q 2i+1 ) 2 for 0 i 6 = j n 1 then ((q 1 ; q 1 : ); t # op;sv;cl;params ; (q 2n ; q 2 : )) 2 prod , (b) if (q 1 : , t # #op;#sv;#cl;#params , q 2 : ) 2 : , (q 1n , t # op;sv;cl;params , q 2 ) 2 where the binding is valid for the global variables and 9 q 10 ; : : : ; q 1n 1 2 Q such that q 1i 6 = q 1j and (q 1i ; ; q 1i+1 ) 2 for 0 i 6 = j n 1 then ((q 10 ; q 1 : ), t # op;sv;cl;params ; (q 2 ; q 2 : )) 2 prod .

3. q 0 prod = (q 0 , q 0 : ), 4. F prod = Q F : . In the construction of prod , the transition occurrences state about variable bindings (see point 2b above).

Actually, the transitions can have free variables in the B uchi automata B : but only valid bindings in the LTS .

The synchronization assumes that for a given transition, the binding in is valid for the eventual free variables in B : (see point 2b above). If there is no free variables in B : , the binding should be the same than in (see point 2a above). The product automata does not have transitions with free variables.

The product automata allows to hide non-observable sequences. Its language is empty if the LTS veri es the formulae . The product automata herein is a labeled one. This allows to exhibit, in case of nonemptiness, sequences violating the formulae. Such sequences help the system designers to correct their speci cations. This is valuable for implicit properties which are checked but not speci ed by the designers.

Implicit Properties for Components

Components have correctness criterion attached to the roles they play (client or server) (see ). Each component, acting as a server, has to ful ll some basic properties necessary to its correct operation . As for servers, each component, acting as a client, has also to ful ll some basic properties necessary to its correct operation.

Basic Properties of a Server

The rst criterion a server must ensure is reliability. It means that it will issue a result for each request it accepts. Reliability is captured by the following formulae which means that on a given sequence, an operation is not called or when its is called, the post x after the call contains the result. This formulae captures reliability for a sequential object which does not have internal concurrency6 . Actually, the formulae does not ensure the correspondence between a request and its result. In case of concurrency, the formulae remains valid even if there is many requests followed by only one result. However, the case of concurrency can be handled easily by a local clock. This property is referred to as (} srv rel ).

(Server Reliability) j = :2:acc # #op;#sv;#cl;#p in ) 2(acc # #op;#sv;#cl;#p in ) X res # #op;#sv;#cl;#p out )

The second necessary criterion for a server is honesty. It means that a server issues results only for previously accepted requests. Honesty is captured by the following formulae. Once again, the binding is not the same for the output parameters for the same reason than in the case of reliability. This property is referred to as (} srv hon ).

(Server Honesty) j = 2:(:acc # #op;#sv;#cl;#p in U res # #op;#sv;#cl;#p out ) Reliability and honesty are very strong properties that ensure the a server is faithful for its environment. However, they are somewhat general properties because the statement is to produce \a result" for \each accepted request" without any expectation on the request and the result unless type correctness. They can be re ned for a given client which issues one \speci c request" and expects \one among many speci c results". This tight correspondence is not ensured by the formulae we gave before. This kind of expectations is stated by the client as contextual \hypothesis" the server must ensure (see sections 2 and 4.6).

Basic Properties of a Client

The rst criterion for a client is discretion. It means that the client does not query a server for fun. Whenever it requests an operation, it will later get the result produced. This property is referred to as (} cl dsc ).

(Client Discretion) j = :2:req # #op;#sv;#cl;#p in ) 2(req # #op;#sv;#cl;#p in ) X get # #op;#sv;#cl;#p out )

The second criterion for a client is honesty and it has the same meaning than for a server. A client expects results only for requests it has issued previously. This property is referred to as (} cl hon ).

(Client Honesty) j = 2:(:req # #op;#sv;#cl;#p in U get # #op;#sv;#cl;#p out ) These correctness criteria are the equivalent at the client side of those given for a server in section 4.4.1. Each binding valid for the (} cl dsc ) property implies an hypothesis the client makes on the server (see end of section 4.4.1). Such a binding establishes a tight correspondence between a \given request" and an \expected result. Is the server able to ensure this correspondence ? This is a question for which the client needs a positive answer to ensure that it relies on statements that make sense. This kind of hypotheses are automatically computed during the veri cation of the client correctness criteria.

Explicit Properties and Hypothesis Revisited

The explicit properties are expressed using the temporal logic presented in section 4.2. They should be safety or fairness properties or complex compositions of such properties (see Lamport 95]). A safety property states that \something bad" will never occur while a fairness property states that \something good" will nally occur. The properties are not related to the states of the components. They are related to the occurrences of transitions and mainly occurrences of interface transitions (see section 4.4). By the way, the properties are implicitly related to the states that enable the occurring transitions.

Hypotheses are expressed on the same basis and in a similar way than properties. The only di erence is that the component making the hypothesis indicates the one concerned with it. We denote (C 1 `C2 H) to mean that C 1 makes the hypothesis that C 2 ensures H.

Compositional Approach to Veri cation

The compositional approach in veri cation is similar to the rely/guarantee approach of Unity (see Colette 93]).

For a given component O 1 , we rst verify that its behavior is correct for the servers towards whom it is client. In other terms, for each component acting as a client and for each o ered service it uses, we must prove that its LTS denoted O1 simulates the one of the concerned o ered service modulo hiding all the actions other than calls to the operations of that service (see section 4.1).

simulating models are performed until reaching a satisfactory level of compliance and coherence. The veri cation activity can then be performed and its results can imply modi cation on the models. Each modi cation on the models should be followed by a validation process to ensure that the informal requirements are still matched by the proposed solution.

6 Conclusions and Future Work This component-based framework has been positively experienced on real size industrial projects concerned with security dependable properties. It stands also as the basis for an ongoing work about formal speci cation methodologies for multi-agent systems. This project involves formal methodists working on nets, experts of multi-agent systems and experts of telecommunication systems where the agent approach should be applied. The veri cation tools are not yet fully implemented and meanwhile,we use Prod to handle the proofs. Prod is a model-checker based on P/tr nets developped at the Helsinki University of Technology (see Prod 95]). We plan to build a modeling approach dedicated to adatative open distributed systems integrating the notions emerging in aspect-oriented programming (see Kiczales 97]).

  operation oper1 of the service serv1 imported from cmp2 the # current component accepts all results (which are integers) except # the value 0 for which it has an exception to run g EXPORTS f SERVICE serv off cmp1 OPERATIONS f VOID : Ann ( t1 : param1 IN, t1 : param2 IN-OUT, t2 : param3 OUT ) ; t2 : Interrog ( VOID ) ; g MANUAL serv off cmp1 IS fAnn && Interrogg? INVOCATION-MODE f synch, asynch g # This exported services has two operations. The sequence authorized to # use is first Ann then Interrog and loops on that. has two resources. The first one is of type t1 and is # duplicated meaning that each instance of the component has one copy of # the resource. The second one is of type t2 and one copy of the resource # is shared by the instances. t1 : res1 DUPLICATED ; t2 : res1 DEFAULT 0 SHARED ; g INSTANCES f # the component has two instances, each one gives an initial value for the # ( t1 : param1 IN, t1 : param2 IN-OUT, t2 : param3 OUT ) VARIABLES f# Here are declared the local variables of the operation if there is any g f # The body of the operation Ann. g t2 : Interrog ( VOID ) VARIABLES f # Here are declared the local variables of the operation if there is any g f # The body of the operation Interrog. g g EXCEPTIONS f VOID : Exception1 ( # Here are declared the parameters of the exception if there is any ) VARIABLES f # Here are declared the local variables of the exception if there is any g f # The body of the exception Exception1. g g TRIGGERS f VOID : Trigger1 ( VOID ) TRIGGERED-ON TRUE f # The body to execute for ever whenever an instance is created. g VOID : Trigger2 ( VOID ) TRIGGERED-ON ( oself.res1 == elt3 ) f # The body to execute for an instance each time the copy of res1 # owned by that instance reaches the value el3.

6.

  As usually, x and x are the pre and post sets of a place or a transition in a Petri net. If S is a set, S and S are the union of pre and post sets of elements of S. 4 De nition and characteristics of an OF-CPN Now we give the de nition and characterization of our modular Petri net model. Definition 2 (OF-CPN)

Figure 1 :

 1 Figure 1: Intuitive Example of an OF-CPN

Figure 2 :

 2 Figure 2: Model of a Service in Petri nets

  (a) : ; ^ X and U are formula. (b) ^ () def and :: () def .

  The framework presented in this paper allows to formalize software production processes for open distributed systems. The framework itself is open in the sense that there is no strong requirements or expectations of the modeling and speci cation activities. The only prescription is the structure of the components. The multi-formalisms approach allows to use for each set of activities the most appropriate component model. The speci cation is generally performed by application domain experts who are not always formal methodists. They can use the class-based language to describe their models as set of OF-Classes. They can express properties for veri cation and and supply speci c scenarios for validation. Veri cation and validation can be run using nets in the background. If formal methodists are involved, they can tailor the V&V model to t the speci cities of the concerned application domain while ensuring the necessary formal semantics.Veri cation and validation give a formal characterization for components in a way that enhances reuse. For each component, one knows what it does (its o ered services), what it requires (its required services), what to expect from it (its properties) at which cost (its hypotheses). Hypotheses and required services characterize the environment in which a component can operate. Properties and o ered services indicate what would be achieved and how it would be achieved. The scenarios validated on the component give usefull indications about its behavior against other components.

The words in capital letters are the key-words of the language. The lines beginning with a # are comments.

for a multi-dimensional variable, we can have constants for some components (but not for all components, in which case it is a constant). That is why v is chosen in (Sym ( 1 ::: n) n C ( 1 ::: n) ) and not in V ( 1 ::: n) :

For further details seeBrgan 95].

Presentation of Petri nets can found inMurata 89].

The long-sized transitions model sub-nets.

The same holds for Client Discretion below

Local Proof

Once the behavioral correctness towards the environment veri ed, we can verify the implicit properties and hypotheses as well as the explicit ones (see section 4.3). Let us denote P(O) and H(O) respectively the set of properties and the set of hypotheses for a given component O. The local proof must ensures that :

1. 8 P 2 P(O); O j = P. The language of P is denoted L(P), 2. 8 H 2 H(O); O j = H. The language of H is denoted L(H).

This proves that O ensures its local properties and the consequences induced by the hypotheses it assumes on its environment. It remains to verify whether the consequences on the environment is ensured or not. Actually components have proof obligations enforced by their environment.

Proof Obligations from the Environment

Here we distinguish safety properties (2:P ) from the others (see Lamport 95]). For safety properties, it is su cient to prove them locally on the concerned component. It is the case for (} cl hon ) and (} srv hon ). Actually, it is su cient that the concerned component ensures that the bad happening does not occur. If such a property is true, its language is the whole LTS of the component and we know that its restrictions on occurrences of transitions of a given server is simulated by the server. It is a consequence of the correctness criteria toward the server enforced at the begining of this section. For the others properties, we must ensure that local good happenings are coherent with what they imply on the environment.

Let us consider the property } cl dsc . For a given component O 1 , these formula correspond to the projections with some rewriting on occurrences of interface transitions of the servers of the language L(} O1 cl dsc ). The rewriting (acc rewritted into req and res rewritted into get and vice versa) allows us to enforce the request result correspondence between a client and a server.

In other words, for the component O 1 , we have : 8 O s i 2 Servers(O 1 ), O 1 assumes that O s i ensures the sequencing of their interactions as they occur in L(} O1 cl dsc ) =Int obs (O s i ) acc req;res get] 7 . This means that we must prove that O s i simulates L(} O1 cl dsc ) =Int obs (O s i ) acc req;res get] , By this way, we prove that the server O s i ensures the hypotheses made on it by the client O 1 . This should be done for each property which is not a safety property.

Proof of Interactions

Once we achieve our proof obligations for properties and hypotheses, we should state that the interactions between the components are safe. Components can require the service of each other without any constraints other than respect of usage pattern. The relation induced between the component by the o er/require relationship can have cycles which carry potential deadlocks. We must ensure that these deadlocks are not e ective.

After some notations, we give hereafter an algorithm to check for deadlocks. Lets us consider a set of n LTS denoted LTS i = (T i ; i ; Q i ; q i 0 ). Modulo rewritting, we consider that the interactions between these LTS is done along T synchro = T i \ : : : \ T n . We denote Synchro (i;j) = f(q i 1 ; ? t; q i 2 ) , (q j 1 ; ? t; q j 2 )g 8 and Synchro = S i;j21:::n Synchro (i;j) .

Algorithm 9 (Deadlock Detection Algorithm) Init Q = f q i 0 , . . . , q n 0 g ; = ; ; T = ; ;

Loop :

If there is no element ((q i 1 ; t; q i 2 ) , (q j 1 ; t; q j 2 )) in Synchro such that (q i 1 , q j 1 , q 3 , : : :, q n 2 ) 2 Q modulo permutations on Q

Then

Goto End ;

7 First acc req; res get] denotes the rewritting on the common interfaces. Second, the language is not really a formulae. This is just a notation facility.

8 (q i 1 ; ? t; q i 2 ) is also noted (q i 1 ; t; q i 2 ) because of the hiding of autonomous actions Else Forall ((q i 1 ; t; q i 2 ) , (q j 1 ; t; q j 2 )) in Synchro such that (q i 1 , q j 1 , q 3 , : : :, q n 2 ) 2 Q modulo permutations on Q Do Q = Q f (q i 2 , q j 2 , q 3 , : : :, q n 2 ) g ; T = T ftg ; = f ((q i 1 , q j 1 , q 3 , : : :, q n 2 ), t, (q i 2 , q j 2 , q 3 , : : :, q n 2 )) g ; Synchro = Synchro n f(q i 1 ; t; q i 2 ), (q j 1 ; t; q j 2 )g ; Done Goto Loop ; End : If Synchro 6 = ;

Then There are deadlocks caused by interactions ; Else There is no deadlock caused by interactions ;

If there are deadlocks, the projections of the paths in on the i th component give the synchronisations executed by that component and that lead to the deadlocking state. Such traces allow to re ne the interactions between the components involved in the causes of the deadlocks.

Proof and Correctness of Speci cations

A failure on proving local properties (implicit as well as explicit ones) needs a local solution (correction or re nement of the speci cation of the component). We can exhibit a sequence violating the property as a diagnostic to aid the correction. A failure on proving the hypotheses is more complex to handle. It condemns the behavior of the both components (the one making the postulate and the one not able to ensure it). No correction could be indicated a priori and it needs most complex solutions which can have impacts on the other parts of the model.

Validation

Based on the direct executability of nets, the speci cation models can be made executable. Executable specication models allow to validate a formal speci cation against the often informal requirements for which it aims to stand for a solution. One of the net representation we use allows simulation (see MARS 94]). We have shown in another paper a way to manage libraries of abstracted components (see Diagne 97b]). A reduction method allows to build minimal representations of components which can be used as black-boxes in the validation phase.

The main bene t from simulation is to run the speci cation model against speci c scenarios supplied by the end-users, the owners of the system or the experts of the application domain. So, they are involved in the design phase of the system and misconceptions can be corrected earlier. Such misconceptions can not be detected by formal veri cation. Actually, veri cation does not state on the correctness and the accuracy of the speci cation as a result of a conception activity. Also, some results of veri cation (e.g. the failure to prove a property with the exhibition of a violating sequence) can imply some changes on the models. These changes enforce need to validate again the speci cation model against the initial requirements.

Validation allows to involve formal methodists and experts of an application domain who are not necessary formal methodists in software engineering teams. The formal methodists are responsible for the correct formalization of the models while the application domain experts guarantee the compliance and the accuracy of the models. The application domain experts can produce scenarios they suspect to produce feature interaction. These scenarios are validated by building the aggregation of involved components as sub-systems.

We do not state about the open distributed systems life-cycle. At least, we suppose that we begin building models to match informal requirements. The rst draft of the model is then validated by simulation. Building and