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How to compute minimal bases using Pad�e approximantsM.P Stuchlik-Qu�er�eLIP6 and LMC-IMAGquere@calfor.lip6.frAbstractIn this article, we present a new method to computeminimal bases for the kernel of a polynomial matrix.This method uses the computation of Pad�e approx-imants for the special case where one does not lookafter an approximation but an exact value. For apolynomial matrix of order m and degree d, its costis about O(m4d2) which may be better of the cost ofa previous method by Beleen and Van Dooren [4].1 IntroductionA minimal base for a submodule M of Kp[z]is a base which components have minimal de-grees [5]. The computation of a minimal basefor the kernel of a polynomial matrixM (z) maybe useful to establish the singular part of a ma-trix pencil (whenM (z) is a matrix pencil) [6], orto �nd some special form for polynomial matrixlike column reduced form [7].A previous method to compute such a base, wasintroduced by Beelen and Van Dooren [4]. Tocompute a minimal bases for the Kernel of apolynomial matrix M (z) of order m and degreed, they turn the problem into a pencil problemof order md. Then, they use classical algorithmsto deal with matrix pencil [11, 10, 3]. If thecomplexity of these last algorithms is quite good,this method lost e�ciency by considering that amatrix problem of order m and degree d is apencil problem of order md.Our method has a completly di�erent approach.It is based on the computation of Pad�e approx-imants for the matrix M (z), i.e. a base for thesolutions of the equationM (z)p(z) = O(zN ) (1)

where p(z) is a polynomial vector and N is calledthe approximation order. Using the fact thatM (z) is not a matrix which components are for-mal series like in problem of Pad�e approximants,but a polynomial matrix, we know that it existsan approximation order N such that a base forthe solution of (1) describe the solutions of min-imal degrees ofM (z)p(z) = 0:Moreover, recents methods, from Beckermannand Labahn [1] and Van Barel and Bultheel [9],to compute vector Pad�e approximant, give thesolution in the form of special bases which looklikeminimalbases. Using these methods special-ized to our case, we �nd a cost about O(m4d2)arithmetic operations.In the section 2 of this paper we give the de�ni-tion and some properties of a minimal base. Thesection 3 is devoted to the description of the vec-tor Hermite-Pad�e problem and to its solutionsgiven by [8, 9, 1]. These solutions are given intothe form of s-reduced bases or �-bases. We showthat this kind of bases are generalizations for thenotion of minimal bases. Then, in section 4, wegive results which allow to use the algorithm of[1] to compute a minimal base for the kernel ofa polynomial matrix. Section 5 give a simpli�eddescription of the algorithm of [1] specialized toour case. We give a specialization of the cost forthis algorithm in section 6.2 Minimal basesIn this section we recall the de�nition and someproperties of a minimal base. We de�ne the col-umn reduced form for a polynomial matrix andgive the equivalence with the notion of minimalbase.1



De�nition 1 Given B = (b1(z); :::;bm(z)) abase for a Kp[z]-submodule M. The base B isminimal if mXi=1 deg(bi)is minimal over the bases of M.Minimal bases for a submodule M are notuniquely de�ned, but all of them have the sameset of degrees fdeg(bi); 1 � i � mg. These de-grees are sometime called the Forney dynamicalindices [5].We will often describe a baseB = (b1(z); :::;bm(z))using the matriceB(z) = � b1(z) ::: bm(z) �De�nition 2 Given a (n;m) polynomial matrixP (z). The degrees di; 1 � i � m of the ith col-umn of P (z) are called the column degrees ofP (z). Let Phc be the highest column degree coef-�cient matrix, a matrix whose ith column com-prise the coe�cients of zdi in the ith column ofP (z). The matrix P (z) is said to be column re-duced if rank(P (z)) = rank(Phc).Property 1 The column of a (p;m) polyno-mial matrix B(z) describe a minimal base i�rank(B(z)) = m and the matrix B(z) is columnreduced.3 Pad�e approximantsThe vector Hermite-Pad�e problem is describedin [1] asProblem 1 Let m, p, and N be integers, m,p � 2. Let F1(z), F2(z), ..., Fm(z) be inKp[[z]], and let n= (n1; :::; nm) be a multiin-dex. Find linearly independant polynomial tu-ples (p1(z); :::; pm(z)), pi(z) 2 K[z], such thatdeg(pi(z)) � ni; 1 � i � m andF1(z)p1(z) + :::+ Fm(z)pm(z) = zNR(z) (2)where R(z) 2 Kp[[z]].

Remark : If F (z) = [F1(z) ::: Fm(z)] is a poly-nomialmatrix (and not a matrix of formal powerseries) and if R(z) = 0, then [p1(z) ::: pm(z)]t isan element of Ker(F (z)). This is the way wewill use solution of the vector Hermite-Pad�e ap-proximant problem to compute a minimal basefor the kernel of a polynomial matrix in the nextsection.The solution to this problem is given into theform of s-reduced base [9] or �-base, � = N , [1]for the Kp[z] submodule de�ned by the equation(2). In [7] it is shown that the two notions (s-reduced base and �-base) are equivalent in thecase of vector Hermite-Pad�e problem. Althoughthe components of such a base do not satisfy thedegree conditions, they allow to describe all thesolutions of the vector Hermite-Pad�e problem [9,1].We will describe now the notion of s-reducedbase, then it will be obvious that it is a general-ization of the notion of minimal base.De�nition 3 ([9]) Given a multiindex s=(s1; :::; sm), the s-degree of a polynomial tuplep(z) = (p1(z); :::; pm(z)) is de�ned ass-deg(p) = maxfdeg(pi) + sigThe s-highest degree coe�cient of a polynomialtuple (p1(z); :::; pm(z)) with s-degree � is the m-tuple whose ith component is the coe�cient ofz��si in pi(z).A set of polynomial m-tuple is s-reduced i� thes-highest degree coe�cients are linearly indepen-dent.As we said before, this de�nition is a generaliza-tion of the notion of minimal base. As a matterof fact, if s= (0; 0; :::; 0), the s-degree of a poly-nomial tuple is its usual degree.Example 1 Given a multiindex s and the ma-trix P (z) = � p1 p2 � = � 2z z21 2z �we want to know if the columns of P (z) are s-reduced. Assume that s= (1; 2), thens-deg(p1) = maxf1 + 1; 0 + 2g = 2s-deg(p2) = maxf2 + 1; 1 + 2g = 32



and the matrix whose columns are the s-highestdegree coe�cients of the columns of P (z) isgiven by � 2 11 2 �So the columns of P (z) are s-reduced. Assumenow that s= (0; 0), thens-deg(p1) = deg(p1) = 1s-deg(p2) = deg(p2) = 2and the matrix whose columns are the s-highestdegree coe�cients of the columns of P (z) is Phc(see de�nition 2)� 2 10 0 �The columns of P (z) are not s-reduced, or,equivalently, P (z) is not column reduced.In [9, 1], the solution to the vector Hermite-Pad�eproblem of order N is given by a s-reduced baseof the submodule SN de�ned by the equation(2). The components of such a base do not ver-ify the problem because they do not verify thedegree conditions. Nevertheless, they allow toparametrize all solutions of the problem [9, 1],this property is a consequence of the next theo-rem.Theorem 1 ([9]) Given an s-reduced basis fora submodule S with basis elements bi having s-degree �i, all the elements of the submodule Shaving s-degree � � can be parametrized uniquelyas mXi=1 cibiwith ci a polynomial of degree � � � �i.In this paper, we are not interested in thisparametrization but in the property of degrees(or s-degrees) minimality along an s-reducedbase for SN . As a matter of fact, SN containsthe solutions ofF1(z)p1(z) + :::+ Fm(z)pm(z) = 0 (3)In the next section, we will show that if F (z)is a polynomial matrix, for some N and for s=(0; 0; :::; 0), an s-reduced base of SN contains aminimal base for the submodule de�ned by theequation (3).

4 Computation of minimalbasesGiven a polynomial matrix F (z), we want tocompute a minimal base for its kernel, or, whichis the same, to �nd a column reduced matrixP (z), of maximal rank, such thatF (z)P (z) = 0The next theorem allows to compute this baseusing computation of an s-reduced base for thevector Hermite-Pad�e approximation of F (z).Theorem 2 Let s= (0; 0; :::; 0) and F (z) be a(p;m) polynomial matrix of degree d. Let BNbe a s-reduced base for the vector Hermite-Pad�eproblem of F (z) of order N . IfN � maxfdk; 1 � k � lg+ d+ 1where l is the dimension of ker(F (z)) and the dkare the degrees of the vectors of a minimal basefor ker(F (z)), then BN contains a minimal baseof ker(F (z)).Proof : Assume that d1 is the minimal degreealong the vectors of a minimal base of ker(F (z)).We will proove �rst that BN contains a vectorb of degree d1 such that F (z)b(z) = 0. Letp1 be a vector of ker(F (z)) of degree d1. Ass= (0; 0; :::; 0), we haves-deg(p1) = deg(p1) = d1We note b1, b2, ..., bm, the vectors of BN and�1, �2, ..., �m, their degrees. Using theorem 1,we know that there exist polynomials c1, c2, ...,cm such thatdeg(ci) � d1 � �i ; 1 � i � m andp1 = mXi=1 cibiAs p1 6= 0, it exist h such that deg(ch) � 0 thatis d1 � �h. While bh is a vector of BN , it veri�esF1(z)bh1(z) + :::+ Fm(z)bhm(z) = zNR(z)But on the left hand side of the equation wehave a polynomial of maximal degree d1 +3



deg(F (z)) = d1 + d and, by assumption, N �d1 + d+ 1. SoF1(z)bh1(z) + :::+ Fm(z)bhm(z) = 0and �h = d1 because d1 is minimal.Now, assume that BN contains k � 1 vectors ofa minimal base of ker(F (z)) of minimal degreesd1, d2, ..., dk�1. We note b1, b2, ..., bk�1 thesevectors. Let pk be a vector of minimal degree dk,linearly independant from the bi, 1 � i � k� 1,which veri�es F (z)pk = 0. We have to show thatit exist a vector b in BN , of degree dk, whichveri�es F (z)b = 0. There exist polynomials ~c1,~c2, ..., ~cm such thatdeg(~ci) � dk � �i ; 1 � i � m andpk = mXi=1 ~cibiAs pk is linearly independant from the bi, 1 �i � k�1, there exists at least one element b~h inBN such that ~h > k � 1 and dk � �~h. While b~his a vector of BN , it veri�esF1(z)b~h1(z) + :::+ Fm(z)b~hm(z) = zNR(z)But on the left hand side of the equation we havea polynomial of maximal degree dk + d and, byassumption, N � dk + d+ 1. SoF1(z)b~h1(z) + :::+ Fm(z)b~hm(z) = 0and �~h = dk because dk is minimal. 2The next theorem allows to give an upper boundfor N which depend only on the initial datas.Theorem 3 Let F (z) be a (p;m) polynomialmatrix of degree d. Assume that a minimalbase of ker(F (z)) possess l vectors of degrees dk,1 � k � l, thenlXk=1dk � (m� 1)dProof : If F (z)) is a matrix pencil (d = 1), thedk, 1 � k � l are the right kronecker indices ofF (z) [6]. Then, using the normal form of F (z)we can easily proove the theorem.Now assume that F (z) = F0 + F1z + :::+ Fdzd.

Consider the linearised pencil de�ned by :z 26664 Idm . . . Idm Fd 37775+26664 �Idm . . . �IdmF0 ::: ::: Fd�1 37775The sum of the degrees of the vectors of a mini-mal base for the kernel of this pencil is less thanmd� 1. Moreover, (b1; :::;bl) is a minimal basefor F (z) i� the columns of2664 b1 b2 ::: blzb1 zb2 ::: zblzd�1b1 zd�1b2 ::: zd�1bl 3775form a minimal base for the linearised pencil.We havelXi=1(deg(bi + (d� 1)) � md� 1thus, if we assume that l > 0, that is ker(F (z)) 6=;, lXi=1(deg(bi)) � md� 1� l(d� 1)� (m � 1)d 2Using the algorithms given by [9, 1] to computesolutions of the vector Hermite-Pad�e problem fora (p;m) polynomial matrix F (z) of degree d, foran order � md + 1, it is possible to obtain aminimal base for ker(F (z)). In the next section,we present a specialization of an algorithm by[1].5 AlgorithmThe algorithm described here is a matriciel ver-sion of the algorithm given by [1] to compute�-base for a matrix F (z) of formal series. Aswe have said before, in our context, �-base isthe same notion as s-reduced base. Moreover4



we specify this algorithm to our particular caseof computation of minimal base.This is an iterative algorithm, it start with thebase given by the columns of the identity matrix,thus the result is of order 0. Then, at the step i,it transform the base of order i to another oneof order i + 1.The input of this algorithm is a polynomial ma-trix F (z), the matrix P (i)(z) = [p(i)1 ::: p(i)m ] de-notes a s-reduced base of order i for F (z) (wheres = (0; :::; 0)). The integers d(i)k for k = 1; :::;mdenote the respective degrees of the p(i)k . Thematrix C(i) is the constant matrix such thatF (z)P (i)(z) = C(i)zi +O(zi+1):AlgorithmInput: F (z), a (p;m) polynomial matrix.N , the order.Initializations:P (0)(z) = [p(0)1 ::: p(0)m ] = Idmd(0)k = 0 for k = 1; :::;mIterative step:For i = 0; 1; :::;N doFor r = 1; 2; :::p doz�iF (0)P (i)(0) = C(i) = [c(i)kl ]�i = fl : cr;l 6= 0gIf �i 6= fg ThenLet � 2 �i such thatd(i)� = minfd(i)l ; l 2 �ig.(* elimination *)For k = 1 to m, k 6= � dopk = pk � ci;kci;�p�EndDo(* multiplication *)p� = zp�d(i)� = d(i)� + 1EndIfEndDoFor k = 1; :::;m dop(i+1)k = p(i)kP (i+1) = [p(i+1)1 ::: p(i+1)m ]d(i+1)k = d(i)kEndDoEndDoOutput: P (N)(z) an order N s-reduced base forF (z), where s = (0; :::; 0).According to theorems 2 and 3, we know that

if N � md + 1, the base P (N)(z) contains aminimal base for ker(F (z)).The cost given in [1] does not consider the par-ticularity of the problem when s = (0; :::; 0) andF (z) is a polynomial matrix. So we will givea specialization of this cost in our case in thenext section. On the other hand, in [1], the au-thors use a kind of linearization of the problem(and then of the algorithm), and present a fastalgorithm based on recursivness and FFT fastpolynomial multiplications. We have not �ndyet a way to specialize this last algorithm butwe hope that it could reduce the cost given inthe next section.6 CostTheorem 4 Given a (p;m) polynomial matrixof degree d, F (z), the computation of a mini-mal base for ker(F (z)), using the Pad�e approx-imant method has a complexity of O(m2p2d2)arithmetic operations (O(m4d2) if p � m).To proove this theorem we will use theLemma 1 For the step i of the algorithm, theresidual F (z)P (i)(z) is into the form:C(i)zi + Ci+1zi+1 + :::+Ci+dzi+d:Proof (lemma 1) : The property is true for i =0. Assume that it is true for i�1, we will prooveit for i.For a given r, the column p� of P (i�1) is calledthe pivot. When a column is a pivot, it is mul-tiplied by z and its degree increase, then (at thestep i) a column p of P (i�1) may be the pivot forone r 2 [1; p] only. Moreover, when a column ofP (i�1) is a pivot, it will not take place anymorein the operation called \elimination" in the algo-rithm (during the step i). Finally, an operationof elimination between a pivot (whose residual isof degree i�1+d) and another column of P (i�1)of degree i�1+d does not change the degree ofthese last column. So, for a given r:- When a column p is a pivot, the residualfor this column is changed from :ci�1zi�1 + :::+ ci�1+dzi�1+d5



to ci�1zi + :::+ ci�1+dzi+dand then does not change anymore duringthe step i.- When a columnp is not a pivot, the residualfor this column keep the formci�1zi�1 + :::+ ci�1+dzi�1+dbut at the end of the step i we know thatci�1 = [0 ::: 0]t. 2Proof (theorem 4) : To proove the theorem wewill show that for a vector of the base, there wereonly p(d+ 1) eliminations. As such eliminationcosts at most ((m�1)d)p arithmetic operations,the total cost will be about O(m2p2d2) arith-metic operations.In fact, the degree of the residual for a columnof P (i) is bounded by i+ d� (nel mod p) wherenel is the number of eliminations on the consid-ered column from the step 0 to the step i of thealgorithm. This is true for nel = 0 (see lemma1). Assume that nel = 0 and that the residualof the considered column at the step i is on theform cizi + :::+ ci+dzi+dWe call principal index , the index of the �rstcomponent of ci which is not equal to zero. Dur-ing the step i + 1 of the algorithm, for r = 1 tor =  �1, it does not make an alteration for theconsidered column. Then, when r =  there aretwo possibilities:- the considered column is the pivot, so does not change and nel = 0 until the endof the step i+ 1.- the considered column is not the pivot, sothere is an elimination on it, nel = 1 and increase exept if all the components of citurn out to 0: in this case, the degree of theresidual, at the end of the step i+ 1, is noti + 1 + d but i + d.So, in the worst case for a column, at each elim-ination on it,  increase to  + 1 until nel + 1 =

 = p. Then, at the next elimination, the de-gree of the residual will be nel mod p = 1 lessthan the \theorical" one (see lemma 1) for theconsidered step. This will be exactly the samefor nel mod p � 1.Finaly, if nel = p(d + 1) for a column of thebase, the degree of the residual for this columnis bounded by i � 1 at the step i so it is equalto 0 and the column will not have eliminationanymore. 27 ConclusionIn this paper, we give a new method to computea minimal base for the kernel of a polynomialmatrix. Given a polynomialmatrix of dimensionm and degree d, this new method costs aboutO(m4d2) aritmetic operation when the methodgiven in [4] uses O(m3d3)+O(lm3d2) arithmeticoperations where l can be as big as md. In fact,as we said before, the method by [4] is betterwhen the input matrix is a matrix pencil (d = 1),but its e�ciency decreases when d increases be-cause of to the linearization of the input matrix.Moreover, to compute the cost of this newmethod, we do not take all the advantages ofthe results from [1] about Pad�e approximantscomputation. So we hope that our theoreticalcost can decrease.References[1] B. Beckermann and G. Labahn, A uniformapproach for the fast computation of matrix-type pad�e approximants, SIAM J. Matrix Anal.Appl., Vol. 15, No. 3, pp 804-823, July 1994.[2] B. Beckermann and G. Labahn, Recursive-ness in matrix rational interpolation problems,Rapport de recherche de l'universit�e de Lille,1996.[3] T. Beelen and P.Van Dooren, An improvedalgorithm for the computation of Kronecker'scanonical form of a singular pencil, Linear Al-gebra and its Applications, 105:9-65, 1988.[4] T. Beelen and P. Van Dooren, A pencil ap-proach for embedding a polynomial matrix intoa unimodular matrix, SIAM J. Matrix Anal.Appl., Vol 9, No 1, January 1988.6
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