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Abstract

In this article, we present a new method to compute
menemal bases for the kernel of a polynomial matrix.
This method uses the computation of Padé approx-
tmants for the special case where one does not look
after an approzimation but an exact value. For a
polynomial matriz of order m and degree d, its cost
is about O(m*d*) which may be better of the cost of

a previous method by Beleen and Van Dooren [4].

1 Introduction

A minimal base for a submodule M of K?[Z]
is a base which components have minimal de-
grees [5]. The computation of a minimal base
for the kernel of a polynomial matrix M (z) may
be useful to establish the singular part of a ma-
trix pencil (when M (z) is a matrix pencil) [6], or
to find some special form for polynomial matrix
like column reduced form [T7].

A previous method to compute such a base, was
introduced by Beelen and Van Dooren [4]. To
compute a minimal bases for the Kernel of a
polynomial matrix M (z) of order m and degree
d, they turn the problem into a pencil problem
of order md. Then, they use classical algorithms
to deal with matrix pencil [11, 10, 3]. If the
complexity of these last algorithms is quite good,
this method lost efficiency by considering that a
matrix problem of order m and degree d is a
pencil problem of order md.

Our method has a completly different approach.
It is based on the computation of Padé approx-
imants for the matrix M (z), i.e. a base for the
solutions of the equation

(1)

where p(z) is a polynomial vector and N is called
the approzimation order. Using the fact that
M (z) is not a matrix which components are for-
mal series like in problem of Padé approximants,
but a polynomial matrix, we know that it exists
an approximation order N such that a base for
the solution of (1) describe the solutions of min-
imal degrees of

M(z)p(z) = 0.

Moreover, recents methods, from Beckermann
and Labahn [1] and Van Barel and Bultheel [9],
to compute vector Padé approximant, give the
solution in the form of special bases which look
like minimal bases. Using these methods special-
ized to our case, we find a cost about @(m*d?)
arithmetic operations.

In the section 2 of this paper we give the defini-
tion and some properties of a minimal base. The
section 3 is devoted to the description of the vec-
tor Hermite-Padé problem and to its solutions
given by [8, 9, 1]. These solutions are given into
the form of s-reduced bases or o-bases. We show
that this kind of bases are generalizations for the
notion of minimal bases. Then, in section 4, we
give results which allow to use the algorithm of
[1] to compute a minimal base for the kernel of
a polynomial matrix. Section 5 give a simplified
description of the algorithm of [1] specialized to
our case. We give a specialization of the cost for
this algorithm in section 6.

2 Minimal bases

In this section we recall the definition and some
properties of a minimal base. We define the col-
umn reduced form for a polynomial matrix and
give the equivalence with the notion of minimal
base.



Definition 1 Given B = (by(z),...,by(2)) «a
base for a KP?[z]-submodule M. The base B is
minimal if

> deg(b;)
i=1
ts minimal over the bases of M.

Minimal bases for a submodule M are not
uniquely defined, but all of them have the same
set of degrees {deg(b;),1 < i < m}. These de-
grees are sometime called the Forney dynamical

indices [5].
We will often describe a base

B = (bi(z),....,bn(z))
using the matrice

B(z) = [ ba(2) b (2) ]

Definition 2 Given a (n, m) polynomial matrix
P(z). The degrees d;, 1 < i < m of the ith col-
umn of P(z) are called the column degrees of
P(z). Let Pp be the highest column degree coef-
ficient matriz, a matriz whose ith column com-
prise the coefficients of z% in the ith column of
P(z). The matriz P(z) is said to be column re-

duced if rank(P(z)) = rank(Ph.).

Property 1 The column of a (p,m) polyno-
mial matriz B(z) describe a minimal base iff
rank(B(z)) = m and the matriz B(z) is column
reduced.

3 Padé approximants

The vector Hermite-Padé problem is described
in [1] as

Problem 1 Let m, p, and N be integers, m,
p > 2. Let Fi(z), Fa(z), ..., Fy(z) be in
KP[[z]], and let n= (ny,...,nm) be a multiin-
dex. Find linearly independant polynomial tu-
ples (p1(2), ..., pm(2)), pi(2) € Klz], such that
deg(p;(2)) < n;, 1 <i<m and

Fi(z)p1i(z) + ...+ P (2)pm(2) = ZNR(Z)
where R(z) € KP[[2]].

(2)

Remark : If F'(z) = [Fi(z) ... Fin(#)] is a poly-
nomial matrix (and not a matrix of formal power
series) and if R(z) = 0, then [p1(2) ... pm(2)]* is
an element of Ker(F(z)). This is the way we
will use solution of the vector Hermite-Padé ap-
proximant problem to compute a minimal base
for the kernel of a polynomial matrix in the next
section.

The solution to this problem is given into the
form of s-reduced base [9] or o-base, ¢ = N, [1]
for the KP[z] submodule defined by the equation
(2). In [7] it is shown that the two notions (s-
reduced base and o-base) are equivalent in the
case of vector Hermite-Padé problem. Although
the components of such a base do not satisfy the
degree conditions, they allow to describe all the
solutions of the vector Hermite-Padé problem [9,

1.

We will describe now the notion of s-reduced
base, then it will be obvious that it is a general-
1zation of the notion of minimal base.

Definition 3 ([9]) Given a
(S1y..., Sm), the s-degree of a polynomial tuple
p(z) = (p1(2), ..., pm(2)) is defined as

multitndex s=

s-deg(p) = maz{deg(p;) + s; }

The s-highest degree cocefficient of a polynomual
tuple (p1(2), ..., pm(z)) with s-degree & is the m-
tuple whose ith component is the coefficient of
2275 gn pi(2).

A set of polynomial m-tuple is s-reduced iff the
s-highest degree coefficients are linearly indepen-
dent.

As we said before, this definition is a generaliza-
tion of the notion of minimal base. As a matter
of fact, if s= (0,0, ...,0), the s-degree of a poly-
nomial tuple is its usual degree.

Example 1 Given a multiinder s and the ma-
triz

2z 22

1 2z

we want to know if the columns of P(z) are s-
reduced. Assume that s= (1,2), then

Piz)=[p1 P ]=

s-deg(py) = max{l+ 1,04+ 2} =2
s-deg(py) = max{2+1,14+2} =3



and the matriz whose columns are the s-highest
degree coefficients of the columns of P(z) is

given by

2 1

1 2
So the columns of P(z) are s-reduced. Assume
now that s= (0,0), then

s-deg(p,) = deg(py) =1
s-deg(p,) = deg(p,) = 2

and the matriz whose columns are the s-highest
degree coefficients of the columns of P(z) is Phe
(see definition 2)

0]

The columns of P(z) are not s-reduced, or,
equivalently, P(z) is not column reduced.

In [9, 1], the solution to the vector Hermite-Padé
problem of order N is given by a s-reduced base
of the submodule Sy defined by the equation
(2). The components of such a base do not ver-
ify the problem because they do not verify the
degree conditions. Nevertheless, they allow to
parametrize all solutions of the problem [9, 1],
this property is a consequence of the next theo-
rem.

Theorem 1 ([9]) Given an s-reduced basis for
a submodule & with basis elements b; having s-
degree ;, all the elements of the submodule S
having s-degree < § can be parametrized uniquely
as

m

Z Cibi

i=1

with ¢; a polynomial of degree < § — §;.

In this paper, we are not interested in this
parametrization but in the property of degrees
(or s-degrees) minimality along an s-reduced
base for Sy. As a matter of fact, Sy contains
the solutions of

Fi(z)p1(2) + ...+ Fn(2)pm(z) =0 (3)

In the next section, we will show that if F'(z)
is a polynomial matrix, for some N and for s=
(0,0,...,0), an s-reduced base of Sy contains a
minimal base for the submodule defined by the
equation (3).

4 Computation of minimal
bases

Given a polynomial matrix F(z), we want to
compute a minimal base for its kernel, or, which
is the same, to find a column reduced matrix
P(z), of maximal rank, such that

F(z)P(z)=0

The next theorem allows to compute this base
using computation of an s-reduced base for the
vector Hermite-Padé approximation of F'(z).

Theorem 2 Let s= (0,0,...,0) and F(z) be a
(p,m) polynomial matriz of degree d. Let BY
be a s-reduced base for the vector Hermite-Padé

problem of F'(z) of order N. If
N > maz{de, 1 <k <l}+d+1

where | is the dimension of ker(F(z)) and the dj
are the degrees of the vectors of a minimal base
for ker(F(z)), then BY contains a minimal base

of ker(F(z)).

Proof : Assume that d; is the minimal degree
along the vectors of a minimal base of ker(F(z)).
We will proove first that BY contains a vector
b of degree dy such that F(z)b(z) = 0. Let
p; be a vector of ker(F(z)) of degree di. As
s=(0,0,...,0), we have

s-deg(py) = deg(p;) = d1

We note by, b, ..., by, the vectors of BY and
d1, 02, ..., Om, their degrees. Using theorem 1,
we know that there exist polynomials ¢q, co, ...,
¢y such that

deg(c;) <dy—46;, 1 <i<mand

m

P, =Y cib;

i=1

As py # 0, it exist h such that deg(cp) > 0 that
is dq > d,. While by, is a vector of BY, it verifies

Fi(2)bp1(2) + ..+ Fn(2)bpm (2) = ZNR(Z)

But on the left hand side of the equation we
have a polynomial of maximal degree d; +



deg(F(z)) = di + d and, by assumption, N >
di+d+1. So

F1(2)bp1(2) + ...+ F(2)bpm (2) = 0
and &, = dy because d; 1s minimal.

Now, assume that B contains k — 1 vectors of
a minimal base of ker(F(z)) of minimal degrees
dy, ds, ..., dp_1. We note by, by, ..., by _1 these
vectors. Let pj, be a vector of minimal degree d,
linearly independant from the b;, 1 <:¢ <k —1,
which verifies F'(z)p;, = 0. We have to show that
it exist a vector b in BV of degree dj, which
verifies F/(z)b = 0. There exist polynomials ¢y,
€2, ..., Cm such that

deg(¢;) <dp—4d;, 1 <i<mand

Pr = Y éib;

i=1

As py, is linearly independant from the b;, 1 <
t < k—1, there exists at least one element b; in

BN such that A > k — 1 and dj, > d;. While b;

is a vector of BY, it verifies
F1(2)biy (2) 4 oo 4 Fin(2)b7,,(2) = 2V R(z)

But on the left hand side of the equation we have
a polynomial of maximal degree di + d and, by
assumption, N > dg +d+ 1. So

Fu(#)030(2) + o+ Fon ()07 (2) = 0
and §; = dj, because dj is minimal. O
The next theorem allows to give an upper bound

for N which depend only on the initial datas.

Theorem 3 Let F(z) be a (p,m) polynomial
matriz of degree d. Assume that a mintmal
base of ker(F(z)) possess | vectors of degrees dy,
1<k <l then

l
> di < (m—1)d
k=1

Proof : If F(z)) is a matrix pencil (d = 1), the
di, 1 < k < are the right kronecker indices of
F(z) [6]. Then, using the normal form of F'(z)
we can easily proove the theorem.

Now assume that F(z) = Fy + Fiz + ...+ Fyz?.

Consider the linearised pencil defined by :
Idm,

FO Fd—l

The sum of the degrees of the vectors of a mini-
mal base for the kernel of this pencil is less than
md — 1. Moreover, (by,...,b;) is a minimal base
for F(z) iff the columns of

b, bs b,
Zb1 Zb2 Zbl
Zd—lbl Zd_lbz Zd—lbl

form a minimal base for the linearised pencil.

We have

> (deg(b; + (d—1)) < md— 1

i=1
thus, if we assume that { > 0, that is ker(F(z)) #
b,

l

S (deg(bi) <

i=1

IN
3
|

=

u

Using the algorithms given by [9, 1] to compute
solutions of the vector Hermite-Padé problem for
a (p, m) polynomial matrix F(z) of degree d, for
an order > md + 1, it is possible to obtain a
minimal base for ker(F(z)). In the next section,
we present a specialization of an algorithm by

[1].

5 Algorithm

The algorithm described here 1s a matriciel ver-
sion of the algorithm given by [1] to compute
o-base for a matrix F(z) of formal series. As
we have said before, in our context, o-base is
the same notion as s-reduced base. Moreover



we specify this algorithm to our particular case
of computation of minimal base.

This is an iterative algorithm, it start with the
base given by the columns of the identity matrix,
thus the result is of order 0. Then, at the step ¢,
it transform the base of order ¢ to another one
of order ¢ + 1.

The input of this algorithm is a polynomial ma-
trix F(z), the matrix PU)(z) = [p(li) p%)] de-
notes a s-reduced base of order i for F'(z) (where
s = (0,...,0)). The integers dff) fork=1,...m
denote the respective degrees of the p(i). The
matrix C'() is the constant matrix such that

F(z)PW(z) = W2 4 O+,

Algorithm

Input: F(z), a (p, m) polynomial matrix.
N, the order.
Initializations:
PO(z) =[pi” . pW] = Id,n
déo) =0fork=1,....m
Iterative step:
Fori=20,1,...,N do
Forr =1,2,...pdo
() PO(0) = O = )]
Ai = {l D Crl 3& 0}
If A; # {} Then
Let m € A; such that
a¥ = min{dl(l),l €A}
(* elimination *)

For k =1tom, k# mdo

Py = Pr — Zipn
EndDo
(* multiplication *)
Pr = ZPx
d¥ = d¥ +1
EndIf
EndDo
Fork=1,..,mdo
PEJ-H) _ péz)

pl+1) — [p(1i+1) p%"’l)]
d;(;-l—l) — d;(;)
EndDo
EndDo
Output: PV (2) an order N s-reduced base for
F(z), where s = (0,...,0).

According to theorems 2 and 3, we know that

if N > md 4 1, the base PN)(2) contains a
minimal base for ker(F(z)).

The cost given in [1] does not consider the par-
ticularity of the problem when s = (0, ...,0) and
F(z) is a polynomial matrix. So we will give
a specialization of this cost in our case in the
next section. On the other hand, in [1], the au-
thors use a kind of linearization of the problem
(and then of the algorithm), and present a fast
algorithm based on recursivness and FFT fast
polynomial multiplications. We have not find
yvet a way to specialize this last algorithm but
we hope that it could reduce the cost given in
the next section.

6 Cost

Theorem 4 Given a (p,m) polynomial matriz
of degree d, F(z), the computation of a mini-
mal base for ker(F(z)), using the Padé approz-
imant method has a complexity of O(m?p?d?)
arithmetic operations (O(m*d?) if p ~m).

To proove this theorem we will use the

Lemma 1 For the step i of the algorithm, the
residual F(z)P)(z) is into the form:

C(Z)ZZ + Ci+1zi+1 + ...+ Ci+dzi+d.

Proof (lemma 1) : The property is true for ¢ =
0. Assume that it is true for ¢ — 1, we will proove
it for 2.

For a given r, the column p, of PU=1) ig called
the pivot. When a column is a pivot, it is mul-
tiplied by z and its degree increase, then (at the
step ¢) a column p of PU=1) may be the pivot for
one r € [1,p] only. Moreover, when a column of
PU=1) ig a pivot, it will not take place anymore
in the operation called “elimination” in the algo-
rithm (during the step ). Finally, an operation
of elimination between a pivot (whose residual is
of degree i —14d) and another column of pl-1)
of degree i — 1+ d does not change the degree of
these last column. So, for a given 7:

- When a column p is a pivot, the residual
for this column 1s changed from :

i1 i~ 1+d
ci1 2 Th 4 eimggqr T



to

cii1z 4+ Ci—1+dzi+d
and then does not change anymore during
the step 1.

- When a column p is not a pivot, the residual
for this column keep the form
i1 T L+ Ci—1+dzi_1+d
but at the end of the step ¢ we know that
Ci_1 = [0 O]t

O

Proof (theorem 4) : To proove the theorem we
will show that for a vector of the base, there were
only p(d+ 1) eliminations. As such elimination
costs at most ((m— 1)d)p arithmetic operations,
the total cost will be about Q(m?p?d?) arith-
metic operations.

In fact, the degree of the residual for a column
of P is bounded by i 4+ d — (ne; mod p) where
ne 1s the number of eliminations on the consid-
ered column from the step 0 to the step ¢ of the
algorithm. This is true for ng = 0 (see lemma
1). Assume that neg = 0 and that the residual
of the considered column at the step 7 is on the
form
cizi + ...+ cH_dzi"'d

We call principal index ~, the index of the first
component of ¢; which is not equal to zero. Dur-
ing the step ¢ + 1 of the algorithm, for » = 1 to
r =~ — 1, it does not make an alteration for the
considered column. Then, when r = ~ there are
two possibilities:

- the considered column is the pivot, so ~
does not change and n, = 0 until the end
of the step ¢+ 1.

- the considered column is not the pivot, so
there is an elimination on it, ng = 1 and
~ increase exept if all the components of ¢;
turn out to 0: in this case, the degree of the
residual, at the end of the step ¢ + 1, 1s not
t4+14+dbuti+d.

So, in the worst case for a column, at each elim-
ination on it, 7 increase to v+ 1 until ny + 1 =

~ = p. Then, at the next elimination, the de-
gree of the residual will be ny mod p = 1 less
than the “theorical” one (see lemma 1) for the
considered step. This will be exactly the same
for ne; mod p > 1.

Finaly, if ng = p(d + 1) for a column of the
base, the degree of the residual for this column
is bounded by ¢ — 1 at the step 7 so 1t is equal
to 0 and the column will not have elimination
anymore. O

7 Conclusion

In this paper, we give a new method to compute
a minimal base for the kernel of a polynomial
matrix. Given a polynomial matrix of dimension
m and degree d, this new method costs about
O(m*d?) aritmetic operation when the method
given in [4] uses O(m3d®)+O(Im3d?) arithmetic
operations where [ can be as big as md. In fact,
as we said before, the method by [4] is better
when the input matrix is a matrix pencil (d = 1),
but its efficiency decreases when d increases be-
cause of to the linearization of the input matrix.

Moreover, to compute the cost of this new
method, we do not take all the advantages of
the results from [1] about Padé approximants
computation. So we hope that our theoretical
cost can decrease.
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