M P Stuchlik-Qu Er 
email: quere@calfor.lip6.fr
  
How to compute minimal bases using Pad e approximants

In this article, we present a new method to compute minimal bases for the kernel of a polynomial matrix. This method uses the computation of Pad e approximants for the special case where one does not look after an approximation but an exact value. For a polynomial matrix of order m and degree d, its cost is about O(m 4 d 2 ) which may be better of the cost of a previous method by Beleen and Van Dooren 4].

Introduction

A minimal base for a submodule M of K p z] is a base which components have minimal degrees 5]. The computation of a minimal base for the kernel of a polynomial matrix M(z) may be useful to establish the singular part of a matrix pencil (when M(z) is a matrix pencil) 6], or to nd some special form for polynomial matrix like column reduced form 7]. A previous method to compute such a base, was introduced by Beelen and Van Dooren 4]. To compute a minimal bases for the Kernel of a polynomial matrix M(z) of order m and degree d, they turn the problem into a pencil problem of order md. Then, they use classical algorithms to deal with matrix pencil [START_REF] Van Dooren | The computation of Kronecker's canonical form of a singular pencil[END_REF][START_REF] Van Barel | A general module theoretic framework for vector M-Pad e and matrix rational interpolation[END_REF][START_REF] Beckermann | Recursiveness in matrix rational interpolation problems[END_REF]. If the complexity of these last algorithms is quite good, this method lost e ciency by considering that a matrix problem of order m and degree d is a pencil problem of order md. Our method has a completly di erent approach. It is based on the computation of Pad e approximants for the matrix M(z), i.e. a base for the solutions of the equation

M(z)p(z) = O(z N ) (1)
where p(z) is a polynomialvector and N is called the approximation order. Using the fact that M(z) is not a matrix which components are formal series like in problem of Pad e approximants, but a polynomial matrix, we know that it exists an approximation order N such that a base for the solution of (1) describe the solutions of minimal degrees of M(z)p(z) = 0: Moreover, recents methods, from Beckermann and Labahn 1] and Van Barel and Bultheel 9], to compute vector Pad e approximant, give the solution in the form of special bases which look like minimalbases. Using these methods specialized to our case, we nd a cost about O(m 4 d 2 ) arithmetic operations. In the section 2 of this paper we give the de nition and some properties of a minimal base. The section 3 is devoted to the description of the vector Hermite-Pad e problem and to its solutions given by 8, 9, 1]. These solutions are given into the form of s-reduced bases or -bases. We show that this kind of bases are generalizations for the notion of minimal bases. Then, in section 4, we give results which allow to use the algorithm of 1] to compute a minimal base for the kernel of a polynomial matrix. Section 5 give a simpli ed description of the algorithm of 1] specialized to our case. We give a specialization of the cost for this algorithm in section 6.

Minimal bases

In this section we recall the de nition and some properties of a minimal base. We de ne the column reduced form for a polynomial matrix and give the equivalence with the notion of minimal base. De nition 2 Given a (n; m) polynomial matrix P(z). The degrees d i ; 1 i m of the ith column of P(z) are called the column degrees of P(z). Let P hc be the highest column degree coefcient matrix, a matrix whose ith column comprise the coe cients of z di in the ith column of P(z). The matrix P(z) is said to be column reduced if rank(P(z)) = rank(P hc ).

Property 1 The column of a (p; m) polynomial matrix B(z) describe a minimal base i rank(B(z)) = m and the matrix B(z) is column reduced.

3 Pad e approximants

The vector Hermite-Pad e problem is described in 1] as Problem 1 Let m, p, and N be integers, m, p 2. Let F 1 (z), F 2 (z), ..., F m (z) be in K p z]], and let n= (n 1 ; :::; n m ) be a multiindex. Find linearly independant polynomial tuples (p 1 (z); :::; p m (z)), p i (z) 2 K z], such that deg(p i (z)) n i ; 1 i m and F 1 (z)p 1 (z) + :::

+ F m (z)p m (z) = z N R(z) (2)
where R(z) 2 K p z]].

Remark : If F(z) = F 1 (z) ::: F m (z)] is a polynomial matrix (and not a matrix of formal power series) and if R(z) = 0, then p 1 (z) ::: p m (z)] t is an element of Ker(F(z)). This is the way we will use solution of the vector Hermite-Pad e approximant problem to compute a minimal base for the kernel of a polynomial matrix in the next section. The solution to this problem is given into the form of s-reduced base 9] or -base, = N, 1] for the K p z] submodule de ned by the equation (2). In 7] it is shown that the two notions (sreduced base and -base) are equivalent in the case of vector Hermite-Pad e problem. Although the components of such a base do not satisfy the degree conditions, they allow to describe all the solutions of the vector Hermite-Pad e problem 9, 1]. We will describe now the notion of s-reduced base, then it will be obvious that it is a generalization of the notion of minimal base.

De nition 3 [START_REF] Van Barel | The computation of non-perfect Pad e-Hermite approximants[END_REF]) Given a multiindex s= (s 1 ; :::; s m ), the s-degree of a polynomial tuple p(z) = (p 1 (z); :::; p m (z)) is de ned as s-deg(p) = maxfdeg(p i ) + s i g The s-highest degree coe cient of a polynomial tuple (p 1 (z); :::; p m (z)) with s-degree is the mtuple whose ith component is the coe cient of z si in p i (z).

A set of polynomial m-tuple is s-reduced i the s-highest degree coe cients are linearly independent.

As we said before, this de nition is a generalization of the notion of minimal base. As a matter of fact, if s= (0; 0; :::; 0), the s-degree of a polynomial tuple is its usual degree.

Example 1 Given a multiindex s and the matrix P(z) = p 1 p 2 = 2z z 2 1 2z we want to know if the columns of P(z) are sreduced. Assume that s= (1; 2), then s-deg(p 1 ) = maxf1 + 1; 0 + 2g = 2 s-deg(p 2 ) = maxf2 + 1; 1 + 2g = 3

and the matrix whose columns are the s-highest degree coe cients of the columns of P(z) is given by 2 1 1 2

So the columns of P(z) are s-reduced. Assume now that s= (0; 0), then s-deg(p 1 ) = deg(p 1 ) = 1 s-deg(p 2 ) = deg(p 2 ) = 2 and the matrix whose columns are the s-highest degree coe cients of the columns of P(z) is P hc (see de nition 2) 2 1 0 0

The columns of P(z) are not s-reduced, or, equivalently, P(z) is not column reduced.

In 9, 1], the solution to the vector Hermite-Pad e problem of order N is given by a s-reduced base of the submodule S N de ned by the equation (2). The components of such a base do not verify the problem because they do not verify the degree conditions. Nevertheless, they allow to parametrize all solutions of the problem 9, 1], this property is a consequence of the next theorem.

Theorem 1 ( 9]) Given an s-reduced basis for a submodule S with basis elements b i having sdegree i , all the elements of the submodule S having s-degree can be parametrized uniquely as m X i=1 c i b i with c i a polynomial of degree i .

In this paper, we are not interested in this parametrization but in the property of degrees (or s-degrees) minimality along an s-reduced base for S N . As a matter of fact, S N contains the solutions of F 1 (z)p 1 (z) + ::: + F m (z)p m (z) = 0 (3) In the next section, we will show that if F(z) is a polynomial matrix, for some N and for s= (0; 0; :::; 0), an s-reduced base of S N contains a minimal base for the submodule de ned by the equation (3).

Computation of minimal bases

Given a polynomial matrix F(z), we want to compute a minimal base for its kernel, or, which is the same, to nd a column reduced matrix P(z), of maximal rank, such that F(z)P(z) = 0

The next theorem allows to compute this base using computation of an s-reduced base for the vector Hermite-Pad e approximation of F(z).

Theorem 2 Let s= (0; 0; :::; 0) and F(z Proof : Assume that d 1 is the minimal degree along the vectors of a minimal base of ker(F(z)).

)
We will proove rst that B N The sum of the degrees of the vectors of a minimal base for the kernel of this pencil is less than md 1. Moreover, (b 1 ; :::; b l ) is a minimal base for F(z) i the columns of (m 1)d 2 Using the algorithms given by 9, 1] to compute solutions of the vector Hermite-Pad e problem for a (p; m) polynomial matrix F(z) of degree d, for an order md + 1, it is possible to obtain a minimal base for ker(F(z)). In the next section, we present a specialization of an algorithm by 1].

Algorithm

The algorithm described here is a matriciel version of the algorithm given by 1] to compute -base for a matrix F(z) of formal series. As we have said before, in our context, -base is the same notion as s-reduced base. Moreover we specify this algorithm to our particular case of computation of minimal base. This is an iterative algorithm, it start with the base given by the columns of the identity matrix, thus the result is of order 0. Then, at the step i, it transform the base of order i to another one of order i + 1. The input of this algorithm is a polynomial matrix F(z), the matrix P (i) (z) = p (i) 1 ::: p (i) m ] denotes a s-reduced base of order i for F(z) (where s = (0; :::; 0)). The integers d (i) k for k = 1; :::; m denote the respective degrees of the p (i) k . The matrix C (i) is the constant matrix such that For i = 0; 1; :::; N do For r = 1; 2; :::p do z i F(0)

F(z)P (i) (z) = C (i) z i + O(z i+1 ):
P (i) (0) = C (i) = c (i) kl ] i = fl : c r;l 6 = 0g If i 6 = fg Then
Let 2 i such that d (i) = minfd (i) l ; l 2 i g.

(* elimination *)

For k = 1 to m, k 6 = do p k = p k ci;k ci; p EndDo (* multiplication *) p = zp

d (i) = d (i) + 1 EndIf EndDo For k = 1; :::; m do p (i+1) k = p (i) k P (i+1) = p (i+1) 1 ::: p (i+1) m ] d (i+1) k = d (i) k EndDo EndDo
Output: P (N ) (z) an order N s-reduced base for F(z), where s = (0; :::; 0). According to theorems 2 and 3, we know that if N md + 1, the base P (N ) (z) contains a minimal base for ker(F(z)). The cost given in 1] does not consider the particularity of the problem when s = (0; :::; 0) and F(z) is a polynomial matrix. So we will give a specialization of this cost in our case in the next section. On the other hand, in 1], the authors use a kind of linearization of the problem (and then of the algorithm), and present a fast algorithm based on recursivness and FFT fast polynomial multiplications. We have not nd yet a way to specialize this last algorithm but we hope that it could reduce the cost given in the next section. To proove this theorem we will use the Lemma 1 For the step i of the algorithm, the residual F(z)P (i) (z) is into the form: C (i) z i + C i+1 z i+1 + ::: + C i+d z i+d :

Proof (lemma 1) : The property is true for i = 0. Assume that it is true for i 1, we will proove it for i.

For a given r, the column p of P (i 1) is called the pivot. When a column is a pivot, it is multiplied by z and its degree increase, then (at the step i) a column p of P (i 1) may be the pivot for one r 2 1; p] only. Moreover, when a column of P (i 1) is a pivot, it will not take place anymore in the operation called \elimination" in the algorithm (during the step i). Finally, an operation of elimination between a pivot (whose residual is of degree i 1+d) and another column of P (i 1) of degree i 1 +d does not change the degree of these last column. So, for a given r:

-When a column p is a pivot, the residual for this column is changed from : c i 1 z i 1 + ::: + c i 1+d z i 1+d to c i 1 z i + ::: + c i 1+d z i+d and then does not change anymore during the step i.

-When a column p is not a pivot, the residual for this column keep the form c i 1 z i 1 + ::: + c i 1+d z i 1+d but at the end of the step i we know that c i 1 = 0 ::: 0] t . 2 Proof (theorem 4) : To proove the theorem we will show that for a vector of the base, there were only p(d + 1) eliminations. As such elimination costs at most ((m 1)d)p arithmetic operations, the total cost will be about O(m 2 p 2 d 2 ) arithmetic operations. In fact, the degree of the residual for a column of P (i) is bounded by i + d (n el mod p) where n el is the number of eliminations on the considered column from the step 0 to the step i of the algorithm. This is true for n el = 0 (see lemma 1). Assume that n el = 0 and that the residual of the considered column at the step i is on the form c i z i + ::: + c i+d z i+d

We call principal index , the index of the rst component of c i which is not equal to zero. During the step i + 1 of the algorithm, for r = 1 to r = 1, it does not make an alteration for the considered column. Then, when r = there are two possibilities:

-the considered column is the pivot, so does not change and n el = 0 until the end of the step i + 1. -the considered column is not the pivot, so there is an elimination on it, n el = 1 and increase exept if all the components of c i turn out to 0: in this case, the degree of the residual, at the end of the step i + 1, is not i + 1 + d but i + d. So, in the worst case for a column, at each elimination on it, increase to + 1 until n el + 1 = = p. Then, at the next elimination, the degree of the residual will be n el mod p = 1 less than the \theorical" one (see lemma 1) for the considered step. This will be exactly the same for n el mod p 1. Finaly, if n el = p(d + 1) for a column of the base, the degree of the residual for this column is bounded by i 1 at the step i so it is equal to 0 and the column will not have elimination anymore. 2

Conclusion

In this paper, we give a new method to compute a minimal base for the kernel of a polynomial matrix. Given a polynomial matrix of dimension m and degree d, this new method costs about O(m 4 d 2 ) aritmetic operation when the method given in 4] uses O(m 3 d 3 )+O(lm 3 d 2 ) arithmetic operations where l can be as big as md. In fact, as we said before, the method by 4] is better when the input matrix is a matrix pencil (d = 1), but its e ciency decreases when d increases because of to the linearization of the input matrix. Moreover, to compute the cost of this new method, we do not take all the advantages of the results from 1] about Pad e approximants computation. So we hope that our theoretical cost can decrease.

De nition 1

 1 Given B = (b 1 (z); :::; b m (z)) a base for a K p z]-submodule M. The base B the bases of M. Minimal bases for a submodule M are not uniquely de ned, but all of them have the same set of degrees fdeg(b i ); 1 i mg. These degrees are sometime called the Forney dynamical indices 5]. We will often describe a base B = (b 1 (z); :::; b m (z)) using the matrice B(z) = b 1 (z) ::: b m (z)

  be a (p; m) polynomial matrix of degree d. Let B N be a s-reduced base for the vector Hermite-Pad e problem of F(z) of order N. If N maxfd k ; 1 k lg + d + 1 where l is the dimension of ker(F (z)) and the d k are the degrees of the vectors of a minimal base for ker(F (z)), then B N contains a minimal base of ker(F (z)).

  contains a vector b of degree d 1 such that F(z)b(z) = 0. Let p 1 be a vector of ker(F(z)) of degree d 1 . As s= (0; 0; :::; 0), we have s-deg(p 1 ) = deg(p 1 ) = d 1 We note b 1 , b 2 , ..., b m , the vectors of B N and 1 , 2 , ..., m , their degrees. Using theorem 1, we know that there exist polynomials c 1 , c 2 , ..., c m such that deg(c i ) d 1 i ; 1 it exist h such that deg(c h ) 0 that is d 1 h . While b h is a vector of B N , it veri es F 1 (z)b h1 (z) + ::: + F m (z)b hm (z) = z N R(z) But on the left hand side of the equation we have a polynomial of maximal degree d 1 + deg(F(z)) = d 1 + d and, by assumption, N d 1 + d + 1. So F 1 (z)b h1 (z) + ::: + F m (z)b hm (z) = 0 and h = d 1 because d 1 is minimal. Now, assume that B N contains k 1 vectors of a minimal base of ker(F(z)) of minimal degrees d 1 , d 2 , ..., d k 1 . We note b 1 , b 2 , ..., b k 1 these vectors. Let p k be a vector of minimal degree d k , linearly independant from the b i , 1 i k 1, which veri es F(z)p k = 0. We have to show that it exist a vector b in B N , of degree d k , which veri es F(z)b = 0. There exist polynomials c1 , c2 , ..., cm such that deg(c i ) d k i ; 1 As p k is linearly independant from the b i , 1 i k 1, there exists at least one element b h in B N such that h > k 1 and d k h . While b h is a vector of B N , it veri es F 1 (z)b h1 (z) + ::: + F m (z)b hm (z) = z N R(z) But on the left hand side of the equation we have a polynomial of maximal degree d k + d and, by assumption, N d k + d + 1. So F 1 (z)b h1 (z) + ::: + F m (z)b hm (z) = 0 and h = d k because d k is minimal. 2 The next theorem allows to give an upper bound for N which depend only on the initial datas. Theorem 3 Let F(z) be a (p; m) polynomial matrix of degree d. Assume that a minimal base of ker(F (z)) possess l vectors of degrees d k , F(z)) is a matrix pencil (d = 1), the d k , 1 k l are the right kronecker indices of F(z) 6]. Then, using the normal form of F(z) we can easily proove the theorem. Now assume that F(z) = F 0 + F 1 z + ::: + F d z d .Consider the linearised pencil de ned by :

  b i + (d 1)) md 1thus, if we assume that l > 0, that is ker(F(z)

  AlgorithmInput: F(z), a (p; m) polynomial matrix.N, the order.

6 CostTheorem 4

 64 Given a (p; m) polynomial matrix of degree d, F(z), the computation of a minimal base for ker(F(z)), using the Pad e approximant method has a complexity of O(m 2 p 2 d 2 ) arithmetic operations (O(m 4 d 2 ) if p m).