
HAL Id: hal-02547642
https://hal.science/hal-02547642v1

Submitted on 21 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Property-dependant bisimulation for compositional
model-checking

Fahim Rahim, Emmanuelle Encrenaz

To cite this version:
Fahim Rahim, Emmanuelle Encrenaz. Property-dependant bisimulation for compositional model-
checking. [Research Report] lip6.1997.028, LIP6. 1997. �hal-02547642�

https://hal.science/hal-02547642v1
https://hal.archives-ouvertes.fr

Property-dependant bisimulation for compositional model-checking

Rahim,Fahim
Encrenaz,Emmanuelle

LIP6.1997.028

1

1. INTRODUCTION

Formal verification of hardware designs is an important area of research [Borrione 96]. Among

the possible approaches, symbolic model checking [McMillan 93] has already been used to verify

behavioral equivalence or CTL properties of hardware designs : VFORMAL [CLSI 93], SMV

[McMillan 93], VIS [BR95], SEVERO [CCP 93], VPN-VMC [Encrenaz 95a, Bawa 96]. Of course

formal verification techniques do not apply to real hardware design, but to a model representing the

behaviour of the design. In [BE 96] we present a platform devoted to the verification of hardware

designs described in VHDL, which extracts a symbolic transition relation1 from an elaborated VHDL

program [Encrenaz 95b], and then performs symbolic model checking in order to verify CTL

properties or behavioral equivalence of two different VHDL descriptions. The performances obtained

with this platform allow us to verify medium complexity designs, as the DLX [HP80] or 8086

microcontrollers.

One way to treat more complex designs consists in considering their structural information :

complex systems can be seen as a collection of interacting simpler components (e.g. a structural

VHDL program is composed of entities linked by signals), each one represented by a transition

relation. The verification platform can verify some properties concerning each module, but one has to

combine these modules to verify global properties. A first way to verify a global property is to

compute the synchronized product of the elementary transition relations, and then to apply symbolic

model checking techniques, but in this case we obtain a unique transition relation as big as the one

extracted from the "flat" description of the system.

Another approach consists in reducing each transition relation, according to the property to be

verified and the transition relations interconnections, before combining them in a global transition

relation, thus leading to a smaller global transition relation easier to manipulate. The reduction of each

component is based on the identification of equivalent states aggregated into equivalence classes.

Strong bisimulation [Milner 89] is known to be the coarsest2 equivalence relation that preserves all

CTL formulae. In the context of hardware verification, the specification to be verified is usually

composed of a restricted number of CTL formulae to be verified, and thus instead of preserving all

CTL formulae, we present an equivalence relation which depends on the property to be verified, and

preserves the CTL formula to be verified and the composition of components : the π-bisimulation.

This equivalence relation is even coarser than the strong bisimulation in the general case, leading to a

better reduction of each transition relation.

In [ASSS-V 94] a compositional, property-based model checking technique is already

presented, but our approach differs from theirs in the sense that (1) we do consider an initial state, as

VHDL programs have an initial state, hence the component composition is based on the synchronized

product with respect to an initial state. The example given in our paper highlights the wrong results of

1 the symbolic transition relation expresses the set of reachable states in one VHDL simulation cycle, from a given set
of states.
2 the coarsest relation is the one that renders equivalent the biggest number of states (according to a criterion), hence
this is the one that offers the biggest reduction power.

2

the reduction proposed by [ASSS-V 94] in our context. (2) Our approach consists in reducing the

transition relation according to atomic propositions of CTL formulae, thus we can compute the

reduced FSM independently of all the other FSM of the system interacting with this one, contrary to

[ASSS-V 94]. This reduction over atomic propositions makes the component composition simpler.

The work of [SR 94] in the MEIJE project concerns also the compositional verification of parallel

systems based on an a priori reduction of each component by bisimulation. They verify that a

component is bisimilar to another one, simpler, representing the formula to be verified over this

component. In our knowledge, they do not reduce each component according to a global property,

taking into account the synchronisation between components, in order to verify the global property on

the simplified system, as we propose. [LL 95] also presented a compositional model checking

approach, but their work is based on the quotienting of the formula instead of the quotienting of the

components.

The paper is organised as follows : the preliminary section (2) recalls definitions concerning

FSMs. Section 3 defines the reduction of each component by bisimulation and presents the relation

we propose to reduce each VHDL component. It is shown that it is equivalent to verify an atomic

property over the synchronized product of the initial transition systems and of the reduced transition

systems. Section 4 extends the result to all CTL operators. Section 5 recalls the computation of the

coarsest bisimulation algorithm [BFH 94] and presents the modifications to be made in order to

consider the relation we defined. Section 6 details the reduction of a VHDL entity and provides

experimental results of the modular verification of VHDL programs, and then (section 7) we conclude

and suggest some directions for future work.

2. PRELIMINARIES

2.1. From VHDL to transition relations
An elaborated VHDL program is represented by a transition relation which mimics the VHDL

simulation cycle. As in [BE 96], a state of a VHDL entity is composed of the program counter of each

process, the value of each variable, the value of each signal driver, the effective value of each signal,

and the value of the event attribute associated to each signal. The way the transition relation is built

from the VHDL program is detailed in [Encrenaz 95]. Roughly, for each state variable vk, the

equation modelling the evolution of this variable along the i+1th simulation cycle is built from the state

of the system at the end of the ith simulation cycle :

vk[i+1] = fk(v1[i], ..., vn[i])

The transition relation is then a conjunction of the equation of all state variables.

TR = ∧k vk[i+1] = fk(v1[i], ..., vn[i])

The VHDL program has an initial state, as defined in [LRM 87] : each state variable is initialised

to the leftmost value of its definition interval, except when they are explicitly initialised by the

programmer.

Sets of states and transition relation are represented by BDD structures, and one can perform

state space traversals, either to verify temporal logic properties or to check the equivalence of two

3

descriptions of a same system, that is to find the set of reachable states in which a property holds.

Various improvements have been proposed which speed up the verification process and reduce the

memory used, for example external stimuli representation, partitioned transition relation, intermediary

variables simplification are discussed in [BE 96, Bawa 96].

Another direction to be studied is the compositional verification, which starts from a structural

VHDL program instead of an elaborated one. In this case, we distinguish components linked together

by signals, and associate a transition relation per component. A conjunction of these transition

relations exactly represents the flat VHDL program, and hence no improvement can be expected,

except if we reduce the transition relations before their conjunction : each reduced transition relation

may be expressed with a smaller number of variables, reducing the size of the transition relation of the

whole program, and simplifying the downstream verification process.

2.2. Definitions

Definition 1: Finite State Machine

A Finite State Machine (FSM) is a 6-tuple M=(S,I,J,T,O,So) with :

S the finite set of states, I the finite set of input values, J the finite set of output values, T the

transition function, t ∈ T is a 3-tuple (s,i,s') such that : s and s' of S are resp. source and destination

states of the transition and i ∈ 2I is the label of t, hence T ⊆ S × Σ × S with Σ = 2I , O is the output

function : S → 2J and So is the initial state.

The FSM is complete, i.e. : ∀ s ∈ S, ∀ i ∈ I , ∃ s' ∈ S such that (s,i,s') ∈ T.

If the FSM is deterministic and complete, the transition relation is a function T : S × Σ → S

Definition 2 : reachable state

Let M=(S,I,J,T,So) a FSM, a state s' ∈ S is a reachable state from a state s ∈ S iff :
∃ (i1,i2.....ij.....in) s.t. ∀ j ∈ [1,n], ij ∈ 2I and T (sk-1, ik) = sk for 1≤k≤n and sn = s' and s0 = s

Definition 3 : Cartesian product of automata

Let M 1=(S1,I 1,J1,T1,O1,So1) and M2=(S2,I 2,J2,T2,O2,So2) be two FSMs, the Cartesian

product M 1 × M2 is the FSM M(S,I,J,T,O,So) such that : S = S1 × S2, T = T1 × T2, I = I1

× I2, J = J1 × J2, So = (So1,So2), O : S → J, that maps (s) into O(s) such that : if s=(s1,s2)

then O(s,i) =(O1(s1) , O2(s2)).

This Cartesian product represents the behaviour of two components not connected, having

either synchronous or asynchronous execution (if the null transition exists), and with the assumption

of an initial state. The Cartesian product can be restricted when components are linked together and

when a synchronous or asynchronous semantics is defined, as in Figure 2. This leads to the

definition of the synchronised product given below. To make notations simpler, we provide the

definition only in the case of deterministic and complete FSMs.

4

Definition 4 : FSM connection and synchronisation constraint

Let M 1=(S1,I 1,J1,T1,O1,So1) and M2=(S2,I 2,J2,T2,O2,So2) be two linked FSMs (i.e.

some outputs of M1 are inputs for M2 and some outputs of M2 are inputs for M1 :

J12 = J1 ∩ Ι2 ≠ Ø is the set of output variables of M1 connected to M2
J21 = J2 ∩ Ι1 ≠ Ø is the set of output variables of M2 connected to M1

I11 = I1 \ J21 is the set of primary input variables of M1

I22 = I2 \ J12 is the set of primary input variables of M2.

The transition function of M1 is defined as :

T1 : S1 × 2I11 × 2J21 → S1 which given a state s1 of S1, a set of values i1 of 2I11 and a set of

values j21 of 2J21 associates T1(s1, i1 , j21) = s'1 ∈ S1

The transition function of M2 : T2(s2 , i2 , j12) = s'2 is defined similarly.

We define the restriction of the output function to the connected outputs by :

O21 : S2 → 2J21 that associates to any state s2 of S2 the value of the output variables of M2 connected

to M1.

Similarly we define O12 by :

O12 : S1 → 2J12 that associates with any state s1 of S1 the value of the output variables of M1

connected to M2.

Let (s1,s2) be a state of S1 × S2. The set of reachable states from (s1,s2) in one global transition is

the set of states (s'1,s'2) that verify the constraints :

T1(s1, i1, O21(s2)) = s'1 and T2(s2, i2, O12(s1)) = s'2
where i1 is any value of the primary input variables of M1 and i2 any value of the primary input

variables of M2.

These two constraints are called synchronisation constraints over transitions of M1 × M2.

Definition 5 : synchronized product

Let be M 1= (S1,I 1,J1,T1,O1,So1) and M2= (S2,I 2,J2,T2,O2,So2), two FSMs, and their

Cartesian product M=(S,I,J,T,O,So). Let (Un) be a serie of elements of S1 × S2 defined by :

• Uo = (So1,So2) 3

• Un = { reachable states in one global transition from Un-1 } ∪ Un-1

then the serie (Un) admits a limit Q included in S1 × S2. The FSM M' included in M containing only

states of S belonging to Q is the synchronized product of M1 and M2, denoted M1 o M2.

3The synchronized product used by [ASSS-V 94] does not assume an initial state : it is defined as the limit of the serie
given in definition 5 with Uo = S1 × S2.

5

Example : synchronized product

Let be two components M1 and M2 given on Figure 1. Component M1 has an input signal a and

an output signal p. Its behaviour is represented by the FSM M1. Component M2 has an input signal p

(which is the output of M1), and two output signals a (which is the input signal of M1) and q. Its

behaviour is represented by the FSM M2. Values of the input signals are transition labels, and values

of the output of the FSMs are represented near each corresponding state.

1

2 3

5

a a

a
_

aT

T

p

_
p p

p

1'

2' 3'

p

T

_
p

T

a,q

a , q
_

a , q

p

a

q

M1 M2
_

Figure 1. A system composed of two components M1 and M2.

Two synchronized products are depicted on figure 2. They represent the behaviours of the

system when the components are connected and synchronous. The graph on the left represents the

synchronized product without assumption of initial state, this is the composition used by [ASSS-V

94] , while the graph on the right is the synchronized product as defined above, assuming a specified

initial state (the initial states of M1 and M2 are resp. state 1 and 1'). The synchronized product with

initial state is a subgraph of the one defined by [ASSS-V 94]. In the following, we will consider

systems having an initial state (as we work on VHDL programs).

1,1'

3,2'

2,2' 1,2'

1,3'

3,3'

5,3'

2,3'

2,1'

3,1'

5,1' 5,2'

p,q

p,q

p,q

p,q

p,q

p,q

p,q

p,q

p,q
p,q

p,qp,q

1,1'
p,q

3,2'

2,2'

p,q

p,q

T

T
T

T

T

T
T

T

T

T

T
T

T

T

T

Figure 2. the synchronised product (without assumption on the initial state) and the
synchronised product (M1 o M2) (with a specified initial state). T means that for any
input configuration, the label in the transition function is true .

6

3. COMPONENT REDUCTION BY BISIMULATION

Our approach consists in identifying an equivalence relation R between states of a FSM, and

then using the quotient FSM with respect to R for the verification instead of the initial FSM. As the

quotient FSM will be smaller than the initial FSM, so will be the synchronized product, therefore

simplifying the verification process. The equivalence relation R must preserve the synchronized

product, i.e. R must be a congruence with respect to this composition operation since it must be

equivalent to verify the property over the synchronized product of the initial FSMs and over the

synchronized product of the quotient FSMs. There are two reasons for this :

• Most of the properties to be verified are global properties, hence preserving the

composition is necessary.

• Even if the property is local to a module, one has to take the environment into

account as the reachability graph of a component is not the same if the component is

connected to the others or not, due to the synchronisation constraints.

remark 1 : In this paper for simplicity of presentation, we will restrict ourselves to a system

composed of two components. The results presented would easily extend to modular symbolic model

checking of systems with more than two interconnected FSMs.

3.1. Bisimulation is a necessary condition
In this section, we shall exhibit that a necessary condition for the equivalence relation to

preserve the property and the composition is that it is a bisimulation. This is first illustrated by the

following counter-example.

Let us consider again the system of Figure 1, over which we would like to verify the global

property "p ∧ q", i.e. to find the states in which p and q are true. The intuitive idea would lead to the

reduction of M1 (resp. M2) distinguishing the states where "p" (resp. "q") is true, from those were

"p" (resp. "q") is false. The relation R1: R1 ⊆ S1 × S1: x R1 y ⇔ (x |= p ⇔ y |= p) (resp. R2)

aggregates states of M1 (resp. M2) having the same truth value for p (resp. q).

The reduction of M1 (resp. M2) by R1 (resp. R2) is illustrated on Figure 3. Notice that this

reduction is similar to the one proposed by [ASSS-V 94] for the property π = p ∧ q4, but here each

component can be reduced independently of the others, while the definition of [ASSS-V 94] imposes

the construction of the product of M1 and M2, without assumption of an initial state, to determine the

equivalent states in each module5.

4 The formula-dependent equivalence given by [ASSS-V 94] for the property π = p ∧ q is :
two states (x,y) of M1 are equivalent iff :∀ s2 ∈ M2 , (x,s2) |= π iff (y,s2) |= π

5To be totally fair, [ASSS-V 94] would synchronise M1/R1 and M2/R2 without assumption of initial state, then the
states (C1,C2'), (C2,C1') and (C2,C2') would be represented, invalidating the formula. But these classes are not
reachable from the initial state, and we want to find the reachable states that satisfy or not the formula. [ASSS-V 94]
can not answer to this question.

7

C1 = {1,3,5}

C2

aa
_

T

p

_
p

p

a

q

M1/R1 M2/R 2
C1

C2 = {2,4}

C2

T

a , q
__

C1 = {1,3}
C2 = {2}

C1

T

a , q

Figure 3. Each module is reduced with respect to its equivalence relation : Concerning M1/R1
(resp. M2/R2), state 1 (resp. 3) was chosen as representative of the class C1.

Each reduction (M1 by R1) and (M2 by R2) preserves the property, by definition, but the

synchronized product is not respected : the synchronized product of the reduced components M1/R1

and M2/R2 is shown on figure 4. All its states verify "p ∧ q", hence the verification of "p ∧ q" over

this graph would conclude that "p ∧ q" is always true. This assertion is wrong, as there exists some

states in the initial synchronized product where "p ∧ q" is false (i.e. state (2,2') on figure 2, right).

The problem is due to the non preservation of paths (1) validating or invalidating the formulae to be

verified, and (2) along which interface signal values are modified: in M1/R1, the path σ = a a !a leads

to a state where "p" is false, whilst in M1 it leads in a state where "p" holds.

C1,C1'
a,p,q T

Figure 4 : synchronized product of M1/R1 and M2/R2

A reduction relation verifying the path-preserving-property garantees that the synchronized product is

preserved. Informally, two states x and y equivalent by an equivalence relation R verifying the path-

preserving property iff all the next states of x and y for the same inputs are still equivalent by R.

Definition 6 : path-preserving property

An equivalence relation R between states of a FSM M(S,I,J,T,O,So) verifies the path-preserving

property iff :

∀ (x , y) ∈ S , x R y =>

1) ∀ i ∈ I ,∀ t ∈ S such that (x , i , t) ∈ Τ then ∃ w ∈ S such that (y , i , w) ∈ Τ and t R w

2) ∀ i ∈ I ,∀ t ∈ S such that (y , i , t) ∈ Τ then ∃ w ∈ S such that (x, i , w) ∈ Τ and t R w

Theorem 1 :

Let R be an equivalence relation included in N ⊆ S × S: x N y ⇔ (x |= π ⇔ y \= π), then a necessary

condition for R to preserve the synchronized product is : R verifies the path-preserving property.

8

Proof : Without loss of generality, we will prove the theorem assuming that the property π
refers to the outputs of a component M1(S1,I1,J1,T1,O1,So1). Let R be a relation included in N

⊆ S × S: x N y ⇔ (x |= π ⇔ y |= π), and not verifying the path-preserving property.

we will show that it is not equivalent to verify the property π over M1 o M2 and over M1/R o M2,

where M2 is a any FSM, and M1/R is M1 quotiented by R.

Let s1 and s2 be two states of S1 reachable from So1, and R-equivalent :

∃ σ1 ∈ I1 ×× I1, So1 -σ1→ s1 and ∃ σ2 ∈ I1 ×× I1, So1-σ2→s2,

and s1 |= π and s2 |= π or s1 |= ¬π and s2 |= ¬π.

without loss of generality, assume s1 |= π and s2 |= π.

If R does not verify the path property, then :

∃ i ∈ I1 and ∃ s'1 ∈ S1 , such that (s1 , i , s'1) ∈ T1 and

∃ s'2 ∈ S2 , such that (s2 , i , s'2) ∈ T2 and

s'1 and s'2 are not R-equivalent : s'1 |= π and s'2 |= ¬π or s'1 |= ¬π and s'2 |= π.

without loss of generality, assume s'1 |= π and s'2 |= ¬π.

As s1 and s2 belong to the same equivalence class C, each of them may be chosen for

representing C.

• If s1 is chosen, then C is reachable from So1 by a path σ1, and the successor of C by the

transition labelled i is s'1, in which the property is true.

• If s2 is chosen, then C is reachable from So1 by a path σ2, and the successor of C by the

transition labelled i is s'2, in which the property is false.

s1

s' 1

i

σ1

s2

s' 2

i

σ2

C

s' 1 s'2

ii

σ1

σ2

M1

M1/R

Figure 5. Definition of states and transitions in M1 and the corresponding ones in M1/R.

Then M1/R is non deterministic, as it contains the paths σ1.i falsifying π, and σ2.i validating π
from So1, which are not in M1.

9

Let us assume s2 not to be reachable in M1 o M2, while s1 is reachable : the synchronisation

constraints of M2 over M1 eliminate all the paths from So1 to s2, but has preserved a path from So1 to

s1, for example σ1. Then s'2 is not reachable in M1 o M2 from the path σ1.i, while it is reachable in

M1/R o M2 since s1 (reachable) and s2 (unreachable) are equivalent. Thus, the set of states verifying π
is different in M1 o M2 and in M1/R o M2 : A relation that does not satisfy the path-preservation

property does not preserve the synchronized product. ❏

As we shall see in the following sections, an equivalence relation satisfying the path-

preservation property is a bisimulation. The most common bisimulation is the strong bisimulation

introduced by [Milner 89], it is recalled in section 3.2. The general bisimulation will then be defined

as [Arnold 92] does in section 3.3, and our equivalence relation is introduced in section 3.4.

3.2. Strong bisimulation

Definition 7 : strong bisimulation

Let M(S,I,J,T,O,So) be a FSM, two states x and y of S are equivalent in the sense of strong

bisimulation iff the three conditions hold :

(i) O(x) = O(y)

(ii) ∀ i ∈ I , such that (x, i, x') ∈ T, ∃ y' ∈ S, such that (y,i,y') ∈ T and x' equivalent to y'

(iii) ∀ i ∈ I , such that (y, i, y') ∈ T, ∃ x' ∈ S, such that (x,i,x') ∈ T and y' equivalent to x'.6

Definition 8 : quotient automaton

If we denote by ≈ f the strong bisimulation relation, then the strongly bisimilar FSM of

M=(S,I,J,T,O,So) is the FSM M'=(S /≈f,I,J,T,O,So) where S/≈f is the quotient of S by the

equivalence relation ≈f.

This strong bisimulation has the property to preserve all CTL formulae (i.e. it is equivalent to

verify a CTL formula over the initial FSM and over the quotient FSM) [CLM 89]. In fact, [CLM 89]

has shown that it is the coarsest equivalence relation preserving all CTL formulas. It also preserves

the synchronized product [CLM 89] (i.e. it is equivalent to verify a CTL formula over the

synchronized product of the initial FSMs and the synchronized product of the quotient FSMs).

Moreover [BFH94] proposes an algorithm to build the strongly bisimilar FSM of a given FSM.

Nevertheless, the strong bisimulation has a low reducing power as it only aggregates redundant

states (i.e. having the same outputs and all transitions leading to equivalent states).

As the strong bisimulation is the coarsest equivalence relation preserving all CTL formulae, we

can not expect to find a coarser equivalence relation preserving all CTL formulae and the

synchronized product. But as a matter of fact, if we focus on the verification of a unique property,

then we can built an equivalence relation that preserves this CTL formula and the synchronized

product and that is coarser than the strong bisimulation. This approach makes sense since for the

formal verification of hardware devices, we only verify a restricted number of CTL formulae, and for

6 The strong bisimulation is an equivalence relation such that x R y iff O(x) = O(y) and verifies the path-preserving
property.

10

a given formula, it may be more efficient to manipulate a small graph preserving the formula only

rather than a big graph preserving all CTL formulae. On the other hand, we will have to build a new

reduced graph for each property to be verified.

In the following of the section, we present the general bisimulation and how we can derive our

equivalence relation preserving an atomic property and the synchronized product from it.

3.3. The general bisimulation

Definition 9 : bisimulation and autobisimulation

Let M 1=(S1,I1,J1,T1,O1,So1) and M2=(S2,I2,J2,T2,O2,So2), two FSMs such that I1=I 2, a

bisimulation between M1 and M2 is a binary relation R beetween S1 and S2 iff :

(i) ∀ s1 ∈ S1 , ∃ s2 ∈ S2 such that s1 R s2

(ii) ∀ s2 ∈ S2 , ∃ s1 ∈ S1 such that s2 R s1

(iii) ∀(s1 , s2) ∈ S1 × S2, such that s1 R s2 and s2 R s1,

∀ i ∈ I1=I 2, ∃ s'1�� ∈ S1�and ∃ s'2 ∈ S2 such that :

(s1 , i , s'1) ∈ T1 and (s2 , i , s'2) ∈ T2 then s'1 R s'2 and s'2 R s'1.

An autobisimulation is a bisimulation between an automaton and itself.

[Arnold 92] defines an application E(R) in order to built the biggest bisimulation included in a

relation R. E(R) is defined as follows :

Definition 10 : E(R)

Let M(S,I,J,T,O,So) a FSM, and E the application :

§(S × S) → §(S × S) (§(S × S) is the set of lattices of S × S)

 R → E(R)

such that : ∀ (s1 , s2) ∈ S , (s1 , s2) ∈ E(R) iff :

(i) (s1 , s2) ∈ R
(ii) ∀ i ∈ I , ∀ s'1 ∈ S such that (s1 , i , s'1) ∈ Τ, ∃ s'2 ∈ S such that (s2 , i , s'2) ∈ T and s'1 R s'2
(iii) ∀ i ∈ I , ∀ s'2 ∈ S such that (s2 , i , s'2) ∈ Τ, ∃ s'1 ∈ S such that (s1 , i , s'1) ∈ T and s'2 R s'1

Then E(R) ⊆ R is monotonic decreasing, and admits a biggest fixed-point ∩n≥0 E
n (R).

[Arnold 92] gives the following proposition :

Proposition 1: Let R an arbitrary relation included in S × S and let Rf the relation defined by

Rf = ∩n≥0 E
n (R), then the two following statements are equivalents :

(i) There exists a bisimulation R' included in R
(ii) Rf is the biggest bisimulation included in R

From this proposition, one can derive an algorithm to built the biggest bisimulation included

into a given relation. We will present the algorithm proposed by [BFH 94] in section 5.

11

From these results, we can build an equivalence relation preserving the property and the

synchronized product. This is the object of the following sub-section.

3.4. property-dependent bisimulation : an equivalence relation
preserving a property and the synchronized product

3.4.1. The property to be verified
First of all we focus on global properties that are static : they do not contain temporal operator.

Moreover, they can be expressed as a conjunction or a disjunction of Boolean propositions depending

exclusively of variables of a given module. Let us denote π the global property, π1 the Boolean

proposition concerning the variables of the module M1 and π2 the one concerning the variables of the

module M2. Then π = π1 . π2 or π = π1 + π2.

In Section IV, we will show that the global properties can be extended to CTL formulae, since

we reduce each module according to the atomic propositions of the formula.

Remark 2 : The reduction of each module will be made according to the atomic propositions of the

CTL formula that concern this module. In the above example (cf. Figure 1), if the global property to

be verified was "p+q", M1 was reduced according to π1 = p and M2 according to π2 = q

3.4.2. The property-dependent bisimulation
Our equivalence relation must preserve the property π. This means that we can aggregate two

states into the same equivalence class if the property is either true in both states, either false in both

states :

s1 R s2 implies s1 |= π ⇔ s2 |= π
On the other hand, we must preserve the interface behaviour of the component in order to insure

the preservation of the synchronized product. This means that we can not aggregate two states having

different values on the output signals. Thus

s1 R s2 implies O7interface(s1) = Ointerface(s2)

If we take a bisimulation included in the two constraints above, then we preserve all sequences

in the bisimilar FSM modifying the value of π and of each output signal value. This is what we will

prove in the following of this section.

Definition 11 : property-dependent relation

Let two FSMs M1 and M2 linked together, let Ointerface the set of outputs of M1 that are input for M2,

let π a static property, we call Q the equivalence relation between states of the FSM M1 defined by :

∀ (x,y) ∈ M1 × M1, x Q y iff

(i) x |= π ⇔ y |= π
(ii) O12(x) = O12(y)

7 Ointerface means O12 for M1 and O21 for M2.

12

Proposition 2 : property-dependent bisimulation
There exists a biggest bisimulation included in Q, denoted B(Q).

Proof : The strong bisimulation is included in Q as it preserves all CTL formulae and in particular it

preserves π; moreover, as strong bisimulation imposes the values of the outputs of the FSM to be

equal, it imposes it in particular for the outputs linking M1 to M2. Hence there exists a bisimulation

included in Q, it follows from proposition 2 that there exists a biggest bisimulation included in Q,

equals to B(Q) = ∩n≥0 E
n (Q). ❏

By definition of a bisimulation, B(Q) preserves the property π. Proposition 3 is necessary to

prove that B(Q) preserves the synchronized product.

Definition 12 : sequence of values of linking signals

Let M 1=(S1,I 1,J1,T1,O1,So1) and M 2=(S2,I 2,J2,T2,O2,So2) be two FSMs, the sequence

of values of linking signals from M1 to M2 associated to a serie of reachable states c=(s1 , s2 ,

........sn) (i.e. si+1 is reachable from si and s1 is reachable from S0 in one transition) is the serie P(c)

= (O12(s1) , O12(s2) ,, O12(sn)).

Proposition 3 : Let M= (S,I,J,T,O,So) be a FSM and π a static property over this FSM. B(Q)

is the bisimulation induced by Q as defined in definition 10. Let c=(s1,....,si,......sn) a path of M and

c'= (s'1,......,s'i,......s'n) its equivalent path by B(Q) (i.e. such that s1 B(Q) s'1), then P(c) =

P(c') .

Proof : As s1 B(Q) s'1, we have O12(s1) = O12(s'1) and s2 B(Q) s'2 by definition of B(Q).

Hence by induction, if we assume si B(Q) s'i then O12(si) = O12(s'i) and si+1 B(Q) s'i.

Finally for all i O12(si) = O12(si+1) . ❏

Corollary : Let M1 be a FSM linked to a FSM M2, and M1/B(Q) its equivalent FSM induced by an

equivalence relation Q as defined in definition 10, then M1 and M1/B(Q1) produce the same sequences

of outputs connected to M2.

Theorem 2:

B(Q) is an equivalence relation that preserves the property π and the synchronized product.

Proof : Let M1 and M2 be two FSMs linked together, and two static properties π1 and π2 such that

π1 concerns variables of M1 and π2 concerns variables of M2. B(Q1) is the bisimulation induced by

π1 over M1 and B(Q2) the bisimulation inducted by π2 over M2, then we will demonstrate that it is

equivalent to verify the property π1 . π2 or π1 + π2 over M1 o M2 and over M1/B(Q1) o M2/B(Q2). To

achieve this, we will demonstrate that there exists a bisimulation included in R1 ⊆ S1 × S1: x R1 y ⇔
(x |= π1 ⇔ y |=π1) and R2 ⊆ S2 × S2: x R2 y ⇔ (x |= π2 ⇔ y |= π2), between M1 o M2 and

M1/B(Q1) o M2/B(Q2).

(1) Let R be an equivalence relation between states of M1 o M2 and M1/B(Q1) o M2/B(Q2) such that :

∀ (s1,s2) ∈ M1 o M2 and (s'1 , s'2) ∈ M1/B(Q1) o M2/B(Q2)),

(s1,s2) R (s'1,s'2) iff s1 B(Q1) s'1 and s2 B(Q2) s'2.

13

Let us prove that ∀ (s1,s2) ∈ (M1 o M2), ∃ (s'1,s'2) ∈ (M1/B(Q1) o M2/B(Q2)) such that :

(s1,s2) R (s'1,s'2) :

a) ∀ s1 ∈ M1 ∃ s'1 ∈ M1/B(Q1) such that s1 B(Q1) s'1
b) ∀ s2 ∈ M2 ∃ s'2 ∈ M2/B(Q2) such that s2 B(Q2) s'2

c) Moreover, if (s1, s2) is reachable then (s'1,s'2) is reachable also, because of

proposition 4 : the behaviours of the outputs of M1 connected to M2 or of M2 connected
to M1 are the same in M1 and M1/B(Q1) and in M2 and M2/B(Q2))

Hence ∀ (s1,s2) ∈ M1 o M2 ∃ (s'1,s'2) ∈ M1/B(Q1) o M2/B(Q2)) such that (s1,s2) R (s'1,s'2).

(2) Let s = (s1 , s2) ∈ M1 o M2 and sf = (sf1 , sf2) ∈ M1 o M2 such that ∃ a ∈ I1 o I2 and (s,a,sf) ∈
T1 o T2 (i.e. there exists a transition labelled a1 going from s1 to sf1 and a transition labelled a2 going
from s2 to sf2) . Le be s' = (s'1 , s'2) ∈ M1/B(Q1) o M2/B(Q2)) such that s R s', then ∃ s'f ∈ M1/B(Q1)

o M2/B(Q2) such that ∃ a' ∈ I1 o I2 and (s',a',s'f) ∈ T1 o T2.

s'f can be split into (s'f1 , s'f2) with s'f1 ∈ M1/B(Q1) and s'f2 ∈ M2/B(Q2) such that a = (a1, a2)

and s'1 -a1→ s'f1 and s'2 -a2→ s'f2.

(s'f 1,s'f 2)

(s'1 ,s'2)(s 1,s2)

(sf 1,sf2)

s

sf

s'

s'f

i i

B(Q1)

B(Q2)

B(Q1)

B(Q2)

M1 o M2 M1/B(Q1) o M2/B(Q2)

Figure 5. Definition of states and relations.

Indeed, as the behaviours of the outputs of M1 linked towards M2 and of M2 linked towards M1
are the same resp. for M1 and M1/B(Q1) and for M2 and M2/B(Q2), and if s1 B(Q1) s'1 and there exists

a1 such that s1 -a1→ sf1, then there exists a'1 : s'1 -a'1→ s'f1 and a1 = a'1. Similarly, if there exists a

transition a2 : s2 -a2→ sf2 then there exists a transition a'2 : s'2 -a'2→ sf'2 and a2 = a'2. Moreover, as

s1 B(Q1) s'1 and s2 B(Q2) s'2 then sf1 B(Q1) s'f1 and sf2 B(Q2) s'f2.

To conclude, for all transitions t going from a state s of M1 o M2 to a state sf of M1 o M2, and
for all states s' of M1/B(Q1) o M2/B(Q2) such that s R s', then there exists a state s'f of M1/B(Q1) o

M2/B(Q2) reachable in one transition from s' and sf R sf'. As R is an equivalence relation, this is

sufficient to show that there exists a bisimulation R between M1 o M2 and M1/B(Q1) o M2/B(Q2).

Moreover, it is clear that R is included in R1 ⊆ S1 × S1: x R1 y iff (x |=π1 iff y |=π1) and R2 ⊆
S2 × S2: x R2 y iff (x |=π2 iff y |= π2), thus it is equivalent to verify π1 . π2 or π1 + π2.over M1 o

M2 or over M1/B(Q1) o M2/B(Q2). ❏

14

3.4. Gain over the strong bisimulation
A question may subsist : what distinguishes the biggest bisimulation included in the defined

equivalence relation from the strong bisimulation defined by [Milner 89] ?

We prove that in general B(Q) is coarser than the strong bisimulation, and even that B(Q) is the

coarsest bisimulation preserving π (if π is static) and the synchronized product.

proposition 4 : In the general case, the strong bisimulation is strictly included in the equivalence

relation we defined.

Proof : Let be SB the equivalence relation defined by : x SB y ⇔ O(x) = O(y), Q defined as in

definition 9, and the application E defined as in definition 11, then, in the general case :

SB ⊂ Q
⇒ E(SB) ⊂ E(Q) (because E is monotonic and strictly decreasing),

then limn→∞ E(SB) ⊂ limn→∞ E(Q) as sets have finite topology,

and limn→∞ E(SB) is the strong bisimulation, while limn→∞ E(Q) is B(Q) ❏

Instead of preserving all paths modifying a value of any output of a FSM, as strong

bisimulation does, the relation we defined preserves the paths modifying the truth values of the static

property to be verified and the interconnection outputs. Thus if we want to verify the property "x + y"

over a component M with J = {x,y,z,t}, and t is a connection signal, the strong bisimulation will

distinguish all the configurations of x, y, z and t (i.e. sixteen configurations) along the executing

paths, while the relation we defined will distinguish the configurations where "x + y" is true or false,

with the value of t (i.e. four configurations are considered8 : (x + y).t, (x+y).!t, !(x + y).t and

!(x+y).!t).

4. EXTENSION TO ALL CTL OPERATORS

Up to now we had been considering the global property π to be a static property of the form π =

π1 . π2 or π = π1 + π2, with π1 a Boolean proposition referring to outputs of M1 and π2 to these of

M2. The following result extend the type of property that are preserved by our reduction.

Theorem 3:

Let M1 and M1/B(Q1) two FSMs equivalent by B(Q1). Let π1 a static property concerning variables of

M1, then for all CTL operators, (i.e. AX, EX, AF, EF, AG, EG, AU, EU), it is equivalent to verify

the property C(π1) over M1 or over M1/B(Q1).

Sketch of the proof : Let P the set of states of M1 verifying C(π1) and let P' the set of states of

M1/B(Q1)=(S'1,I'1,J'1,T'1,O'1,S'o1) verifying C(π1) also. We prove by contradiction and for each

operator : ∀ s ∈ S1, such that s ∈ P, then s' ∈ S'1 such that s B(Q1) s iff s' ∈ P'. ❏

Corollary :

Let M 1= (S1,I1,J1,T1,O1,So1) , M 2= (S2,I2,J2,T2,O2,So2) two FSMs, and π1 and π2 two

static properties concerning resp. variables of M1 and M2. Let B(Q1) the equivalence relation induced

8 the symbol ! represents the boolean negation of the expression

15

by π1 and B(Q2) the one induced by π2. Then for each CTL operator, it is equivalent to verify C(π1 .

π2) or C(π1 + π2) over M1 o M2 or over M1/B(Q1) o M2/B(Q2).

5. ALGORITHM FOR THE REDUCTION OF A COMPONENT

5.1. Computation of the biggest bisimulation of a FSM induced by a
relation

Let π be a static property (cf. 3.4.1) over the outputs of a FSM M, and a relation R over the

states of M such that : x R y iff : (x |= π ⇔ y |= π).
The algorithm presented by [BFH 94] computes the transition relation representing the quotient

FSM by the biggest bisimulation induced by the relation R, from the transition relation of the initial

FSM. The algorithm exactly computes the relation Rf = ∩n≥0 E
n (R). The method is based on an

iterative refinement of a partition of the states of the FSM, separating the non bisimilar states into

disjoint equivalence classes, up to the stabilization of the classes. The advantages of their algorithm is

that it computes on the fly the quotient FSM, it only refines reachable classes, and symbolic

representation of sets of states and transition relation can be applied.

In their paper, [BFH 94] only focus on the reduction of a single FSM according to a static

property π. Thus the initial partition of the set of states is composed of two classes : the one

containing the states verifying π and the one containing the states not verifying π. Then the class

containing the initial state is refined : its states leading to states of different classes are distinguished,

and then the refinement of this class induces new classes; the reachable ones are, in their turn, refined

... and so on, up to the stabilization of all classes.

5.2. Extension of the algorithm to handle property-dependent
bisimulation

This algorithm can be applied to compute the biggest bisimulation included in Q defined as in

definition 10 of a given FSM : the only change concerns the initial partition.

If π = π1 . π2 or π = π1 + π2, where π1 contains variables of M1 and π2 contains variables of

M2, and M1 and M2 are connected through J12 outputs from M1 connected to M2 and through J21

outputs from M2 connected to M1, then the reduction of M1 and M2 can be built by computing the

biggest bisimulation M1/B(Q1) and M2/B(Q2) with :

For the module M1, ∀ (x,y) ∈ S1 × S1 , x Q1 y ⇔
(i) x |= π1 ⇔ y |= π1

(ii) O12(x) = O12(y)

The initial partition of the computation algorithm of M1/B(Q1) is then ∩ Ci , where :

Ci = { s ∈ M1 | s |= configuration910(π1, o1,....on) such that oj ∈ J12}

9 configuration(x1,...,xn) is the set of all tuples (x1,...xn) for all values of x1, ... xn. Its cardinality is 2n.

10 if the formula contains p terms refering to variables of M1, all these terms are considered in the initial partition by
extending the set of configurations to configuration(π11, ..., π 1p, o1, ..., on)

16

Once the components are reduced, we can form their synchronized product and prove a CTL

property whose atomic proposition is π.

We can extend the type of CTL property to be verified once its atomic propositions are

identified and combined as sum or products of static propositions of M1 and M2.

Example : Assume π = (π11 . π21) + AF(π12+ π21) , with π11 and π12 referring to outputs of M1
and π21 and π22 referring to M2, then

two states (x1,y1) of M1 are bisimilar by π iff they are bisimilar by π11 , π12 and J12.

two states (x2,y2) of M2 are bisimilar by π iff they are bisimilar by π21 , π22 and J21.

As one can see, the initial partition of the algorithm for the reduction of a given component

grows exponentially with (1) the number of interconnection signals going from this component to the

others implicated in the global formula, and (2) the number of terms referring to variables of this

component in the atomic propositions of the formula.

6. APPLICATION TO VHDL AND EXPERIMENTAL RESULTS

We implemented a compositional reduction routine for interacting VHDL structural programs

and applied it to few number of academic examples. The software tool is still a prototype developed to

experimentally confirm the correctness of our approach. The experimental results below indeed

provide such a confirmation. For these examples, it is equivalent to verify the property on the product

of the interacting VHDL modules or on the product of reduced interacting VHDL modules where each

module was reduced by our formula-dependent equivalence.

6.1. VHDL example
Let be the following VHDL entity :

entity prgm_grenoble is
port(

ck : in bit;
a : in bit

);
end prgm_grenoble;

architecture behaviour of prgm_grenoble is

begin

prgm : process

variable y : bit ;
variable z : bit ;
variable x : bit := '1';
variable w : bit := '1';

begin
z := y;
y := (x and w) or a;
x := not z;
w := (not w and x) or y;
wait on ck;

end process prgm ;

end behaviour;

17

At the end of each simulation cycle, a state of the entity is composed of :
• the signal effective values ck and a,

• the event attribute of the signal ck : evt_ck,

• the values of the variables of the process prgm : y, z, x, w.

The initial state is the one after the initialisation cycle (once the initial values were given, an execution

phase has occurred): <!evt_ck.!ck.!a.!z. y. x. w>

The transition relation is computed by VPN :

R1 := evt_ck'.(ck ≡ ck') + !evt_ck'.(ck = ck');

R2 := a.evt_ck.w' + a.!evt_ck.w.w' + a.!evt_ck.!w.!w' + !a.evt_ck.(w.w'.x + w.!w'.!x)
+!a.evt_ck.(!w.w'.!y + !w.!w'.y) + !a.!evt_ck.(w = w');

R3 := evt_ck.y.!x' + evt_ck.!y.x' + !evt_ck.x.x' + !evt_ck.!x.!x' ;

R4 := a.evt_ck.y' + a.!evt_ck.y.y' + a.!evt_ck.!y.!y' + !a.evt_ck.w.y'.x + !a.evt_ck.w.!y'.!x +
!a.evt_ck.!w.!y' + !a.!evt_ck.y.y' + !a.!evt_ck.!y.!y';

R5 := evt_ck.z'.y + evt_ck.!z'.!y + !evt_ck.z.z' + !evt_ck.!z.!z';

R := R1 . R2 . R3 . R4 . R5;

The reachable state space is computed by symbolic forward traversal. It contains 32 states. The initial

state is the one below located on the left.

!evt_ck.!ck.a.!z.y.x.w

!evt_ck.!ck.!a.!z.y.x.w

evt_ck.ck.!a.!z.y.x.w

evt_ck.ck.a.!z.y.x.w

evt_ck.!ck.!a.z.y.!x.w

evt_ck.!ck.a.z.y.!x.w

!evt_ck.ck.!a.z.y.!x.w

!evt_ck.ck.a.z.y.!x.w

evt_ck.ck.!a.z.y.!x.w

evt_ck.ck.a.z.y.!x.w

evt_ck.ck.!a.z.!y.!x.!w

evt_ck.ck.a.z.!y.!x.!w

!evt_ck.!ck.!a.z.y.!x.w

!evt_ck.!ck.a.z.y.!x.w

!evt_ck.!ck.!a.z.!y.!x.!w

!evt_ck.!ck.a.z.!y.!x.!w

evt_ck.!ck.!a.z.!y.!x.!w

evt_ck.!ck.a.z.!y.!x.!w

evt_ck.!ck.!a.!z.!y.x.w

evt_ck.!ck.a.!z.!y.x.w

evt_ck.!ck.!a.!z.y.x.w

evt_ck.!ck.a.!z.y.x.w

!evt_ck.ck.!a.z.!y.!x.!w

!evt_ck.ck.a.z.!y.!x.!w

!evt_ck.ck.!a.!z.!y.x.w

!evt_ck.ck.a.!z.!y.x.w

!evt_ck.ck.!a.!z.y.x.w

!evt_ck.ck.a.!z.y.x.w

evt_ck.ck.!a.!z.!y.x.w

evt_ck.ck.a.!z.!y.x.w

!evt_ck.!ck.!a.!z.!y.x.w

!evt_ck.!ck.a.!z.!y.x.w

Figure 6. The reachability graph of the VHDL program.

18

Assume we want to verify a CTL property whose atomic proposition is "x + y". The transition

relation can be reduced by computing the biggest bisimulation included in R :

∀ (s1,s2) ∈ S × S , s1 R s2 ⇔ (s1 |= x + y ⇔ s2 |= x + y)

This leads to a FSM of seven classes, depicted below.

a.evt-ck. .x.y +
a.evt-ck.w.x.y +
a.evt-ck.w.x.y +
a.evt-ck.w.x.y +
_

_

_
_

_

______ a.evt-ck.y + a.evt-ck.(w.x.y + w.y)+
a.evt-ck.w.x.y + a.evt-ck.(w.x.y + w.y)
_

_
_

_
_

a.evt-ck.(w.x.y + w.y)
_ _ _

evt-ck.x.y
______ _ _

a.evt-ck.x.y
_ _ _

a.evt-ck.x.y
_ _

(a.evt-ck +
 a.evt-ck +
 a.evt-ck).x.y

_
_ ______
_

1112

112

12

21

22
23

1111

Figure 7. The reduced graph of the VHDL program.

Each reachable state belongs to a given class. The states in whom "x + y" is true are in class

1111, 1112, 112 or 12, while the states in whom "x + y" is false are in class 21, 22 or 23. Notice that

all classes represented are reachable, but a class may contain unreachable states. Reachable and

unreachable states in a given class are equivalent for the property.

6.2. Experimental results
These experiments were performed using BDDs. We used the information about the equivalent

states to simplify the BDDs representing the transition relation but we were unable to compute our

approach to large industrial designs, may be in part due to the fact that BDD minimisation routines

were not used. Nevertheless we have found large reduction in the number of states for small design.

More experiments need to be performed to evaluate the contribution of each parameter in the reduction

factor.

19

name of design number of
states

n u m b e r o f
variables implied
in the formula

number of
connected
outputs

number of equivalence
classes in the quotient
automaton

reduction factor

prgm_grenoble 32 1 0 5 6.4
prgm_grenoble 32 2 0 5 6.4
prgm_grenoble 32 5 0 9 3.2
prgm_grenoble 32 2 1 7 4.3
prgm_grenoble 32 2 2 9 3.2
part 640 1 2 7 90
part 640 2 2 23 29
part 640 5 2 54 12
arbiter2 2260 1 0 13 174
arbiter2 2260 2 0 19 114
arbiter2 2260 2 1 20 110
arbiter2 2260 2 2 27 88

Table 1. Size of the initial and reduced FSMs of VHDL entities.

The initial automaton contains n states encoded over p Boolean variables. Depending on the

formula and on the interconnection, its quotient automaton is composed of q equivalences classes,

each one grouping several indistinguishable states. Thus the quotient automaton may be encoded on a

smaller number of Boolean variables since q << n, depending on the number of equivalence classes,

simplifying the composition and further verification.

7. CONCLUSIONS AND PERSPECTIVES

This report presents a step towards compositional model checking based on the reduction of

each component before its connection. The equivalence relation we define in order to reduce each

component preserves enough information to insure the correctness of the verification : it preserves the

property to be verified and the synchronised product, which is the basic operation of combining

VHDL components. We have shown that the formula-dependent equivalence relation defined by

[ASSS-V 94] in not adequate for VHDL programs, since (i) it cannot handle specified initial states

and (ii) it is not a bisimulation. In addition, with our approach, we can compute each reduced FSM

independently and reuse this reduced FSM even if the other components connected to this one have

been modified (but assuming the same interface).

The component reduction procedure has been implemented and tested. Our experimental results

confirm the fact that significant reduction factors may be obtained, while suggesting that they depend

a lot on the size of the FSMs and on the structure of the property to be checked. We therefore plan to

extend our existing verification platform [BE 96b] by introducing the a priori reduction of each

component for model cheking and equivalence verification purposes.

A fruitful avenue for future research is the study of the partitioning of a given structural VHDL

program in order to yield a structural program where each module is as loosely connected to the other

modules as possible, in other words to reduce the number of interconnection between FSMs. Another

subject of future research concerns the introduction of component reduction in the architectural

synthesis process.

20

REFERENCES
[Arnold 92] A. Arnold, "Systèmes de transitions finis et sémantique des processus communicants", Masson

, France, 1992 (book in french)

[ASSS-V 94] A. Aziz, T. Shiple, V. Singhal, A.Sangiovani-Vincentelli, "Formula-Dependent Equivalence
for Compositional Model Checking ", proceedings of CAV 94, CA 1994.

[Bawa 96] R.K. Bawa, "Un environnement intégré pour la vérification formelle et l'analyse des systèmes
décrits en VHDL", PhD, University Paris VI, dec 96.

[BE 96] R.K. Bawa, E. Encrenaz, "A Platform for the Formal Verification of VHDL Programs", Actes
de SMACD'96 (4th International Workshop on Symbolic Methods and Applications in Circuit
Design), Heverlee, Belgique, oct. 1996.

[BFH 94] A. Bouajjani, J-C. Fernendez, N.Halbwachs, P. Raymond, and C. Ratel "Minimal state graph
generation", Science of Computer Programming, 18(3), pp 247-271, 1994.

[Borrione 96] D. Borrione, "Research on VHDL in France, Italy and Switzerland", in Proceedings of the
VHDL International Users' Forum, spring Conference, feb-mar 1996, Santa Clara, CA.

[CCP 93] P. Camurati, F. Corno, P. Prinetto, "An efficient tool for system-level verification of
behaviors and temporal properties", in proc of EURO-DAC'93 : IEEE European Design
Automation Conference, sept. 93, Hamburg, Germany.

[CLM 89] E. Clarke, D. Long, K. McMillan, " Compositional Model Checking", proc 4th Symp on
Logic in Computer Science, Asilomar, CA, jun 89.

[CLSI 93] CLSI Solutions, " VFORMAL Users' Manual", May 93.

[Encrenaz 95a] E. Encrenaz, "Une méthode de vérification de propriétés de programmes VHDL basée sur des
modèles formels de réseaux de Petri", PhD, University Paris VI, dec 95.

[Encrenaz 95b] E. Encrenaz, "A symbolic Relation for a subset of VHDL'87 description and it's application to
symbolic model checking", proc. of CHARME'95 , Frankfurt, Germany , oct.95, LNCS 987.

[HP 90] J. Hennesy, D. Patterson, "Computer Architecture, a Quantitative approach", Morgan Kaufman
Publishers Inc, San Mateo, CA,1990.

[LL 95] F. Laroussinie, K. G. Larsen, "Compositionnal model checking of real-time systems",
proceedings of CONCUR'95, LNCS 962.

[LRM 87] "IEEE Standard VHDL Language Reference Manual" IEEE Std 1076-1987.

[McMillan 93] K. McMillan, "Symbolic Model Checking", Kluwer Academic Publisher, Norwell
Massachusetts, 1993.

[SR 94] R. de Simone, A. Ressouche,"Compositional semantics of ESTEREL and verification by
compositional reductons". in proc. of CAV 94, CA, jun. 1994, pp 441-454.

[Milner 89] R.Milner, " Communication and Concurency ", Prentice Hall, New York, 1989.

[VIS 95] R.K.Brayton et. al. "Vis : a System for Verification and Synthesis " , UC Berkeley Electronics
Research Lab, Technical Report No: UCB/ERL M95/104, dec. 1995.

