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1. INTRODUCTION

Formal verification of hardware designs is an important area of research [Borrione 96]. Amol
the possible approaches, symbolic model checking [McMillan 93] has already been used to ve
behavioral equivalence or CTL properties of hardware designs : VFORMAL [CLSI 93], SM\
[McMillan 93], VIS [BR95], SEVERO [CCP 93], VPN-VMC [Encrenaz 95a, Bawa 96]. Of course
formal verification techniques do not apply to real hardware design, but to a model representing
behaviour of the design. In [BE 96] we present a platform devoted to the verification of hardwa
designs described in VHDL, which extracts a symbolic transition reldtiom an elaborated VHDL
program [Encrenaz 95b], and then performs symbolic model checking in order to verify CT
properties or behavioral equivalence of two different VHDL descriptions. The performances obtain
with this platform allow us to verify medium complexity designs, as the DLX [HP80] or 808¢€
microcontrollers.

One way to treat more complex designs consists in considering their structural informatiol
complex systems can be seen as a collection of interacting simpler components (e.g. a struc
VHDL program is composed of entities linked by signals), each one represented by a transit
relation. The verification platform can verify some properties concerning each module, but one ha
combine these modules to verify global properties. A first way to verify a global property is t
compute the synchronized product of the elementary transition relations, and then to apply symb
model checking techniques, but in this case we obtain a unique transition relation as big as the
extracted from the "flat" description of the system.

Another approach consists in reducing each transition relation, according to the property to
verified and the transition relations interconnections, before combining them in a global transiti
relation, thus leading to a smaller global transition relation easier to manipulate. The reduction of e
component is based on the identification of equivalent states aggregated into equivalence clas
Strong bisimulation [Milner 89] is known to be the coasesguivalence relation that preserves all
CTL formulae. In the context of hardware verification, the specification to be verified is usuall
composed of a restricted number of CTL formulae to be verified, and thus instead of preserving
CTL formulae, we present an equivalence relation which depends on the property to be verified, .
preserves the CTL formula to be verified and the composition of componenta-biienulation.

This equivalence relation is even coarser than the strong bisimulation in the general case, leading
better reduction of each transition relation.

In [ASSS-V 94] a compositional, property-based model checking technique is alreac
presented, but our approach differs from theirs in the sense that (1) we do consider an initial statt
VHDL programs have an initial state, hence the component composition is based on the synchron
product with respect to an initial state. The example given in our paper highlights the wrong results

1 the symbolic transition relation expresses the set of reachable states in one VHDL simulation cycle, from a given
of states.

2 the coarsest relation is the one that renders equivalent the biggest number of states (according to a criterion),
this is the one that offers the biggest reduction power.
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the reduction proposed by [ASSS-V 94] in our context. (2) Our approach consists in reducing f
transition relation according to atomic propositions of CTL formulae, thus we can compute tl
reduced FSM independently of all the other FSM of the system interacting with this one, contrary
[ASSS-V 94]. This reduction over atomic propositions makes the component composition simpl:
The work of [SR 94] in the MEIJE project concerns also the compositional verification of paralle
systems based on anpriori reduction of each component by bisimulation. They verify that a
component is bisimilar to another one, simpler, representing the formula to be verified over ti
component. In our knowledge, they do not reduce each component according to a global prope
taking into account the synchronisation between components, in order to verify the global property
the simplified system, as we propose. [LL 95] also presented a compositional model checki
approach, but their work is based on the quotienting of the formula instead of the quotienting of -
components.

The paper is organised as follows : the preliminary section (2) recalls definitions concernil
FSMs. Section 3 defines the reduction of each component by bisimulation and presents the rela
we propose to reduce each VHDL component. It is shown that it is equivalent to verify an aton
property over the synchronized product of the initial transition systems and of the reduced transit
systems. Section 4 extends the result to all CTL operators. Section 5 recalls the computation of
coarsest bisimulation algorithm [BFH 94] and presents the modifications to be made in order
consider the relation we defined. Section 6 details the reduction of a VHDL entity and provid
experimental results of the modular verification of VHDL programs, and then (section 7) we conclu
and suggest some directions for future work.

2. PRELIMINARIES

2.1. From VHDL to transition relations

An elaborated VHDL program is represented by a transition relation which mimics the VHD!
simulation cycle. As in [BE 96], a state of a VHDL entity is composed of the program counter of ea
process, the value of each variable, the value of each signal driver, the effective value of each si¢
and the value of the event attribute associated to each signal. The way the transition relation is |
from the VHDL program is detailed in [Encrenaz 95]. Roughly, for each state varighilleev
equation modelling the evolution of this variable along th&isitnulation cycle is built from the state
of the system at the end of tifégimulation cycle :

Vkli+1] = fi(valil, ..., vnli])
The transition relation is then a conjunction of the equation of all state variables.

TR = |;| w[i+1] = fr(va[il, ..., vnli])

The VHDL program has an initial state, as defined in [LRM 87] : each state variable is initialise
to the leftmost value of its definition interval, except when they are explicitly initialised by the
programmer.

Sets of states and transition relation are represented by BDD structures, and one can peri
state space traversals, either to verify temporal logic properties or to check the equivalence of
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descriptions of a same system, that is to find the set of reachable states in which a property hc
Various improvements have been proposed which speed up the verification process and reduct
memory used, for example external stimuli representation, partitioned transition relation, intermedii
variables simplification are discussed in [BE 96, Bawa 96].

Another direction to be studied is the compositional verification, which starts from a structur.
VHDL program instead of an elaborated one. In this case, we distinguish components linked toge!
by signals, and associate a transition relation per component. A conjunction of these transit
relations exactly represents the flat VHDL program, and hence no improvement can be expec
except if we reduce the transition relations before their conjunction : each reduced transition relai
may be expressed with a smaller number of variables, reducing the size of the transition relation ol
whole program, and simplifying the downstream verification process.

2.2. Definitions

Definition 1: Finite State Machine

A Finite State Machine (FSM$ a 6-tupleM=(S,1,J,T,0,S) with :

S the finite set of states$,the finite set of input valueg, the finite set of output values, the
transition function, t7 T is a 3-tuple (s,i,s") such that : s and sSadre resp. source and destination
states of the transition andJ 2! is the label of t, hencE [J S x = x Swith = = 2, O is the output
function :S - 2J andS,is the initial state.

The FSM iompletei.e. : [JsOS, i 1, [Js' [0S such that (s,i,s'JT.
If the FSM is deterministic and complete, the transition relation is a fundtioB x> - S

Definition 2 : reachable state

Let M=(S,I,J,T,So)a FSM, a state §7S s a reachable state from a staté/sSiff :
O(1,i2.....jj.....\n) s.t.OJ O[1,n], ij O 2l andT (-1, ik) = skfor Isksnand g =s'and g = s

Definition 3 : Cartesian product of automata

Let M 1=(S1,11,J1,T1,01,Sp1) and Mo=(Sp,12,J2,T2,02,S92) be two FSMs, th€artesian
product M1 x M2 is the FSM M(S,1,J,T,0,So)such that :S=S1 xS, T =Ty xTo, | = 11
X192, =J1%xJ2,S0= (S01.S02), O: S - J, that maps (s) intd(s) such that : if s=(gp)
thenO(s,i) =(O1(s1) , O2(s2)).

This Cartesian product represents the behaviour of two components not connected, hay
either synchronous or asynchronous execution (if the null transition exists), and with the assumpt
of an initial state. The Cartesian product can be restricted when components are linked together
when a synchronous or asynchronous semantics is defined, as in Figure 2. This leads to
definition of the synchronised product given below. To make notations simpler, we provide tt
definition only in the case of deterministic and complete FSMs.




Definition 4 : FSM connection and synchronisation constraint

Let M 1=(S1,11,J1,T1,01,S01) and M2=(Sp,12,J2,T2,02,Sy2) be two linked FSMs (i.e.
some outputs of Mare inputs for M and some outputs ofd\are inputs for M :

Ji2=J1 n I Z@ is the set of output variables of bnnected to Kl

Jo1=J2 n 11 Z@ is the set of output variables op bnnected to i

11 =11\ J1is the set of primary input variables o M
22 =12\ J12is the set of primary input variables obM

The transition function of Mis defined as :
T1:S x 2l11 x2J21 $1 which given a statejsof §, a set of values; iof 211 and a set of

values p1 of 221 associates Msy, i1, jp) =s10S
The transition function of M: To(s2, i2, j12) = sb is defined similarly.

We define the restriction of the output function to the connected outputs by :

01:S - 221that associates to any statedf S the value of the output variables op kbnnected
to My.

Similarly we define @ by :

012: 9 - M12that associates with any state of § the value of the output variables of M
connected to M

Let (3,5) be a state 081 x Sp. The set of reachable states from,€s in one global transition is
the set of states (s$») that verify the constraints :
Ta(s1, i1, Opa(sp)) = s'1 and T(sp, ip, O12(S1)) = S
where i is any value of the primary input variables of &hd b any value of the primary input

variables of M.
These two constraints are callggchronisation constrainteer transitions o1 x M.

Definition 5 : synchronized product

Let beM 1=(S1,11,J1,T1,01,S01) and M2=(S2,12,J2,T2,02,552), two FSMs, and their
Cartesian product M=(S,1,J,T,0,S0). Let)ube a serie of elements of S defined by :

* Uo = (So1.%2) 3

» Uy = { reachable states in one global transition from.J} [7 Up-1
then the serie () admits a limit Q included i6; x S;. The FSM M' included in M containing only

states of S belonging to Q is thenchronized productf M; and M, denoted M 0 Ma.

3The synchronized product used by [ASSS-V 94] does not assume an initial state : it is defined as the limit of the s
given in definition 5 with Y = § x Sp.
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Example : synchronized product

Let be two components Mand M given on Figure 1. Component;Mas an input signaland
an output signgl. Its behaviour is represented by the FSM Momponent M has an input signal
(which is the output of M), and two output signaks (which is the input signal of M andqg. Its
behaviour is represented by the FSM. Malues of the input signals are transition labels, and values
of the output of the FSMs are represented near each corresponding state.

M1 - M2

QE
i
©

Q)
O
°

o

a (Ep‘a— Q@ CSD
Ya

Figure 1. A system composed of two components M1 and M.

Two synchronized products are depicted on figure 2. They represent the behaviours of
system when the components are connected and synchronous. The graph on the left represen
synchronized product without assumption of initial state, this is the composition used by [ASSS
94] , while the graph on the right is the synchronized product as defined above, assuming a spec
initial state (the initial states of Mand M are resp. state 1 and 1'). The synchronized product with
initial state is a subgraph of the one defined by [ASSS-V 94]. In the following, we will conside
systems having an initial state (as we work on VHDL programs).

p.q

Figure 2. the synchronised product (without assumption on the initial state) and the
synchronised product (M1 o M2) (with a specified initial state). T means that for any
input configuration, the label in the transition function is true .



3. COMPONENT REDUCTION BY BISIMULATION

Our approach consists in identifying an equivalence rela&ibatween states of a FSM, and
then using the quotient FSM with respect®téor the verification instead of the initial FSM. As the

quotient FSM will be smaller than the initial FSM, so will be the synchronized product, therefor
simplifying the verification process. The equivalence relattomust preserve the synchronized
product, i.e.X must be a congruence with respect to this composition operation since it must |
equivalent to verify the property over the synchronized product of the initial FSMs and over tt
synchronized product of the quotient FSMs. There are two reasons for this :

* Most of the properties to be verified are global properties, hence preserving tf
composition is necessary.

* Even if the property is local to a module, one has to take the environment int
account as the reachability graph of a component is not the same if the componen
connected to the others or not, due to the synchronisation constraints.

remark 1: In this paper for simplicity of presentation, we will restrict ourselves to a systen
composed of two components. The results presented would easily extend to modular symbolic me
checking of systems with more than two interconnected FSMs.

3.1. Bisimulation is a necessary condition

In this section, we shall exhibit that a necessary condition for the equivalence relation
preserve the property and the composition is that it is a bisimulation. This is first illustrated by t
following counter-example.

Let us consider again the system of Figure 1, over which we would like to verify the globi
property "pl1q", i.e. to find the states in which p and q are true. The intuitive idea would lead to tt
reduction of M (resp. M) distinguishing the states where "p" (resp. "q") is true, from those were
"p" (resp. "q") is false. The relatioRy1: R1 O S X S1: X Ry = X|[=p= Y |=p) (respRo)
aggregates states ofiNtesp. M) having the same truth value for p (resp. q).

The reduction of M (resp. M) by R1 (resp.R>) is illustrated on Figure 3. Notice that this
reduction is similar to the one proposed by [ASSS-V 94] for the propertp O g#, but here each
component can be reduced independently of the others, while the definition of [ASSS-V 94] impo:
the construction of the product of;NMnd M, without assumption of an initial state, to determine the
equivalent states in each module

4 The formula-dependent equivalence given by [ASSS-V 94] for the prapertyd qis :
two states (x,y) of M are equivalent iffl s O M2, (X,9) |= Tiff (y,s2) |= T

5To be totally fair, [ASSS-V 94] would synchroniseq 1 and Mp/r2 without assumption of initial state, then the
states (@,C»2'), (C2,C1") and (G,Co") would be represented, invalidating the formula. But these classes are no
reachable from the initial state, and we want to findréaehable statefat satisfy or not the formula. [ASSS-V 94]
can not answer to this question.
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M1/Rr1 p M2/Rr 2
a,g

L P
@ 4_(;@

C1={1,3,5} C1={1,3}
C2={2,4} c2={2}

Ya

Figure 3. Each module is reduced with respect to its equivalence relation : Concerning M1/Rrq
(resp. M2/R»), state 1 (resp. 3) was chosen as representative of the class Cj.

Each reduction (Mby R1) and (M by R2) preserves the property, by definition, but the
synchronized product is not respected : the synchronized product of the reduced compemgnts M
and Mpy/r, is shown on figure 4. All its states verify [pq”, hence the verification of "p q" over
this graph would conclude that 'pq" is always true. This assertion is wrong, as there exists some
states in the initial synchronized product wherel'q" is false (i.e. state (2,2") on figure 2, right).
The problem is due to the non preservation of paths (1) validating or invalidating the formulae to
verified, and (2) along which interface signal values are modified;jgr/Mhe patho = a a !a leads
to a state where "p" is false, whilst im M leads in a state where "p" holds.

Figure 4 : synchronized product of Mj/rq and Mg/Rr»

A reduction relation verifying the path-preserving-property garantees that the synchronized produc
preserved. Informally, two states x and y equivalent by an equivalence reRatavifying the path-
preserving property iff all the next states of x and y for the same inputs are still equivakent by

Definition 6 : path-preserving property

An equivalence relatio® between states of a FSMI(S,I,J,T,0,So) verifies the path-preserving
property iff :

O(x,y)ds, xRy =>

1) i dl,otJSsuch that (x, i, t)J TthenOw [JSsuch that (y,i,w)/ Tandt R w

2) i OOt OSsuchthat (y, i, t)/ TthenJw [JS such that (x, i, w )/ Tandt X w

Theorem 1:

Let ® be an equivalence relation included iNN5Sx S: x Ny= (X |= T = y \= 1), then a necessary
condition forR to preserve the synchronized productfverifies the path-preserving property.



Proof : Without loss of generality, we will prove the theorem assuming that the praperty
refers to the outputs of a compon®hi(Sy,11,J1,T1,01,S01). Let R be a relation included in N
O0SxS:xNye= (x|=1 < y|=m), and not verifying the path-preserving property.

we will show that it is not equivalent to verify the propemtpver My 0 M2 and over M/r 0 M,
where My is a any FSM, and MRris M1 quotiented byg,

Let 51 and 3 be two states of 1Seachable from §, and®-equivalent :
Oo1011%..x 11,Sp1-01—- st and00 o2 011 % ...x |1, Sg1-02- S,
and g |=mand s |=mor g |=—tand $ |= -

without loss of generality, assumg|stand s |=Tt

If ® does not verify the path property, then :
Oi0dlpand 0Osv 0SSy, suchthat (s,i,s1) O T1and
Os»0Sy, such that (s,i,s5) O T and
s1 and $ are not®-equivalent : §'|=1tand & |= —or s1 |= —imand $ |=TU
without loss of generality, assume s tand  |= It

As s and $ belong to the same equivalence class C, each of them may be chosen -
representing C.
» If s1is chosen, then C is reachable frop By a patho, and the successor of C by the
transition labelled i is g'in which the property is true.

» If spis chosen, then C is reachable frop By a pathop, and the successor of C by the
transition labelled i is 8'in which the property is false.

M1/R

M1

Figure 5. Definition of states and transitions in M1 and the corresponding ones in Mq/R.

Then MyR is non deterministic, as it contains the paths falsifying 1, ando».i validatingt
from &1, which are not in M.



Let us assumexsiot to be reachable in Mo My, while g is reachable : the synchronisation
constraints of M over M, eliminate all the paths fromyHto 9, but has preserved a path frogy ®
s1, for exampleoy. Then g is not reachable in Mo My from the patho.i, while it is reachable in
M1y/r 0 My since $ (reachable) andggunreachable) are equivalent. Thus, the set of states ventying
is different in Mp 0 M2 and in Myyr 0 M2 : A relation that does not satisfy the path-preservation
property does not preserve the synchronized product. 0

As we shall see in the following sections, an equivalence relation satisfying the pat
preservation property is a bisimulation. The most common bisimulation is the strong bisimulatic
introduced by [Milner 89], it is recalled in section 3.2. The general bisimulation will then be define
as [Arnold 92] does in section 3.3, and our equivalence relation is introduced in section 3.4.

3.2. Strong bisimulation

Definition 7 : strong bisimulation

Let M(S,1,J,T,0,S) bea FSM, two states x and y of S are equivalent in the sense of stron
bisimulation iff the three conditions hold :

(i) O(x) = O(y)

(i) i 01, such that (x, i, x)J T, [Jy' [JS, such that (y,i,y'YJ T and x' equivalent to y'

(i) i 01, such that (y, i, y)J T, Ox' JS, such that (x,i,x'YJ T and y' equivalent to %'

Definition 8 : quotient automaton

If we denote by=f the strong bisimulation relation, then the strongly bisimilar FSM of
M=(S,1,J,T,0,S0) is the FSMM'=(S/=,1,J,T,0,S0) where Szt is the quotient ofS by the
equivalence relatiord.

This strong bisimulation has the property to preserve all CTL formulae (i.e. it is equivalent |
verify a CTL formula over the initial FSM and over the quotient FSM) [CLM 89]. In fact, [CLM 89]
has shown that it is the coarsest equivalence relation preserving all CTL formulas. It also preset
the synchronized product [CLM 89] (i.e. it is equivalent to verify a CTL formula over the
synchronized product of the initial FSMs and the synchronized product of the quotient FSM
Moreover [BFH94] proposes an algorithm to build the strongly bisimilar FSM of a given FSM.

Nevertheless, the strong bisimulation has a low reducing power as it only aggregates redunc
states (i.e. having the same outputs and all transitions leading to equivalent states).

As the strong bisimulation is the coarsest equivalence relation preserving all CTL formulae, \
can not expect to find a coarser equivalence relation preserving all CTL formulae and t
synchronized product. But as a matter of fact, if we focus on the verification of a unique proper
then we can built an equivalence relation that preserves this CTL formula and the synchroni:
product and that is coarser than the strong bisimulation. This approach makes sense since fo
formal verification of hardware devices, we only verify a restricted number of CTL formulae, and fc

6 The strong bisimulation is an equivalence relation such that x R y iff O(x) = O(y) and verifies the path-preservi
property.
9



a given formula, it may be more efficient to manipulate a small graph preserving the formula or
rather than a big graph preserving all CTL formulae. On the other hand, we will have to build a ni
reduced graph for each property to be verified.

In the following of the section, we present the general bisimulation and how we can derive ¢
equivalence relation preserving an atomic property and the synchronized product from it.

3.3. The general bisimulation

Definition 9 : bisimulation and autobisimulation

Let M 1=(S1,11,J1,T1,01,501) and M2=(S2,12,J2,T2,02,S52), two FSMs such that*l o, a
bisimulation between Mand M is a binary relation® beetween and S iff :
() Os10%,0% [0Sy suchthat R s
() O [0Sy, 0s1 [0S such that s8R s1
(i) ds,9)0S xS, suchthats®Rsy and 9 R sy,
00 O014=lo, 0sh1 [0S and [Os% [0S such that :
(s1,1,s1) 0Trand (2,i,s>) [0 Tothen s Rs and s) R S'1.

An autobisimulation is a bisimulation between an automaton and itself.

[Arnold 92] defines an application &) in order to built the biggest bisimulation included in a
relation®, E(R) is defined as follows :

Definition 10 : E(R)

Let M(S,1,J,T,0,§ a FSM, and E the application :
§(SxS) - §(SxS) (8( SxS) is the set of lattices 0f>SS )

R - HR)
suchthat :[7(s1,9) [0S, (3,9 OER) iff:
(i) (s1, ) OR

@) i Ol, 0s'1 [0S such that ¢s, i, s1) [T, [Js'2 [0S such that ¢s, i, s) [JT and §{ R S
@iy i OO0, 0s'2 [0S such that ¢s, i, sb) [JT, [Js'1 [JS such that ¢s, i, s1) T and & R s1

Then E(R) [ R is monotonic decreasing, and admits a biggest fixed-pOinty E" (R).

[Arnold 92] gives the following proposition :
Proposition 1: Let ® an arbitrary relation included in>8S and letRf the relation defined by

Rf= N 50 E" (R), then the two following statements are equivalents :

(i) There exists a bisimulatiaR included in®,
(i) Rfis the biggest bisimulation included4n
From this proposition, one can derive an algorithm to built the biggest bisimulation include
into a given relation. We will present the algorithm proposed by [BFH 94] in section 5.
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From these results, we can build an equivalence relation preserving the property and
synchronized product. This is the object of the following sub-section.

3.4. property-dependent bisimulation : an equivalence relation
preserving a property and the synchronized product

34.1. Theproperty to beverified

First of all we focus on global properties that stagic : they do not contain temporal operator.
Moreover, they can be expressed as a conjunction or a disjunction of Boolean propositions depen
exclusively of variables of a given module. Let us denotke global propertyiy the Boolean
proposition concerning the variables of the moduleaMdT® the one concerning the variables of the
module M. Thentt= 11 . Th Or T= T + TO.

In Section 1V, we will show that the global properties can be extended to CTL formulae, sint
we reduce each module according to the atomic propositions of the formula.

Remark 2 : The reduction of each module will be made according to the atomic propositions of t
CTL formula that concern this module. In the above example (cf. Figure 1), if the global property
be verified was "p+qg", Mwas reduced accordingita = p and M according tan = q

3.4.2. The property-dependent bissmulation

Our equivalence relation must preserve the properfjhis means that we can aggregate two
states into the same equivalence class if the property is either true in both states, either false in
states :

S1 R impliesg |=TT = S |=TT

On the other hand, we must preserve the interface behaviour of the component in order to in¢
the preservation of the synchronized product. This means that we can not aggregate two states hi
different values on the output signals. Thus

s1 R s implies OinterfacdS1) = OnterfacdS2)

If we take a bisimulation included in the two constraints above, then we preserve all sequen
in the bisimilar FSM modifying the value afand of each output signal value. This is what we will
prove in the following of this section.

Definition 11 : property-dependent relation

Let two FSMs Mand M linked together, let (xerfacethe set of outputs of Mhat are input for M,
let 77 a static property, we cal) the equivalence relation between states of the FSMd¥ined by :
[0 (X,y) [DM1 x M1, xQy iff

() x|=meyl|=m

(i) O12(x) = O12(y)

7 Ojnterfacemeans @, for M; and G4 for M.
11



Proposition 2 : property-dependent bisimulation
There exists a biggest bisimulation includedjrdenoteds(Q).
Proof : The strong bisimulation is includeddnas it preserves all CTL formulae and in particular it

preservest, moreover, as strong bisimulation imposes the values of the outputs of the FSM to
equal, it imposes it in particular for the outputs linking td Mo. Hence there exists a bisimulation
included inQ, it follows from proposition 2 that there exists a biggest bisimulation includey in

equals toB(Q) = N 0 ™ (Q). O

By definition of a bisimulation8(Q) preserves the property Proposition 3 is necessary to
prove thatB(Q) preserves the synchronized product.

Definition 12 : sequence of values of linking signals

Let M1=(S1,11,J1,T1,01,S01) and M 2=(S2,12,J2,T2,02,S52) be two FSMs, the sequence
of values of linking signals from iMo M, associated to a serie of reachable states ¢5& ,
........ %) (i.e. $+1 is reachable fromjsand g is reachable from &n one transition) is the serie P(c)
= (012(s1) » O12(s2) ... ,» Q2(sn) )-

Proposition 3: Let M= (S,1,J,T,0,S0) be a FSM andt a static property over this FSMNB(Q)

is the bisimulation induced b as defined in definition 10. Let cx(s..,$,......$) a path oM and
c'= (S1,...... 'Shennen sn) its equivalent path by(Q) (i.e. such thatsB(Q) s1 ), then P(c) =
P(c) .

Proof : As g B(Q) s, we have @»(s1) = O12(s"1) and $ B(Q) s» by definition of B(Q).

Hence by induction, if we assume&Q) si then Qo(s) = O12(s}) and s-1 B(Q) Si.

Finally for all i O12(s) = O12(S+1) . 0

Corollary : Let My be a FSM linked to a FSM Mand M/B(Q) its equivalent FSM induced by an
equivalence relatio as defined in definition 10, theniMind My/g(g,) produce the same sequences

of outputs connected to M

Theorem 2:

B(Q) is an equivalence relation that preserves the propemy the synchronized product.
Proof : Let My and Mp be two FSMs linked together, and two static propertieandm such that
11 concerns variables of Mandte concerns variables of MB(Qq) is the bisimulation induced by
11 over My and‘B(Q9) the bisimulation inducted b over M, then we will demonstrate that it is
equivalent to verify the property; . T or Ty + T over My 0 M2 and over Myg(@;) 0 M2/8(Q,)- TO
achieve this, we will demonstrate that there exists a bisimulation includgdirs; x S1: X R1 Y =
X|mFm = y|=m) andRo O So xS: X Ry = (X |=Tp = y |=Tp), between M o0 M» and
Ma1/B(Qp © M2/B(Q)-
(1) Let R bean equivalence relation between states pbN- and My/B(Qq) © M2/B(Q,) such that :

O (s1,) O M1 0oMzand (s, s2) O M1/B(Qy) 0 M2/B(Qy))

(s1,%2) R(s1,52) iff s1B(Qu) s1and 3 B(Q) s>.

12



Let us prove thafl (s1,s) O (M1 0 Mp), 0(s1,82) U (M1/8(Q;) © M2/B(Qy)) such that :
(s1,%2) R (s1,89) :

a) O s 0Mp Osh O My/B(gy) such that $3(Qp) s1
b) 0 s 0 M2 Os? 0 M2/g(q,) such that $B(Q2) s>
C) Moreover, if (3, ) is reachable then {s5%) is reachable also, because of

proposition 4 : the behaviours of the outputs afddnnected to Mor of Mo connected
to M; are the same in Mand Myg(q,) and in M and My/g(q,) )
Hencell (s1,s2) O M1 0 M2 [ (s1,82) O M1/B(Qq) 0 M2/B(Q,)) such that (§sp) R (S'1,52).

(2) Lets=(3,9) OM10M2 and sf = (sf, shb) 0 M1 0 M2 such thatlal I; 0l and (s,a,sf)]
T10T2 (i.e. there exists a transition labelledg@ing from g to sf and a transition labelled going
from g to sh) . Le be s' = (g, s) U M1/g(Q) 0 M2/B(Qy) ) Such that K s', thenls'f 0 M1/g(Qy)
0 M2/B(qy) such thatla'0 I1olz2and (s',a',s'f)d T10 Ta.

s'f can be split into (91, s'p) with s'fi 0 M1/g(q,) and s’ [ M2/g(q,) such that a = fa &)
and § -a1 - s'fiand & -ap - s'h.

M1 o M2 Q)  M1B(@Q1)o M2/B(Q2)
S( (s1,82) (s1,82) ) S
\—//

B(Q2)

By

sf( (sf 1,sf2)

Bz

Figure 5. Definition of states and relations.

Indeed, as the behaviours of the outputs glinked towards M and of M linked towards M
are the same resp. foryMnd My/g(g,) and for Mp and Mpy/g(q,), and if § B(Q1) s1 and there exists
a; such that s-a -~ sfi, then there existsia’ s1 -a1- s'fi and a = a}. Similarly, if there exists a
transition a :  -ap— sh then there exists a transition as> -a» - sf and @ = a'2. Moreover, as
s1 B(Q1) s1 and 3 B(Q2) s» then si B(Q1) s'fi and sp B(Q2) s'f.

To conclude, for all transitions t going from a state s @io\W1, to a state sf of Iylo M5, and
for all states s' of Mg(g;) 0 M2/B(Q,) such that R s', then there exists a state s'f of/dfq,) 0
M2/B(Q,) reachable in one transition from s' andRséf'. As ® is an equivalence relation, this is
sufficient to show that there exists a bisimulatipbetween M o M2 and My/g(Q;) 0 M2/B(Qy)-

Moreover, it is clear thag is included iRy [0 S X Sg: x Ry y iff (X |=mq iff y [=Tq) andR2 U
Sy x Spr x Ro y iff (X |=mR iff y |= TR), thus it is equivalent to verifyy . T or 1y + T.OVer My 0
M2 or over MyB(Q;) 0 M2/B(Qy)- [l
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3.4. Gain over the strong bisimulation
A question may subsist : what distinguishes the biggest bisimulation included in the defin
equivalence relation from the strong bisimulation defined by [Milner 89] ?
We prove that in generad Q) is coarser than the strong bisimulation, and evena{@tis the
coarsest bisimulation preservingif Ttis static) and the synchronized product.
proposition 4 : In the general case, the strong bisimulation is strictly included in the equivalenc
relation we defined.
Proof : Let bess the equivalence relation defined by 58y < O(x) = O(y), Q defined as in
definition 9, and the applicationdefined as in definition 11, then, in the general case :
sB0Q
O £(5B) O £(Q) ( because& is monotonic and strictly decreasing ),
then limp_ .« E(SB) Olimpy_, » E(Q) as sets have finite topology,
and limp_ » E(SB) is the strong bisimulation, while lign,  £(Q) is B(Q) O

Instead of preserving all paths modifying a value of any output of a FSM, as stron
bisimulation does, the relation we defined preserves the paths modifying the truth values of the st
property to be verified and the interconnection outputs. Thus if we want to verify the property "x +°
over a component M with J = {x,y,z,t}, and t is a connection signal, the strong bisimulation wi
distinguish all the configurations of x, y, z and t (i.e. sixteen configurations) along the executir
paths, while the relation we defined will distinguish the configurations where "x + y" is true or fals:
with the value of t (i.e. four configurations are considére¢tk + y).t, (x+y).lt, !(x + y).t and

I(x+y).1).
4. EXTENSION TO ALL CTL OPERATORS

Up to now we had been considering the global propettybe a static property of the fome
1 . T Or T =TTy + T, With Ty a Boolean proposition referring to outputs of &hdro to these of

M>. The following result extend the type of property that are preserved by our reduction.

Theorem 3:

Let My and My/g(qq) tWo FSMs equivalent bg(Q1). Let a static property concerning variables of
M1, then for all CTL operators, (i.e. AX, EX, AF, EF, AG, EG, AU, EU), it is equivalent to verify
the property C{u) over My or over Mi/g(qQu).-

Sketch of the proof : Let P the set of states of{Merifying C(ty) and let P' the set of states of
M1/B(Q15(S'1.1'1,J1,T'1,0'1,S01) verifying C(my) also. We prove by contradiction and for each
operator [0 s 0 Sq, such that $1 P, then sf1 S'; such that 8(Q;) s iff ' P'. O

Coroallary :

Let M 1= (S1,11,J1,T1,01,S01) , M 2= (S2,12,32,T2,02,S02) two FSMs, andr; andmy two
static properties concerning resp. variables gfakid M. Let 3(Q1) the equivalence relation induced

8 the symbol ! represents the boolean negation of the expression
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by Ty andB(Q?) the one induced bsp. Then for each CTL operator, it is equivalent to verifyrig(
T ) or C@y + 10) over My 0 M2 or over My/g(Q1) 0 M2/B(Qp)-

5. ALGORITHM FOR THE REDUCTION OF A COMPONENT

5.1. Computation of the biggest bisimulation of a FSM induced by a
relation

Let it be a static property (cf. 3.4.1) over the outputs of a FSM M, and a refabwear the
states of M such that : Ry iff : (X |=TT = y |=T).

The algorithm presented by [BFH 94] computes the transition relation representing the quoti
FSM by the biggest bisimulation induced by the relaRpfrom the transition relation of the initial

FSM. The algorithm exactly computes the relatigfr N 50 £" (X). The method is based on an

iterative refinement of a partition of the states of the FSM, separating the non bisimilar states i
disjoint equivalence classes, up to the stabilization of the classes. The advantages of their algorith
that it computes on the fly the quotient FSM, it only refines reachable classes, and symbc
representation of sets of states and transition relation can be applied.

In their paper, [BFH 94] only focus on the reduction of a single FSM according to a stat
property . Thus the initial partition of the set of states is composed of two classes : the ol
containing the states verifyingand the one containing the states not verifyinghen the class
containing the initial state is refined : its states leading to states of different classes are distinguisl
and then the refinement of this class induces new classes; the reachable ones are, in their turn, re
... and so on, up to the stabilization of all classes.

5.2. Extension of the algorithm to handle property-dependent
bisimulation
This algorithm can be applied to compute the biggest bisimulation included in Q defined as
definition 10 of a given FSM : the only change concerns the initial partition.
If T=11 . T® Or T=T1Y + T, wherery contains variables of Mandt contains variables of
M2, and My and My are connected through,Joutputs from M connected to Mand through 5}
outputs from M connected to I then the reduction of Mand M can be built by computing the
biggest bisimulation Mp(qy) and Myg(qy) With
Forthe module M O (X,y)OS1 XS , XQ1y =
() x|=m <=yl=m
(i) O15%) = Opa(y)
The initial partition of the computation algorithm ofid(qy) is then Cj , where:
Ci={s Mz | s |= configuratiofq(ry, 01,....0y) such that p 0 J,5}

9 configuration(x,...,,) is the set of all tuples {x..x,) for all values of x ... %, Its cardinality is 2

10 if the formula contains p terms refering to variables of M these terms are considered in the initial partition by
extending the set of configurations to configuratmp(..., T, 0y, ..., Q)
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Once the components are reduced, we can form their synchronized product and prove a (
property whose atomic propositionris

We can extend the type of CTL property to be verified once its atomic propositions ai
identified and combined as sum or products of static propositiong aht¥iVp.
Example : Assumert = (111 . T1) + AF( T2+ TR21) , With 1111 andTty2 referring to outputs of M
andtp1 andtpo referring to M, then
two states (xy1) of M1 are bisimilar byrtiff they are bisimilar by Ty, g2 and J».
two states (xy2) of M are bisimilar byrtiff they are bisimilar by 11 , To2 and 4.

As one can see, the initial partition of the algorithm for the reduction of a given compone
grows exponentially with (1) the number of interconnection signals going from this component to t
others implicated in the global formula, and (2) the number of terms referring to variables of tr
component in the atomic propositions of the formula.

6. APPLICATION TO VHDL AND EXPERIMENTAL RESULTS

We implemented a compositional reduction routine for interacting VHDL structural program
and applied it to few number of academic examples. The software tool is still a prototype develope:
experimentally confirm the correctness of our approach. The experimental results below inde
provide such a confirmation. For these examples, it is equivalent to verify the property on the prod
of the interacting VHDL modules or on the product of reduced interacting VHDL modules where ea
module was reduced by our formula-dependent equivalence.

6.1. VHDL example
Let be the following VHDL entity :

entity prgm_grenoble is
port (

ck © i n bit;

a © in bit

end p;rgm_grenoble;

archi tect ure behaviour of prgm_grenoble is
begin
prgm :  process

variabley : bit;
variable z : bit;
variable x : bit :=="1";
variable w : bit :='1";

begi n

Z =Y,
y = (x and w) or a;
X :=not z;
w := (not w and x) ory;
wait on ck;

end process prgm ;

end behaviour;
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At the end of each simulation cycle, a state of the entity is composed of :
 the signal effective valuex anda,

» the event attribute of the signal ckvt_ck,

» the values of the variables of the process prgnz,.x, w.

The initial state is the one after the initialisation cycle (once the initial values were given, an execut
phase has occurred¥ievt_ck.!ck.!la.!z. y. x. w>

The transition relation is computed by VPN :

R1 := evt_ck'.(ck = ck') + levt_ck'.(ck = ck);

R2 := a.evt_ck.w' + a.levt ck.w.w' + a.levt_ck.'w.lw' + la.evt_ck.(w.w'.x + w.lw'!x)
+la.evt_ck.('w.w'ly + lw.lwy) + la.levt ck.(w = w');

R3

evt_ck.y.Ix' + evt_ck.ly.x' + levt_ck.x.x' + levt_ck.Ix.IX' ;

R4

a.evt_ck.y' + a.levt_ck.y.y' + a.levt_ck.ly.ly' + la.evt_ck.w.y'.x + la.evt_ck.w.ly'.Ix +
la.evt_ck.lw.ly' + la.levt_ck.y.y' + la.levt_ck.ly.ly’;

R5 := evt_ck.z.y + evt_ck.lz'.ly + levt_ck.z.z' + levt_ck.!z.Iz;

R:=R1.R2.R3.R4.RS5;

The reachable state space is computed by symbolic forward traversal. It contains 32 states. The i
state is the one below located on the left.

evt_ck.!ck.la.z.ly.Ix.!w evt_ckxk.la.!lz.ly.x.w

O
evt] ck.ck.fa.lz.y.x.w evtck'!ck Nevt_
A
evt/ck.ck, - oyt ok . y et
NV reran \

OFlevt_ck.ck.a.z.ly.Ix.!w

% 1z.!
0 evt_ck.!ck.la.lz.ly. x.w : ,a..z..y.x.w

0 evt_ck.!ck.a.lz.ly. x.w

Idvt_ck.ck.la.!z.ly. x.w

levt_ck.ck.a.lz.ly. x.w

®

evt_ck.!ck.a.!z.y.x.w

levt_ck.ck.la.!z.y.x.w
7

levt_ck.ck.a.!z.y.x.w

Figure 6. The reachability graph of the VHDL program.
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Assume we want to verify a CTL property whose atomic proposition+sy™ The transition
relation can be reduced by computing the biggest bisimulation included in

D) US*xS 3R = (sl=X+y = $(=Xx+Yy)

This leads to a FSM of seven classes, depicted below.

a.evt-ck. .x.y t a.evt-ck.y + a.evt-ck.(w.x.y + w.y)+
a.evt-ckw.x.y + a.evt-ck.w.x.y + a.evt-CK.(WxXy + w.y)
a.evt-ckw.x.y +

a.evt-ck.w.x.y +

\ / Aevt-ck.(W.xy +W.y)
T \@

o/ [\ 7

(1) o

evt-ck.x.y

(a.evt-ck +

a.evt-ck + N\
a.evt-ck).x.y -

a.evt-ck.xy a.evt-ck.xy
Figure 7. The reduced graph of the VHDL program.

Each reachable state belongs to a given class. The states in whom "x + y" is true are in ¢
1111, 1112, 112 or 12, while the states in whom "x + y" is false are in class 21, 22 or 23. Notice t
all classes represented are reachable, but a class may contain unreachable states. Reachak
unreachable states in a given class are equivalent for the property.

6.2. Experimental results

These experiments were performed using BDDs. We used the information about the equival
states to simplify the BDDs representing the transition relation but we were unable to compute
approach to large industrial designs, may be in part due to the fact that BDD minimisation routir
were not used. Nevertheless we have found large reduction in the number of states for small de
More experiments need to be performed to evaluate the contribution of each parameter in the redut
factor.
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name of design [ number offnumber o1 number off number of equivalende
states variables implied connected| classes in the quotiehteduction factor
in the formula | outputs | automaton

prgm grenoble 32 1 0 5 6.4
prgm grenoble 32 2 0 5 6.4
prgm grenoble 32 5 0 9 3.2
prgm grenoble 32 2 1 7 4.3
prgm grenoble 32 2 2 9 3.2
part 640 1 2 7 90
part 640 2 2 23 29
part 640 5 2 54 12
arbiter2 2260 1 0 13 174
arbiter2 2260 2 0 19 114
arbiter2 2260 2 1 20 110
arbiter2 2260 2 2 27 88

Table 1. Size of the initial and reduced FSMs of VHDL entities.

The initial automaton contains n states encoded over p Boolean variables. Depending on
formula and on the interconnection, its quotient automaton is composed of g equivalences clas
each one grouping several indistinguishable states. Thus the quotient automaton may be encodec
smaller number of Boolean variables since q << n, depending on the number of equivalence clas
simplifying the composition and further verification.

/. CONCLUSIONS AND PERSPECTIVES

This report presents a step towards compositional model checking based on the reductiol
each component before its connection. The equivalence relation we define in order to reduce ¢
component preserves enough information to insure the correctness of the verification : it preserves
property to be verified and the synchronised product, which is the basic operation of combini
VHDL components. We have shown that the formula-dependent equivalence relation defined
[ASSS-V 94] in not adequate for VHDL programs, since (i) it cannot handle specified initial state
and (i) it is not a bisimulation. In addition, with our approach, we can compute each reduced F¢
independently and reuse this reduced FSM even if the other components connected to this one
been modified (but assuming the same interface).

The component reduction procedure has been implemented and tested. Our experimental re
confirm the fact that significant reduction factors may be obtained, while suggesting that they depe
a lot on the size of the FSMs and on the structure of the property to be checked. We therefore ple
extend our existing verification platform [BE 96b] by introducing #hpriori reduction of each
component for model cheking and equivalence verification purposes.

A fruitful avenue for future research is the study of the partitioning of a given structural VHDI
program in order to yield a structural program where each module is as loosely connected to the ¢
modules as possible, in other words to reduce the number of interconnection between FSMs. Anc
subject of future research concerns the introduction of component reduction in the architectt
synthesis process.
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