Fahim Rahim

Emmanuelle Lip6 Encrenaz

Property-dependant bisimulation for compositional model-checking

INTRODUCTION

Formal verification of hardware designs is an important area of research [Borrione 96]. Among the possible approaches, symbolic model checking [McMillan 93] One way to treat more complex designs consists in considering their structural information : complex systems can be seen as a collection of interacting simpler components (e.g. a structural VHDL program is composed of entities linked by signals), each one represented by a transition relation. The verification platform can verify some properties concerning each module, but one has to combine these modules to verify global properties. A first way to verify a global property is to compute the synchronized product of the elementary transition relations, and then to apply symbolic model checking techniques, but in this case we obtain a unique transition relation as big as the one extracted from the "flat" description of the system. Another approach consists in reducing each transition relation, according to the property to be verified and the transition relations interconnections, before combining them in a global transition relation, thus leading to a smaller global transition relation easier to manipulate. The reduction of each component is based on the identification of equivalent states aggregated into equivalence classes.

Strong bisimulation [Milner 89] is known to be the coarsest2 equivalence relation that preserves all CTL formulae. In the context of hardware verification, the specification to be verified is usually composed of a restricted number of CTL formulae to be verified, and thus instead of preserving all CTL formulae, we present an equivalence relation which depends on the property to be verified, and preserves the CTL formula to be verified and the composition of components : the π-bisimulation. This equivalence relation is even coarser than the strong bisimulation in the general case, leading to a better reduction of each transition relation.

In [ASSS-V 94] a compositional, property-based model checking technique is already presented, but our approach differs from theirs in the sense that (1) we do consider an initial state, as VHDL programs have an initial state, hence the component composition is based on the synchronized product with respect to an initial state. The example given in our paper highlights the wrong results of the reduction proposed by [ASSS-V 94] in our context. (2) Our approach consists in reducing the transition relation according to atomic propositions of CTL formulae, thus we can compute the reduced FSM independently of all the other FSM of the system interacting with this one, contrary to [ASSS-V 94]. This reduction over atomic propositions makes the component composition simpler.

The work of [SR 94] in the MEIJE project concerns also the compositional verification of parallel systems based on an a priori reduction of each component by bisimulation. They verify that a component is bisimilar to another one, simpler, representing the formula to be verified over this component. In our knowledge, they do not reduce each component according to a global property, taking into account the synchronisation between components, in order to verify the global property on the simplified system, as we propose. [LL 95] also presented a compositional model checking approach, but their work is based on the quotienting of the formula instead of the quotienting of the components.

The paper is organised as follows : the preliminary section (2) recalls definitions concerning

PRELIMINARIES

From VHDL to transition relations

An elaborated VHDL program is represented by a transition relation which mimics the VHDL simulation cycle. As in [BE 96], a state of a VHDL entity is composed of the program counter of each process, the value of each variable, the value of each signal driver, the effective value of each signal, and the value of the event attribute associated to each signal. The way the transition relation is built from the VHDL program is detailed in [Encrenaz 95]. Roughly, for each state variable v k , the equation modelling the evolution of this variable along the i+1 th simulation cycle is built from the state of the system at the end of the i th simulation cycle :

v k [i+1] = f k (v 1 [i], ..., v n [i])
The transition relation is then a conjunction of the equation of all state variables.

TR = ∧ k v k [i+1] = f k (v 1 [i], ..., v n [i])
The VHDL program has an initial state, as defined in [LRM 87] : each state variable is initialised to the leftmost value of its definition interval, except when they are explicitly initialised by the programmer.

Sets of states and transition relation are represented by BDD structures, and one can perform state space traversals, either to verify temporal logic properties or to check the equivalence of two descriptions of a same system, that is to find the set of reachable states in which a property holds. M(S,I,J,T,O,So) such that :

Various improvements have been

Definitions

S =S 1 × S 2 , T = T 1 × T 2 , I = I 1 × I 2 , J = J 1 × J 2 , S o = (S o1 ,S o2), O : S → J, that maps (s) into O(s) such that : if s=(s 1 ,s 2) then O(s,i) =(O 1 (s 1) , O 2 (s 2)).
This Cartesian product represents the behaviour of two components not connected, having either synchronous or asynchronous execution (if the null transition exists), and with the assumption of an initial state. The Cartesian product can be restricted when components are linked together and when a synchronous or asynchronous semantics is defined, as in Figure 2. This leads to the definition of the synchronised product given below. To make notations simpler, we provide the definition only in the case of deterministic and complete FSMs.

Definition 4 : FSM connection and synchronisation constraint

Let M 1 =(S 1 ,I 1 ,J 1 ,T 1 ,O 1 ,S o1) and M 2 =(S 2 ,I 2 ,J 2 ,T 2 ,O 2 ,S o2) be two linked FSMs (i.e. some outputs of M 1 are inputs for M 2 and some outputs of M 2 are inputs for M 1 : J 12 = J 1 ∩ Ι 2 ≠ Ø is the set of output variables of M 1 connected to M 2 J 21 = J 2 ∩ Ι 1 ≠ Ø is the set of output variables of M 2 connected to M 1 I 11 = I 1 \ J 21 is the set of primary input variables of M 1 I 22 = I 2 \ J 12 is the set of primary input variables of M 2 .

The transition function of M 1 is defined as :

T 1 : S 1 × 2 I 11 × 2 J 21 → S
• U o = (S o1 ,S o2) 3 • U n = { reachable states in one global transition from U n-1 } ∪ U n-1 then the serie (U n) admits a limit Q included in S 1 × S 2 . The FSM M' included in M containing only states of S belonging to Q is the synchronized product of M 1 and M 2 , denoted M 1 o M 2 .
Example : synchronized product Let be two components M 1 and M 2 given on Figure 1. Component M 1 has an input signal a and an output signal p. Its behaviour is represented by the FSM M 1 . Component M 2 has an input signal p (which is the output of M 1), and two output signals a (which is the input signal of M 1) and q. Its behaviour is represented by the FSM M 2 . Values of the input signals are transition labels, and values of the output of the FSMs are represented near each corresponding state.

1 2 3 5 a a a _ a T T p _ p p p 1' 2' 3' p T _ p T a,q a , q _ a , q p a q M1 M2 _ Figure 1. A system composed of two components M 1 and M 2 .
Two synchronized products are depicted on figure 2. They represent the behaviours of the system when the components are connected and synchronous. The graph on the left represents the synchronized product without assumption of initial state, this is the composition used by [ASSS-V 94] , while the graph on the right is the synchronized product as defined above, assuming a specified initial state (the initial states of M 1 and M 2 are resp. state 1 and 1'). The synchronized product with initial state is a subgraph of the one defined by [ASSS-V 94]. In the following, we will consider systems having an initial state (as we work on VHDL programs).

1,1' 3,2' 2,2' 1,2' 1,3' 3,3' 5,3' 2,3' 2,1' 3,1' 5,1' 5,2'
p,q p,q p,q p,q p,q p,q p,q p,q p,q p,q p,q p,q 1,1' p,q 3,2' Figure 2. the synchronised product (without assumption on the initial state) and the synchronised product (M 1 o M 2) (with a specified initial state). T means that for any input configuration, the label in the transition function is true .

COMPONENT REDUCTION BY BISIMULATION

Our approach consists in identifying an equivalence relation R between states of a FSM, and then using the quotient FSM with respect to R for the verification instead of the initial FSM. As the quotient FSM will be smaller than the initial FSM, so will be the synchronized product, therefore simplifying the verification process. The equivalence relation R must preserve the synchronized product, i.e. R must be a congruence with respect to this composition operation since it must be equivalent to verify the property over the synchronized product of the initial FSMs and over the synchronized product of the quotient FSMs. There are two reasons for this :

• Most of the properties to be verified are global properties, hence preserving the composition is necessary.

• Even if the property is local to a module, one has to take the environment into account as the reachability graph of a component is not the same if the component is connected to the others or not, due to the synchronisation constraints.

remark 1 : In this paper for simplicity of presentation, we will restrict ourselves to a system composed of two components. The results presented would easily extend to modular symbolic model checking of systems with more than two interconnected FSMs.

Bisimulation is a necessary condition

In this section, we shall exhibit that a necessary condition for the equivalence relation to preserve the property and the composition is that it is a bisimulation. This is first illustrated by the following counter-example.

Let us consider again the system of Figure 1, over which we would like to verify the global property "p ∧ q", i.e. to find the states in which p and q are true. The intuitive idea would lead to the reduction of M 1 (resp. M 2) distinguishing the states where "p" (resp. "q") is true, from those were "p" (resp. "q") is false. The relation R

1 : R 1 ⊆ S 1 × S 1 : x R 1 y ⇔ (x |= p ⇔ y |= p) (resp. R 2)
aggregates states of M 1 (resp. M 2) having the same truth value for p (resp. q). The reduction of M 1 (resp. M 2) by R 1 (resp. R 2) is illustrated on Figure 3. Notice that this reduction is similar to the one proposed by [ASSS-V 94] for the property π = p ∧ q4 , but here each component can be reduced independently of the others, while the definition of [ASSS-V 94] imposes the construction of the product of M 1 and M 2 , without assumption of an initial state, to determine the equivalent states in each module5 . (resp. M 2/R2), state 1 (resp. 3) was chosen as representative of the class C 1 .

C1 = {1,3,5} C2 a a _ T p _ p p a q M1/R1 M2/R 2 C1 C2 = {2,4} C2 T a , q _ _ C1 = {1,3} C2 = {2} C1 T a , q
Each reduction (M 1 by R 1) and (M 2 by R 2) preserves the property, by definition, but the synchronized product is not respected : the synchronized product of the reduced components M 1/R1 and M 2/R2 is shown on figure 4. All its states verify "p ∧ q", hence the verification of "p ∧ q" over this graph would conclude that "p ∧ q" is always true. This assertion is wrong, as there exists some states in the initial synchronized product where "p ∧ q" is false (i.e. state (2,2') on figure 2, right).

The problem is due to the non preservation of paths (1) validating or invalidating the formulae to be verified, and (2) along which interface signal values are modified: in M 1/R1 , the path σ = a a !a leads to a state where "p" is false, whilst in M 1 it leads in a state where "p" holds.

C1,C1' a,p,q T Figure 4 : synchronized product of M 1/R1 and M 2/R2

A reduction relation verifying the path-preserving-property garantees that the synchronized product is preserved. Informally, two states x and y equivalent by an equivalence relation R verifying the pathpreserving property iff all the next states of x and y for the same inputs are still equivalent by R.

Definition 6 : path-preserving property

An equivalence relation R between states of a FSM M(S,I,J,T,O,So) verifies the path-preserving

property iff :

∀ (x , y) ∈ S , x R y => 1) ∀ i ∈ I,∀ t ∈ S such that (x , i , t) ∈ Τ then ∃ w ∈ S such that (y , i , w) ∈ Τ and t R w 2) ∀ i ∈ I,∀ t ∈ S such that (y , i , t) ∈ Τ then ∃ w ∈ S such that (x, i , w) ∈ Τ and t R w Theorem 1 :
Let R be an equivalence relation included in N ⊆ S × S: x N y ⇔ (x |= π ⇔ y \= π), then a necessary condition for R to preserve the synchronized product is : R verifies the path-preserving property.

Proof : Without loss of generality, we will prove the theorem assuming that the property π refers to the outputs of a component M 1 (S 1 ,I 1 ,J 1 ,T 1 ,O 1 ,S o1). Let R be a relation included in N ⊆ S × S: x N y ⇔ (x |= π ⇔ y |= π), and not verifying the path-preserving property.

we will show that it is not equivalent to verify the property π over M 1 o M 2 and over M

1/R o M 2 ,
where M 2 is a any FSM, and M 1/R is M 1 quotiented by R.

Let s 1 and s 2 be two states of S 1 reachable from S o1 , and R-equivalent : As s 1 and s 2 belong to the same equivalence class C, each of them may be chosen for representing C.

∃ σ 1 ∈ I 1 ×× I 1 , S o1 -σ 1 → s 1 and ∃ σ 2 ∈ I 1 ××
• If s 1 is chosen, then C is reachable from S o1 by a path σ 1 , and the successor of C by the transition labelled i is s' 1 , in which the property is true.

• If s 2 is chosen, then C is reachable from S o1 by a path σ 2 , and the successor of C by the transition labelled i is s' 2 , in which the property is false. Then M 1/R is non deterministic, as it contains the paths σ 1 .i falsifying π, and σ 2 .i validating π from S o1 , which are not in M 1 .

s 1 s' 1 i σ1 s 2 s' 2 i σ2 C s' 1 s'2 i i σ1 σ2 M1 M1/R
Let us assume s 2 not to be reachable in M 1 o M 2 , while s 1 is reachable : the synchronisation constraints of M 2 over M 1 eliminate all the paths from S o1 to s 2 , but has preserved a path from S o1 to s 1 , for example σ 1 . Then s' 2 is not reachable in M 1 o M 2 from the path σ 1 .i, while it is reachable in M 1/R o M 2 since s 1 (reachable) and s 2 (unreachable) are equivalent. Thus, the set of states verifying π is different in M 1 o M 2 and in M 1/R o M 2 : A relation that does not satisfy the path-preservation property does not preserve the synchronized product. t

As we shall see in the following sections, an equivalence relation satisfying the pathpreservation property is a bisimulation. The most common bisimulation is the strong bisimulation introduced by [Milner 89], it is recalled in section 3.2. The general bisimulation will then be defined as [Arnold 92] does in section 3.3, and our equivalence relation is introduced in section 3.4.

Strong bisimulation Definition 7 : strong bisimulation

Let M(S,I,J,T,O,S o) be a FSM, two states x and y of S are equivalent in the sense of strong bisimulation iff the three conditions hold : Moreover [BFH94] proposes an algorithm to build the strongly bisimilar FSM of a given FSM.

(i) O(x) = O(y) (ii) ∀ i ∈ I , such that (x, i, x') ∈ T, ∃ y' ∈ S,
Nevertheless, the strong bisimulation has a low reducing power as it only aggregates redundant states (i.e. having the same outputs and all transitions leading to equivalent states).

As the strong bisimulation is the coarsest equivalence relation preserving all CTL formulae, we can not expect to find a coarser equivalence relation preserving all CTL formulae and the synchronized product. But as a matter of fact, if we focus on the verification of a unique property, then we can built an equivalence relation that preserves this CTL formula and the synchronized product and that is coarser than the strong bisimulation. This approach makes sense since for the formal verification of hardware devices, we only verify a restricted number of CTL formulae, and for a given formula, it may be more efficient to manipulate a small graph preserving the formula only rather than a big graph preserving all CTL formulae. On the other hand, we will have to build a new reduced graph for each property to be verified.

In the following of the section, we present the general bisimulation and how we can derive our equivalence relation preserving an atomic property and the synchronized product from it.

The general bisimulation Definition 9 : bisimulation and autobisimulation

Let M 1 =(S 1 ,I 1 ,J 1 ,T 1 ,O 1 ,S o1) and M 2 =(S 2 ,I 2 ,J 2 ,T 2 ,O 2 ,S o2), two FSMs such that I 1 =I 2 , a bisimulation between M 1 and M 2 is a binary relation R beetween S 1 and S 2 iff :

(i) ∀ s 1 ∈ S 1 , ∃ s 2 ∈ S 2 such that s 1 R s 2 (ii) ∀ s 2 ∈ S 2 , ∃ s 1 ∈ S 1 such that s 2 R s 1 (iii) ∀(s 1 , s 2) ∈ S 1 × S 2 , such that s 1 R s 2 and s 2 R s 1 , ∀ i ∈ I 1 =I 2 , ∃ s' 1 ∈ S 1 and ∃ s' 2 ∈ S 2 such that :
(s 1 , i , s' 1) ∈ T 1 and (s 2 , i , s' 2) ∈ T 2 then s' 1 R s' 2 and s' 2 R s' 1 .

An autobisimulation is a bisimulation between an automaton and itself.

[Arnold 92] defines an application E(R) in order to built the biggest bisimulation included in a relation R. E(R) is defined as follows :

Definition 10 : E(R)

Let M(S,I,J,T,O,S o) a FSM, and E the application : §(S × S) → §(S × S) (§(S × S) is the set of lattices of S

× S) R → E(R) such that : ∀ (s 1 , s 2) ∈ S , (s 1 , s 2) ∈ E(R) iff : (i) (s 1 , s 2) ∈ R (ii) ∀ i ∈ I , ∀ s' 1 ∈ S such that (s 1 , i , s' 1) ∈ Τ, ∃ s' 2 ∈ S such that (s 2 , i , s' 2) ∈ T and s' 1 R s' 2 (iii) ∀ i ∈ I , ∀ s' 2 ∈ S such that (s 2 , i , s' 2) ∈ Τ, ∃ s' 1 ∈ S such that (s 1 , i , s' 1) ∈ T and s' 2 R s' 1
Then E(R) ⊆ R is monotonic decreasing, and admits a biggest fixed-point ∩ n≥0 E n (R). (i) There exists a bisimulation R' included in R (ii) Rf is the biggest bisimulation included in R From this proposition, one can derive an algorithm to built the biggest bisimulation included into a given relation. We will present the algorithm proposed by [BFH 94] in section 5.

From these results, we can build an equivalence relation preserving the property and the synchronized product. This is the object of the following sub-section.

property-dependent bisimulation : an equivalence relation preserving a property and the synchronized product

The property to be verified

First of all we focus on global properties that are static : they do not contain temporal operator.

Moreover, they can be expressed as a conjunction or a disjunction of Boolean propositions depending exclusively of variables of a given module. Let us denote π the global property, π 1 the Boolean proposition concerning the variables of the module M 1 and π 2 the one concerning the variables of the module M 2 . Then π = π 1 . π 2 or π = π 1 + π 2 .

In Section IV, we will show that the global properties can be extended to CTL formulae, since we reduce each module according to the atomic propositions of the formula.

Remark 2 : The reduction of each module will be made according to the atomic propositions of the CTL formula that concern this module. In the above example (cf. Figure 1), if the global property to be verified was "p+q", M 1 was reduced according to π 1 = p and M 2 according to π 2 = q

The property-dependent bisimulation

Our equivalence relation must preserve the property π. This means that we can aggregate two states into the same equivalence class if the property is either true in both states, either false in both states :

s 1 R s 2 implies s 1 |= π ⇔ s 2 |= π
On the other hand, we must preserve the interface behaviour of the component in order to insure the preservation of the synchronized product. This means that we can not aggregate two states having different values on the output signals. Thus

s 1 R s 2 implies O 7 interface (s 1) = O interface (s 2)
If we take a bisimulation included in the two constraints above, then we preserve all sequences in the bisimilar FSM modifying the value of π and of each output signal value. This is what we will prove in the following of this section.

Definition 11 : property-dependent relation

Let two FSMs M 1 and M 2 linked together, let O interface the set of outputs of M 1 that are input for M 2 , let π a static property, we call Q the equivalence relation between states of the FSM M 1 defined by :

∀ (x,y) ∈ M 1 × M 1 , x Q y iff (i) x |= π ⇔ y |= π (ii) O 12 (x) = O 12 (y)
7 O interface means O 12 for M 1 and O 21 for M 2 .

Proposition 2 : property-dependent bisimulation

There exists a biggest bisimulation included in Q, denoted B(Q). Proof : The strong bisimulation is included in Q as it preserves all CTL formulae and in particular it preserves π; moreover, as strong bisimulation imposes the values of the outputs of the FSM to be equal, it imposes it in particular for the outputs linking M 1 to M 2 . Hence there exists a bisimulation included in Q, it follows from proposition 2 that there exists a biggest bisimulation included in Q,

equals to B(Q) = ∩ n≥0 E n (Q).
t By definition of a bisimulation, B(Q) preserves the property π. Proposition 3 is necessary to prove that B(Q) preserves the synchronized product. Let M 1 =(S 1 ,I 1 ,J 1 ,T 1 ,O M= (S,I,J,T,O,So) be a FSM and π a static property over this FSM. B(Q) is the bisimulation induced by Q as defined in definition 10. Let c=(s 1 ,....,s i ,......s n) a path of M and c'= (s' 1 ,......,s' i ,......s' n) its equivalent path by B(Q) (i.e. such that s 1 B(Q) s' 1), then P(c) = P(c') .

Definition 12 : sequence of values of linking signals

Proof : As s 1 B(Q) s' 1 , we have O 12 (s 1) = O 12 (s' 1) and s 2 B(Q) s' 2 by definition of B(Q).
Hence by induction, if we assume s i B(Q) s' i then O 12 (s i) = O 12 (s' i) and s i+1 B(Q) s' i .

Finally for all i O 12 (s i) = O 12 (s i+1) . t

Corollary : Let M 1 be a FSM linked to a FSM M 2 , and M 1/ B (Q) its equivalent FSM induced by an equivalence relation Q as defined in definition 10, then M 1 and M 1/B(Q 1) produce the same sequences of outputs connected to M 2 .

Theorem 2:

B(Q) is an equivalence relation that preserves the property π and the synchronized product.

Proof : Let M 1 and M 2 be two FSMs linked together, and two static properties π 1 and π 2 such that π 1 concerns variables of M 1 and π 2 concerns variables of M 2 . B(Q 1) is the bisimulation induced by π 1 over M 1 and B(Q 2) the bisimulation inducted by π 2 over M 2 , then we will demonstrate that it is equivalent to verify the property π 1 . π 2 or π 1 + π 2 over M 1 o M 2 and over M 1/B(Q 1) o M 2/B(Q 2) . To achieve this, we will demonstrate that there exists a bisimulation included in

R 1 ⊆ S 1 × S 1 : x R 1 y ⇔ (x |= π 1 ⇔ y |=π 1) and R 2 ⊆ S 2 × S 2 : x R 2 y ⇔ (x |= π 2 ⇔ y |= π 2), between M 1 o M 2 and M 1/B(Q 1) o M 2/B(Q 2) .
(1) Let R be an equivalence relation between states of M 1 o M 2 and M 1/B(Q 1) o M 2/B(Q 2) such that :

∀ (s 1 ,s 2) ∈ M 1 o M 2 and (s' 1 , s' 2) ∈ M 1/B(Q 1) o M 2/B(Q 2)), (s 1 ,s 2) R (s' 1 ,s' 2) iff s 1 B(Q 1) s' 1 and s 2 B(Q 2) s' 2 .
Let us prove that ∀ (s 1 ,s 2)

∈ (M 1 o M 2), ∃ (s' 1 ,s' 2) ∈ (M 1/B(Q 1) o M 2/B(Q 2)) such that : (s 1 ,s 2) R (s' 1 ,s' 2) : a) ∀ s 1 ∈ M 1 ∃ s' 1 ∈ M 1/B(Q 1) such that s 1 B(Q 1) s' 1 b) ∀ s 2 ∈ M 2 ∃ s' 2 ∈ M 2/B(Q 2) such that s 2 B(Q 2) s' 2 c)
Moreover, if (s 1 , s 2) is reachable then (s' 1 ,s' 2) is reachable also, because of proposition 4 : the behaviours of the outputs of M 1 connected to M 2 or of M 2 connected to M 1 are the same in M 1 and M 1/B(Q 1) and in M 2 and M 2/B(Q 2))

Hence ∀ (s 1 ,s 2) ∈ M 1 o M 2 ∃ (s' 1 ,s' 2) ∈ M 1/B(Q 1) o M 2/B(Q 2)) such that (s 1 ,s 2) R (s' 1 ,s' 2).
(

) Let s = (s 1 , s 2) ∈ M 1 o M 2 and sf = (sf 1 , sf 2) ∈ M 1 o M 2 such that ∃ a ∈ I 1 o I 2 and (s,a,sf) ∈ 2
T 1 o T 2 (i.e. there exists a transition labelled a 1 going from s 1 to sf 1 and a transition labelled a 2 going from s 2 to sf 2) . Le be s'

= (s' 1 , s' 2) ∈ M 1/B(Q 1) o M 2/B(Q 2)) such that s R s', then ∃ s'f ∈ M 1/B(Q 1) o M 2/B(Q 2) such that ∃ a' ∈ I 1 o I 2 and (s',a',s'f) ∈ T 1 o T 2 . s'f can be split into (s'f 1 , s'f 2) with s'f 1 ∈ M 1/B(Q 1) and s'f 2 ∈ M 2/B(Q 2) such that a = (a 1 , a 2)
and s' 1 -a 1 → s'f 1 and s' 2 -a 2 → s'f 2 .

(s'f 1 ,s'f 2) (s'1 ,s'2) (s 1 ,s2) (sf 1 ,sf2) s sf s' s'f i i B(Q1) B(Q2) B(Q1) B(Q2) M1 o M2 M1/B(Q1) o M2/B(Q2)
Figure 5. Definition of states and relations.

Indeed, as the behaviours of the outputs of M 1 linked towards M 2 and of M 2 linked towards M 1 are the same resp. for M 1 and M 1/B(Q 1) and for M 2 and M 2/B(Q 2), and if s 1 B(Q 1) s' 1 and there exists a 1 such that s 1 -a 1 → sf 1 , then there exists a' 1 : s' 1 -a' 1 → s'f 1 and a 1 = a' 1 . Similarly, if there exists a transition a 2 : s 2 -a 2 → sf 2 then there exists a transition a' 2 : s' 2 -a' 2 → sf' 2 and a 2 = a'2. Moreover, as

s 1 B(Q 1) s' 1 and s 2 B(Q 2) s' 2 then sf 1 B(Q 1) s'f 1 and sf 2 B(Q 2) s'f 2 .
To conclude, for all transitions t going from a state s of M 1 o M 2 to a state sf of M 1 o M 2 , and for all states s' of M 1/B(Q 1) o M 2/B(Q 2) such that s R s', then there exists a state s'f of M 1/B(Q 1) o M 2/B(Q 2) reachable in one transition from s' and sf R sf'. As R is an equivalence relation, this is sufficient to show that there exists a bisimulation R between M 1 o M 2 and M

1/B(Q 1) o M 2/B(Q 2) . Moreover, it is clear that R is included in R 1 ⊆ S 1 × S 1 : x R 1 y iff (x |=π 1 iff y |=π 1) and R 2 ⊆ S 2 × S 2 : x R 2 y iff (x |=π 2 iff y |= π 2), thus it is equivalent to verify π 1 . π 2 or π 1 + π 2 .over M 1 o M 2 or over M 1/B(Q 1) o M 2/B(Q 2) .
t

Gain over the strong bisimulation

A question may subsist : what distinguishes the biggest bisimulation included in the defined equivalence relation from the strong bisimulation defined by [Milner 89] ?

We prove that in general B(Q) is coarser than the strong bisimulation, and even that B(Q) is the coarsest bisimulation preserving π (if π is static) and the synchronized product.

proposition 4 : In the general case, the strong bisimulation is strictly included in the equivalence relation we defined. Proof : Let be SB the equivalence relation defined by : x SB y ⇔ O(x) = O(y), Q defined as in definition 9, and the application E defined as in definition 11, then, in the general case :

SB ⊂ Q ⇒ E(SB) ⊂ E(Q) (
E(Q) is B(Q) t
Instead of preserving all paths modifying a value of any output of a FSM, as strong bisimulation does, the relation we defined preserves the paths modifying the truth values of the static property to be verified and the interconnection outputs. Thus if we want to verify the property "x + y" over a component M with J = {x,y,z,t}, and t is a connection signal, the strong bisimulation will distinguish all the configurations of x, y, z and t (i.e. sixteen configurations) along the executing paths, while the relation we defined will distinguish the configurations where "x + y" is true or false, with the value of t (i.e. four configurations are considered8 : (x + y).t, (x+y).!t, !(x + y).t and !(x+y).!t).

EXTENSION TO ALL CTL OPERATORS

Up to now we had been considering the global property π to be a static property of the form π = π 1 . π 2 or π = π 1 + π 2 , with π 1 a Boolean proposition referring to outputs of M 1 and π 2 to these of M 2 . The following result extend the type of property that are preserved by our reduction.

Theorem 3:

Let M 1 and M 1/B(Q1) two FSMs equivalent by B(Q 1). Let π 1 a static property concerning variables of M 1 , then for all CTL operators, (i.e. AX, EX, AF, EF, AG, EG, AU, EU), it is equivalent to verify the property C(π 1) over M 1 or over M 1/B(Q1) .

Sketch of the proof : Let P the set of states of M 1 verifying C(π 1) and let P' the set of states of M 1/B(Q1) =(S' 1 ,I' 1 ,J' 1 ,T' 1 ,O' 1 ,S' o1) verifying C(π 1) also. We prove by contradiction and for each operator : ∀ s ∈ S 1 , such that s ∈ P, then s' ∈ S' 1 such that s B(Q 1) s iff s' ∈ P'. t

Corollary :

Let M 1 = (S 1 ,I 1 ,J 1 ,T

ALGORITHM FOR THE REDUCTION OF A COMPONENT

Computation of the biggest bisimulation of a FSM induced by a relation

Extension of the algorithm to handle property-dependent bisimulation

This algorithm can be applied to compute the biggest bisimulation included in Q defined as in definition 10 of a given FSM : the only change concerns the initial partition.

If π = π 1 . π 2 or π = π 1 + π 2 , where π 1 contains variables of M 1 and π 2 contains variables of M 2 , and M 1 and M 2 are connected through J 12 outputs from M 1 connected to M 2 and through J 21 outputs from M 2 connected to M 1 , then the reduction of M 1 and M 2 can be built by computing the biggest bisimulation M 1/B(Q1) and M 2/B(Q2) with :

For the module M 1 , ∀ (x,y) ∈ S 1 × S 1 , x Q 1 y ⇔ (i) x |= π 1 ⇔ y |= π 1 (ii) O 12 (x) = O 12 (y)
The initial partition of the computation algorithm of M 1/B(Q1) is then ∩ C i , where :

C i = { s ∈ M 1 | s |= configuration 910 (π 1 , o 1 ,....o n) such that o j ∈ J 12 }
At the end of each simulation cycle, a state of the entity is composed of :

• the signal effective values ck and a,

• the event attribute of the signal ck : evt_ck,

• the values of the variables of the process prgm : y, z, x, w.

Experimental results

These experiments were performed using BDDs. We used the information about the equivalent states to simplify the BDDs representing the transition relation but we were unable to compute our approach to large industrial designs, may be in part due to the fact that BDD minimisation routines were not used. Nevertheless we have found large reduction in the number of states for small design.

More experiments need to be performed to evaluate the contribution of each parameter in the reduction factor. The initial automaton contains n states encoded over p Boolean variables. Depending on the formula and on the interconnection, its quotient automaton is composed of q equivalences classes, each one grouping several indistinguishable states. Thus the quotient automaton may be encoded on a smaller number of Boolean variables since q << n, depending on the number of equivalence classes, simplifying the composition and further verification.

CONCLUSIONS AND PERSPECTIVES

This report presents a step towards compositional model checking based on the reduction of each component before its connection. The equivalence relation we define in order to reduce each component preserves enough information to insure the correctness of the verification : it preserves the property to be verified and the synchronised product, which is the basic operation of combining VHDL components. We have shown that the formula-dependent equivalence relation defined by

[ASSS-V 94] in not adequate for VHDL programs, since (i) it cannot handle specified initial states and (ii) it is not a bisimulation. In addition, with our approach, we can compute each reduced FSM independently and reuse this reduced FSM even if the other components connected to this one have been modified (but assuming the same interface).

The component reduction procedure has been implemented and tested. Our experimental results confirm the fact that significant reduction factors may be obtained, while suggesting that they depend a lot on the size of the FSMs and on the structure of the property to be checked. We therefore plan to

 has already been used to verify behavioral equivalence or CTL properties of hardware designs : VFORMAL [CLSI 93], SMV [McMillan 93], VIS [BR95], SEVERO [CCP 93], VPN-VMC [Encrenaz 95a, Bawa 96]. Of course formal verification techniques do not apply to real hardware design, but to a model representing the behaviour of the design. In [BE 96] we present a platform devoted to the verification of hardware designs described in VHDL, which extracts a symbolic transition relation 1 from an elaborated VHDL program [Encrenaz 95b], and then performs symbolic model checking in order to verify CTL properties or behavioral equivalence of two different VHDL descriptions. The performances obtained with this platform allow us to verify medium complexity designs, as the DLX [HP80] or 8086 microcontrollers.

FSMs.

 Section 3 defines the reduction of each component by bisimulation and presents the relation we propose to reduce each VHDL component. It is shown that it is equivalent to verify an atomic property over the synchronized product of the initial transition systems and of the reduced transition systems. Section 4 extends the result to all CTL operators. Section 5 recalls the computation of the coarsest bisimulation algorithm [BFH 94] and presents the modifications to be made in order to consider the relation we defined. Section 6 details the reduction of a VHDL entity and provides experimental results of the modular verification of VHDL programs, and then (section 7) we conclude and suggest some directions for future work.

 proposed which speed up the verification process and reduce the memory used, for example external stimuli representation, partitioned transition relation, intermediary variables simplification are discussed in [BE 96, Bawa 96]. Another direction to be studied is the compositional verification, which starts from a structural VHDL program instead of an elaborated one. In this case, we distinguish components linked together by signals, and associate a transition relation per component. A conjunction of these transition relations exactly represents the flat VHDL program, and hence no improvement can be expected, except if we reduce the transition relations before their conjunction : each reduced transition relation may be expressed with a smaller number of variables, reducing the size of the transition relation of the whole program, and simplifying the downstream verification process.

Figure 3 .

 3 Figure 3. Each module is reduced with respect to its equivalence relation : Concerning M 1/R1(resp. M 2/R2), state 1 (resp. 3) was chosen as representative of the class C 1 .

Figure 5 .

 5 Figure 5. Definition of states and transitions in M 1 and the corresponding ones in M 1/R .

 such that (y,i,y') ∈ T and x' equivalent to y' (iii) ∀ i ∈ I , such that (y, i, y') ∈ T, ∃ x' ∈ S, such that (x,i,x') ∈ T and y' equivalent to x'. 6 Definition 8 : quotient automatonIf we denote by ≈f the strong bisimulation relation, then the strongly bisimilar FSM ofM=(S,I,J,T,O,So) is the FSM M'=(S /≈f ,I,J,T,O,So)where S /≈f is the quotient of S by the equivalence relation ≈f.This strong bisimulation has the property to preserve all CTL formulae (i.e. it is equivalent to verify a CTL formula over the initial FSM and over the quotient FSM) [CLM 89]. In fact,[CLM 89] has shown that it is the coarsest equivalence relation preserving all CTL formulas. It also preserves the synchronized product [CLM 89] (i.e. it is equivalent to verify a CTL formula over the synchronized product of the initial FSMs and the synchronized product of the quotient FSMs).

[

 Arnold 92] gives the following proposition : Proposition 1: Let R an arbitrary relation included in S × S and let Rf the relation defined by Rf = ∩ n≥0 E n (R), then the two following statements are equivalents :

 Let π be a static property (cf. 3.4.1) over the outputs of a FSM M, and a relation R over the states of M such that : x R y iff : (x |= π ⇔ y |= π). The algorithm presented by [BFH 94] computes the transition relation representing the quotient FSM by the biggest bisimulation induced by the relation R, from the transition relation of the initial FSM. The algorithm exactly computes the relation Rf = ∩ n≥0 E n (R). The method is based on an iterative refinement of a partition of the states of the FSM, separating the non bisimilar states into disjoint equivalence classes, up to the stabilization of the classes. The advantages of their algorithm is that it computes on the fly the quotient FSM, it only refines reachable classes, and symbolic representation of sets of states and transition relation can be applied. In their paper, [BFH 94] only focus on the reduction of a single FSM according to a static property π. Thus the initial partition of the set of states is composed of two classes : the one containing the states verifying π and the one containing the states not verifying π. Then the class containing the initial state is refined : its states leading to states of different classes are distinguished, and then the refinement of this class induces new classes; the reachable ones are, in their turn, refined ... and so on, up to the stabilization of all classes.

 extend our existing verification platform [BE 96b] by introducing the a priori reduction of each component for model cheking and equivalence verification purposes. A fruitful avenue for future research is the study of the partitioning of a given structural VHDL program in order to yield a structural program where each module is as loosely connected to the other modules as possible, in other words to reduce the number of interconnection between FSMs. Another subject of future research concerns the introduction of component reduction in the architectural synthesis process.

tuple M=(S,I,J,T,O,S o) with :

	Definition 1: Finite State Machine
	A Finite State Machine (FSM) is a 6-S the finite set of states, I the finite set of input values, J the finite set of output values, T the
	transition function, t ∈ T is a 3-tuple (s,i,s') such that : s and s' of S are resp. source and destination
	states of the transition and i ∈ 2 If the FSM is deterministic and complete, the transition relation is a function T : S × Σ → S

I

is the label of t, hence T ⊆ S × Σ × S with Σ = 2 I , O is the output function : S → 2 J and S o is the initial state. The FSM is complete, i.e. : ∀ s ∈ S, ∀ i ∈ I, ∃ s' ∈ S such that (s,i,s') ∈ T.

Definition 2 : reachable state Let M=(S,I,J,T,So) a

	FSM, a state s' ∈ S is a reachable state from a state s ∈ S iff :
	∃ (i 1 ,i 2i ji n) s.t. ∀ j ∈ [1,n], i j ∈ 2 I and T (s k-1, i k) = s k for 1≤k≤n and s n = s' and s 0 = s

Definition 3 : Cartesian product of automata Let M 1 =(S 1 ,I 1 ,J 1 ,T 1 ,O 1 ,S o1) and M 2 =(S 2 ,I 2 ,J 2 ,T 2 ,O 2 ,S o2) be two FSMs, the Cartesian product M 1 × M 2 is the FSM

are called synchronisation constraints over transitions of M 1 × M 2 . Definition 5 : synchronized product Let be M 1 =(S 1 ,I 1 ,J 1 ,T 1 ,O 1 ,S o1) and M 2 =(S 2 ,I 2 ,J 2 ,T 2 ,O 2 ,S o2), two

	1 which given a state s 1 of S 1 , a set of values i 1 of 2 I 11 and a set of
	values j 21 of 2 J 21 associates T 1 (s 1 , i 1 , j 21) = s' 1 ∈ S 1
	The transition function of M 2 : T 2 (s 2 , i 2 , j 12) = s' 2 is defined similarly.
	We define the restriction of the output function to the connected outputs by :
	O 21 : S 2 → 2 J 21 that associates to any state s 2 of S 2 the value of the output variables of M 2 connected
	to M 1 .
	Similarly we define O 12 by :
	O 12 : S 1 → 2 J 12 that associates with any state s 1 of S 1 the value of the output variables of M 1
	connected to M 2 .
	Let (s 1 ,s 2) be a state of S 1 × S 2 . The set of reachable states from (s 1 ,s 2) in one global transition is
	the set of states (s' 1 ,s' 2) that verify the constraints :
	T 1 (s 1 , i 1 , O 21 (s 2)) = s' 1 and T 2 (s 2 , i 2 , O 12 (s 1)) = s' 2
	where i 1 is any value of the primary input variables of M 1 and i 2 any value of the primary input
	variables of M 2 .
	These two constraints FSMs, and their
	Cartesian product M=(S,I,J,T,O,So). Let (U n) be a serie of elements of S 1 × S 2 defined by :

 I 1 , S o1 -σ 2 →s 2 , and s 1 |= π and s 2 |= π or s 1 |= ¬π and s 2 |= ¬π. without loss of generality, assume s 1 |= π and s 2 |= π. ∈ S 2 , such that (s 2 , i , s' 2) ∈ T 2 and s' 1 and s' 2 are not R-equivalent : s' 1 |= π and s' 2 |= ¬π or s' 1 |= ¬π and s' 2 |= π. without loss of generality, assume s' 1 |= π and s' 2 |= ¬π.

	If R does not verify the path property, then :
	∃ i ∈ I 1 and	∃ s' 1 ∈ S 1 , such that (s 1 , i , s' 1) ∈ T 1 and
		∃ s' 2

1 ,S o1) and M 2 =(S 2 ,I 2 ,J 2 ,T 2 ,O 2 ,S o2) be

 two FSMs, the sequence of values of linking signals from M 1 to M 2 associated to a serie of reachable states c=(s 1 , s 2 ,s n) (i.e. s i+1 is reachable from s i and s 1 is reachable from S 0 in one transition) is the serie P(c) = (O 12 (s 1) , O 12 (s 2) ,, O 12 (s n)).

	Proposition 3 : Let

 because E is monotonic and strictly decreasing), then lim n→∞ E(SB) ⊂ lim n→∞ E(Q) as sets have finite topology, and lim n→∞ E(SB) is the strong bisimulation, while lim n→∞

1 ,O 1 ,S o1) , M 2 = (S 2 ,I 2 ,J 2 ,T 2 ,O 2 ,S o2) two

 FSMs, and π 1 and π 2 two static properties concerning resp. variables of M 1 and M 2 . Let B(Q 1) the equivalence relation induced by π 1 and B(Q 2) the one induced by π 2 . Then for each CTL operator, it is equivalent to verify C(π 1 . π 2) or C(π 1 + π 2) over M 1 o M 2 or over M 1/B(Q1) o M 2/B(Q2) .

 The initial state is the one after the initialisation cycle (once the initial values were given, an execution Figure 6. The reachability graph of the VHDL program.Assume we want to verify a CTL property whose atomic proposition is "x + y". The transition relation can be reduced by computing the biggest bisimulation included in R :∀ (s 1 ,s 2) ∈ S × S , s 1 R s 2 ⇔ (s 1 |= x + y ⇔ s 2 |= x + y)This leads to a FSM of seven classes, depicted below.Each reachable state belongs to a given class. The states in whom "x + y" is true are in class 1111, 1112, 112 or 12, while the states in whom "x + y" is false are in class 21, 22 or 23. Notice that all classes represented are reachable, but a class may contain unreachable states. Reachable and unreachable states in a given class are equivalent for the property.

	phase has occurred): <!evt_ck.!ck.!a.!z. y. x. w> _ a.evt-ck. .x.y + _ _ a.evt-ck.w.x.y + a.evt-ck.(w.x.y + w.y) ______ _ _ a.evt-ck.w.x.y + _ ______ a.evt-ck.y + a.evt-ck.(w.x.y + w.y)+ _ ______ _ _ _
	a.evt-ck.w.x.y + _ ______ The transition relation is computed by VPN : a.evt-ck.w.x.y +	112	_	_	_
	R1 := evt_ck'.(ck ≡ ck') + !evt_ck'.(ck = ck');	a.evt-ck.(w.x.y + w.y)
	R2 := a.evt_ck.w' + a.!evt_ck.w.w' + a.!evt_ck.!w.!w' + !a.evt_ck.(w.w'.x + w.!w'.!x) +!a.evt_ck.(!w.w'.!y + !w.!w'.y) + !a.!evt_ck.(w = w'); 1112 12
	1111					______ _ _
	_ ______ (a.evt-ck + ______				21	evt-ck.x.y
	a.evt-ck + _	_			
	a.evt-ck).x.y			
		23			
				22	
					evt_ck.!ck.!a.z.!y.!x.!w	evt_ck.ck.!a.!z.!y.x.w
		_	_ _	_ _	
		a.evt-ck.x.y	evt_ck.ck.!a.z.y.!x.w a.evt-ck.x.y	
		evt_ck.ck.a.z.y.!x.w Figure 7. The reduced graph of the VHDL program. evt_ck.!ck.a.z.!y.!x.!w	evt_ck.ck.a.!z.!y.x.w
	evt_ck.ck.!a.!z.y.x.w	evt_ck.!ck.!a.z.y.!x.w		!evt_ck.ck.!a.z.!y.!x.!w
				!evt_ck.!ck.!a.z.y.!x.w		!evt_ck.!ck.!a.!z.!y.x.w
					!evt_ck.ck.a.z.!y.!x.!w
	evt_ck.ck.a.!z.y.x.w	evt_ck.!ck.a.z.y.!x.w	!evt_ck.!ck.a.z.y.!x.w	evt_ck.!ck.!a.!z.!y.x.w	!evt_ck.!ck.a.!z.!y.x.w
				evt_ck.ck.!a.z.!y.!x.!w	
					evt_ck.!ck.a.!z.!y.x.w
		!evt_ck.ck.!a.z.y.!x.w	evt_ck.ck.a.z.!y.!x.!w	!evt_ck.ck.!a.!z.!y.x.w
	!evt_ck.!ck.a.!z.y.x.w				
	!evt_ck.ck.a.z.y.!x.w			!evt_ck.ck.a.!z.!y.x.w
				!evt_ck.!ck.!a.z.!y.!x.!w	
	!evt_ck.!ck.!a.!z.y.x.w			!evt_ck.!ck.a.z.!y.!x.!w	evt_ck.!ck.!a.!z.y.x.w
					evt_ck.!ck.a.!z.y.x.w
					!evt_ck.ck.!a.!z.y.x.w
					!evt_ck.ck.a.!z.y.x.w

R3 := evt_ck.y.!x' + evt_ck.!y.x' + !evt_ck.x.x' + !evt_ck.!x.!x' ; R4 := a.evt_ck.y' + a.!evt_ck.y.y' + a.!evt_ck.!y.!y' + !a.evt_ck.w.y'.x + !a.evt_ck.w.!y'.!x + !a.evt_ck.!w.!y' + !a.!evt_ck.y.y' + !a.!evt_ck.!y.!y'; R5 := evt_ck.z'.y + evt_ck.!z'.!y + !evt_ck.z.z' + !evt_ck.!z.!z'; R := R1 . R2 . R3 . R4 . R5;

The reachable state space is computed by symbolic forward traversal. It contains 32 states. The initial state is the one below located on the left.

Table 1 .

 1 Size of the initial and reduced FSMs of VHDL entities.

	name of design	number of	number	of	number of	number of equivalence
		states	variables implied	connected	classes in the quotient	reduction factor
			in the formula		outputs	automaton
	prgm_grenoble	32	1		0	5	6.4
	prgm_grenoble	32	2		0	5	6.4
	prgm_grenoble	32	5		0	9	3.2
	prgm_grenoble	32	2		1	7	4.3
	prgm_grenoble	32	2		2	9	3.2
	part	640	1		2	7	90
	part	640	2		2	23	29
	part	640	5		2	54	12
	arbiter2	2260	1		0	13	174
	arbiter2	2260	2		0	19	114
	arbiter2	2260	2		1	20	110
	arbiter2	2260	2		2	27	88

the symbolic transition relation expresses the set of reachable states in one VHDL simulation cycle, from a given set of states.

the coarsest relation is the one that renders equivalent the biggest number of states (according to a criterion), hence this is the one that offers the biggest reduction power.

The synchronized product used by [ASSS-V 94] does not assume an initial state : it is defined as the limit of the serie given in definition 5 with U o = S 1 × S 2 .

2,2' p,q p,q T T T T T T T T T T T T T T T

The formula-dependent equivalence given by [ASSS-V 94] for the property π = p ∧ q is : two states (x,y) of M 1 are equivalent iff :∀ s 2 ∈ M 2 , (x,s 2) |= π iff (y,s 2) |= π

To be totally fair, [ASSS-V 94] would synchronise M 1/R1 and M 2/R2 without assumption of initial state, then the states (C 1 ,C 2 '), (C 2 ,C 1 ') and (C 2 ,C 2 ') would be represented, invalidating the formula. But these classes are not reachable from the initial state, and we want to find the reachable states that satisfy or not the formula. [ASSS-V 94] can not answer to this question.

The strong bisimulation is an equivalence relation such that x R y iff O(x) = O(y) and verifies the path-preserving property.

the symbol ! represents the boolean negation of the expression

configuration(x 1 ,...,x n) is the set of all tuples (x 1 ,...x n) for all values of x 1 , ... x n . Its cardinality is 2 n .

if the formula contains p terms refering to variables of M 1 , all these terms are considered in the initial partition by extending the set of configurations to configuration(π

, ..., π 1p , o 1 , ..., o n)

Once the components are reduced, we can form their synchronized product and prove a CTL property whose atomic proposition is π.

We can extend the type of CTL property to be verified once its atomic propositions are identified and combined as sum or products of static propositions of M 1 and M 2 .

Example : Assume π = (π 11 . π 21) + AF(π 12 + π 21) , with π 11 and π 12 referring to outputs of M 1 and π 21 and π 22 referring to M 2 , then two states (x 1 ,y 1) of M 1 are bisimilar by π iff they are bisimilar by π 11 , π 12 and J 12 . two states (x 2 ,y 2) of M 2 are bisimilar by π iff they are bisimilar by π 21 , π 22 and J 21 .

As one can see, the initial partition of the algorithm for the reduction of a given component grows exponentially with (1) the number of interconnection signals going from this component to the others implicated in the global formula, and (2) the number of terms referring to variables of this component in the atomic propositions of the formula.

APPLICATION TO VHDL AND EXPERIMENTAL RESULTS

We implemented a compositional reduction routine for interacting VHDL structural programs and applied it to few number of academic examples. The software tool is still a prototype developed to experimentally confirm the correctness of our approach. The experimental results below indeed provide such a confirmation. For these examples, it is equivalent to verify the property on the product of the interacting VHDL modules or on the product of reduced interacting VHDL modules where each module was reduced by our formula-dependent equivalence.

VHDL example