N
N

N

HAL

open science

An hyper-exponential decomposition method for the
analysis of productions lines with unreliable machines
and finite buffers
Hervé Le Bihan, Yves Dallery

» To cite this version:

Hervé Le Bihan, Yves Dallery. An hyper-exponential decomposition method for the analysis of pro-
ductions lines with unreliable machines and finite buffers.

1997. hal-02547640

HAL Id: hal-02547640
https://hal.science/hal-02547640
Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

[Research Report| 1ip6.1997.022, LIPG6.


https://hal.science/hal-02547640
https://hal.archives-ouvertes.fr

AN HYPER-EXPONENTIAL DECOMPOSITION METHOD
FOR THE ANALYSISOF PRODUCTION LINES
WITH UNRELIABLE MACHINES AND FINITE BUFFERS

Hervé LE BIHAN and Yves DALLERY

LIP6 (Laboratoire d’'Informatique de Paris 6)
Université Pierre et Marie Curie
4 Place Jussieu, 75252 Paris Cedex 05
FRANCE

Herve.Lebihan@lip6.fr
Yves.Dallery@lip6.fr

Abstract

We @nsider production lines consisting of a series of madiines separated by
finite buffers. The processng time of ead madiineis deterministic and al the madines
have the same processng time. All madines are subjed to fail ures. As usually the cae
for production systems we asume that the failures are operation dependent [3,7].
Moreover, we asaume that the times to fallure and the times to repair are exporentialy
distributed. To analyze such systems, a decompasition method was propcsed by
Gershwin [11]. The computational efficiency of this method was later significantly
improved by the introduction o the so-cdled DDX algorithm [5,6]. In general, this
method povides fairly acairate results. There ae however cases for which the acaracy
of this decompasition method may not be so good. This is the cae when the reliability
parameters (average fail ure time and average repair time) of the diff erent macdines have
different orders of magnitude. Such a situation may be encourtered in red production
lines. In [8] an improvement of Gershwin's original decomposition method hes been
proposed that in general provides more acarate results in the @dowve mentioned
situation. This other method is referred to as the GE-method. The basic difference
between the GE-method with that of Gershwin is that it uses a two-moment
approximation instead of a one-moment approximation d the repair time distributions
of the eguivalent madines. There ae however still cases for which the acerracy of the
GE-method is nat as good as expeded. This is the cae for example when the buffer
sizes are too small i n comparison with the average repair time. We present in this paper
a new deaompaosition method that is based ona better approximation o the repair time
distributions. This method ses a threemoment approximation d the repar time
distributions of the eguivalent machines. Numericd results show that the new methodis
very robust in the sense that it seems to provide accurate results in all situations.

Keywords. production lines, urreliable machines, finite buffers, decomposition method,
hyper-exponential distributions



1. Introduction

In this paper, we @nsider production lines consisting of a series of madines
separated by finite buffers. The processng time of ead machine is deterministic, i.e., a
fixed amourt of timeisrequired to perform the operation. Moreover, we asume that all
the madhines have the same processng time, that is we restrict our attention to so-caled
homogeneous lines [6]. All madiines are subjed to failures. As is usually the case for
production systems we asume that the fallures are operation dependent [3,7]. This
means that a madhine can fail only while it is working. Moreover, we asume that the
timesto failure and the times to repair are exporentially distributed. Finally, we assume
that there ae dways raw parts available & the inpu and that there is aways room to
acommodate the finished perts at the output. Models of production lines with
deterministic processng times and exporentialy distributed times to failure and times
to repair are referred to asynchronous modejg].

A number of methods have been developed for analyzing production lines with
unreliable madines and finite buffers (also cdled transfer lines). See[7] for a survey
and alist of references. Obtaining exad analyticd solutions of asynchronous models of
production lines isin general not feasible. As a result, different models have been used
to approximate the behavior of asynchronous models [7]: the synchronows modd [2]
and the continuows flow model [17]. These models provide agood approximation d the
original asynchronows model as long as the average times to failures are significantly
larger than the processng times, which isusually the cae in production systems [1]. For
both models, exad solutions of aline cnsisting of two macdiines sparated by a finite
buffer can be obtained; see eg. [3,13 in the cae of the synchronows mode and [9,1]]
in the case of the continuous flow model.

The analysis of longer lines is based on approximation methods [7]. Among
these methods, the decomposition method popaosed by Gershwin [11] in the mntext of
the synchronows model appeas to be quite acarate. Moreover, using the iterative
algorithm proposed in [5], this method can be made very efficient and reliable. A
similar decompasition method was propased in the cae of the continuows flow model
[6]. However, there ae situations for which the acaragy of this decompasition method
may not be so good. This is the cae when the reliability parameters (average failure
time and average repair time) of the different madiines have different order of
magnitudes. Such a situation may be encountered in real production lines.

In [8] an improvement of Gershwin's origind deampaosition method was
propacsed that in general provides acairate results even in the @ove mentioned situation.
This other method is referred to as the GE-method. The basic difference between the
GE-methodwith that of Gershwin isthat it uses a two-moment approximationinstead of
a one-moment approximation d the repair time distributions of the eguivalent
madhines. The repair time distributions of the eguivalent macdines are gproximated by
generalized exporential (GE) distributions, which can easily be handed in the
decomposition method withou involving any additional complexity with resped to the
exporential approximation wed by Gershwin[4,§. Even thowgh the GE-method is
fairly robust, there ae still situations for which the acerragy is not satisfadory. Thisis
the cae for example when the buffer sizes are too small in comparison with the average
repair time. We present in this paper a new decompasition method that is based ona
better approximation d the repair time distribution. This method is again an extension
of Gershwin’s deampaosition method. The main feaure of the new method s that the
repair time distributions of the equivalent macdines are gproximated by two-stage



Hyper-Exporential (HE) distributions. The HE-method ses a threemoment
approximation d the repair time distributions. In this paper, we mpare the
performance results obtained by using the HE-method with those obtained by using a
simulation. We dso compare the acarragy of the new method with that of Gershwin's
original method, referred to as the exporential method (E-method), as well as that of the
GE-method poposed in [8]. It appeas that the HE-method is very robust in terms of
accuracy.

The paper is organized as follows. The @ntinuows flow model is presented in
Sedion 2. The HE deammposition method is described in Sedion 3. The HE-DDX
computational algorithm is given in Sedion 4.Finally, numerica examples are reported
in Section 5.

2. The Continuous Flow M odel

We onsider the continuows flow model of a production line @nsisting of a
series of K madines (M1, Mo, ..., M) separated by K-1 intermediate buffers (B4, Bo,
..., Bk.1)- Parts flow from outside the system to machine M4, then to bufer B4, then to
madine M,, and so forth urtil they ready madiine My, after which they leave the
system. We asume that there ae dways parts available & the inpu of the system and
space ®ailable & the output of the system. The intermediate buffers are eabt o finite
capacity (G, C,, ..., G.1)- A four machine production line is shown in Figure 1.

The quantity of material in ead bufer B; at any time is a red number h;(t),
where 0 < h(t) < C;. Each madiine can be in two states: operational (not in a failure
condtion) or down (under repair). When operational, it can be ather working or idle. A
madiineisidleif it is darved or blocked. Madiine M; is garved at time t if one of the
upstream madines is down and al buffers between this maciine and macine M; are
empty. Madiine M; is blocked if one of the downstream madines is down and all the
buffersin between this maciine and madciine M; are full. A madine that is operational
and reither starved na blocked is working. When madine M; is working, it transfers
material from its upstrean buffer, Bi_;, to its downstream buffer, B;, at a mnstant rate
U. That is aquantity of material Udt is transferred in time dt. Note that U=1/T, where T
is the procesgng time of al the madines in the original asynchronows model. A
maadine may fail only while it is working. The time to failure and the time to repair of
machine Mare exponentially distributed with ratesandy;, respectively.

Throughou the rest of the paper we essumethat T = 1 and that, asaresult U = 1.
This is withou lossof generality since the time unit can always be dosen so that this
condtion is stisfied. Let L dencte the continuows flow model of the production line.
Let us define the following performance parameters of the continuous model:

&' Isolated efficiency of machine M
_o 1
e = =
YRR
Hi
E;: Efficiency of machine I proportion of time machine Ms working in line L.

ps:  Probability of machine IVbeing starved in line L.
pb:  Probability of machine IVbeing blocked in line L.



Since U = 1, Ecan equivalently be interpreted as the production rate of machine
M; in line L. The following relationships have been established in [6] for the continuous
flow model of tandem production lines.

Ei=Ey=..=K | (1)
Ei=e(1-ps-ph) 1=1,..,K (2)

The first relation is related to conservation d flow. The second equation relates
the dficiency of madiine M; in line L, Ej, to its efficiency when considered in isolation
g. It isan exad relationship in the cae of the cntinuous flow model becaise amadiine
cannot be simultaneously starved and blocked [6].

M1 B4 M, Bs M3 B3 My
OO
AL ., A C, A Cs A
H1 Ho M3 Mg
M(1) B(1) Mq(1)
L(1)
Au(D) Cy Ag(1)
Hy1(1), pya(L) Ha1(1), mya(1)
Hu2(1), Ru2(1) Ha2(1), ru2(1)
M(2) B(2) Ma(2)
L(2)
Au(2) C Ad(2)
Hu1(2), Ry(2) Hd1(2), Ry1(2)
Hu2(2), Ru2A2) Hd2(2), Rio(2)
My(3) B(3) My(3)
© HO-
Au(3) Cs Ad(3)
Hu1(3), @) Hg1(3), mya(3)
Hu2(3), P2(B)  Hg23), my2(3)

Figure 1: A four-machine production line
and its decomposition into three two-machine production lines.



3. Decomposition Method

In this sdion we present the two-stage hyper-exporential decomposition
methodfor the analysis of the continuous flow model. The principle of this methodis to
decompaose the K-madine line into a set of K-1 two-madiinelinesL(i), fori =1, ...,K-
1 (seeFigure 1). Each line L(i) is a continuows flow mode consisting of an upstream
madhine M (i), adownstream madiine, M (i), and an intermediate buffer, B(i). Thereis
an infinite suppy of material in front of madiine M (i), i.e, M(i) is never starved,
while there is an infinite anourt of storage avail able & the output of macdiine M (i), i.e,
My(i) is never blocked. Each system L(i) must be defined in such a way that the
behavior of the material flow in bufer B(i) closely matches that of the material flow in
buffer B; of line L. Madiine M (i) represents (in an aggregate way) the part of the line
upstream of buffer B, while macine M (i) represents (in an aggregate way) the part of
the line downstream of buffer B; (upstream and davnstrean refer to the diredion o the
flow of material). In ather words, machine M (i) models how material is transferred into
buffer B, while machine M(i) models how material is transferred out of buffer B

To achieve the éove goal, the equivalent macdiines M (i) and M (i) of ead line
L(i) are dharaderized as follows. Both madines have the same processng rate & the
madhines of lineL, that isU = 1. The caadty of buffer B(i) isthe same as that of buffer
B;, that is C;. The failure times of madine M (i) and My(i) have eporential
distributions with parameters A (i) and Aq(i), respedively. So far, this is totally similar
to Gershwin's approach. As dated in the introduction, the difference between the
method popaosed in this paper and that of Gershwin lies in the dharaderization d the
repair time distributions. Let us recdl that in Gershwin's method, the repair time
distributions of the equivalent machines are assumed to be exponential.

In order to define the dharaderization d the repair time distributions, consider
for instance the fail ure/repair mecdhanism of madine M (i). A failure of maciine M (i)
represents either afailure or astarvation d madine M;. A starvation d madine M; isa
consequence of either afailure or a starvation d madine M;_;. A starvation d madine
M;_.1 isin turn a ansequence of either afailure or a starvation d madine M;_,, and so
forth. Thus, afailure of Madiine M (i) is caused either by afail ure of macdiine M; or by
a failure of one of the upstrean madines (M;_4, ..., Mq1). As a result, the repair of
Madhine M (i) will be the cnsequence of arepair of madine M;, in case madiine M; is
down, a of aresidua repair time of one of the upstream madiines (M;_4, ..., M) at the
instant of starvation, in case madine M; is darved. Now, sincethe repair time of every
maadiine j, j = i-1,..., 1,is exporentialy distributed, its residual repair time is aso
exporentialy distributed with the same rate ;. Thus, we @nclude that the repair time
of madiine M (i) shoud be dharaderized by an so-cdled hyper-exporential distribution
(i.e., a probabili stic mixture of exporential distributions) consisting of i stages, with
rates Y, Hj.1,..., M1, @ hown in figure 2. Similarly, the repair time of macdine Mg(i)
shoud be charaderized by an hyper-exporential distribution consisting of K-i stages,
with ratesyi+1, Hj+2,-.., k-



Figure 2: lllustration of the repair time distribution of Maching,(ij.

Before going any further, one important question arises pertaining to the analysis
of eat subsystem L(i). Indeed, in any decompasition method, the overal methodrelies
on the analysis of ead subsystem L(i). If this analysis is too complex, then the
decompasition method may become too cumbersome and nd suitable for solving large
production lines. It turns out that this may be the cae if we ae diredly using the ébove
charaderization. Indeeal, the analysis of line L(i) would imply solving the @ntinuows
flow model of a two-madhine subsystem with exporential failure time distributions and
hyper-exporential repair time distributions with i and K-i stages for the upstrean and
downstream macines, respedively. Thiswould involve solving a set of K-1 dfferential
equations, which is very tedious, if not impossible [15].

To reduce the mmplexity, while retaining the ideaof this new charaderization,
we propcse to replacethe dharaderization d the repair time distributions using hyper-
exporential distributions with arbitrary number of stages by a daraderization wsing
hyper-exporential distributions consisting of only two stages. The idea behind this
smplificaion, is that an arbitrary hyper-exporential distribution can aways be
approximated by a two-stage hyper-exporential distribution having the same first three
moments (see Appendix B). Now, it turns out with this charaderization, the anaysis of
line L(i) implies lving the cntinuows flow model of a two-madhine subsystem with
exporential falure time distributions and two-stage hyper-exporential repair time
distributions. This reduces to solving a set of 3 differential equations, which can easily
be dore (a brief discusson d the solution is given in Appendix A and cetails can be
found in [16]).

Thus, we ssume that repair time distribution d madiine M (i) is charaderized
by a two-stage hyper-exporential distribution with parameters (u1(i), Hy2(1), Pua().
pu2(i)) (see Figure 3). This means that, with a probability p,;(i) the repair time is
exporentially distributed with rate p(i), while with a probability py(i), it is
exporentialy distributed with rate p (i), where py1(i) and py(i) verify the following
relationships:

Pur(i) +py2(i) =1 3



Similarly, we asume that the repair time distribution d madiine M(i) is charaderized
by a two-stage hyper-exporential distribution with parameters (ug1(i), Hg2(i), Pga(i).
Pg2(i)). This means that, with a probability pg4(i) the repair time is exporentialy
distributed with rate pgq(i), while with a probability pgo(i), it is exporentialy
distributed with ratgugy,(i), where g1(i) and py,(i) verify the following relationships:

Par(i) + pg2(i) =1 (4)

Py1(i)

Pu2(i)

Figure 3: lllustration of the two-stage hyper-exponential approximation of the repair
time distribution of machin®l (i).

It is then expeded that using a three moment approximation d the repair time
distributions of the eguivalent madines will lead to a better acawracy of the
decompasition method compared to previous methods. Gershwin’s method [6,17]] that
uses a first moment approximation d the repair time distributions and the GE-method
[8] that uses a two moment approximation.

In order to determine the unknowvn parameters A (i), Hur(i), Mu2(i), pua(), pyp(),
Ad(1), Hg1(1), Hg2(i), pga(i) and pyoli), for ead two-madiine line L(i), i=1, ...,K-1, we
need a set of 10(K-1) independent equations. Since p4(i) and (i) (respedively pyq(i)
and pyo(i)) are related through equation (3) (respedively (4)), we adualy only need an
additional set of 8(K-1) independent equations. In the sequel of this sdion we derive
these equations.

Let us define the following quantities:

. 1 )
ey(i) = . . i=1,..K-1 (5)
e (i) L pu2 (i)
1 Au - -
* (I)Hlul(') +Uu2(')%
eq(i) = 1 i=1,.. K1 (6)

L Opg1 (1) | pg2(H0
14\
FROR0  he® D

e (1) and g(i) represent the efficiencies of machineg(iland My(i) in isolation.
For each line L(i), we define the following performance parameters:



E(i): Efficiency of line L(i). This is the proportion of time maching( is working.
pg(i): Probability of machine (i) being starved in line L(i).
pp(i):  Probability of machine i) being blocked in line L(i).

Again since U = 1, E(i) can equivaently be interpreted as the production rate of line
L(i). These performance parameters are functions of the parameters of the upstrean and
downstream machines of L(i). We have the following relationships [7]:

E(i) = ey ()(1- pp (i) i=1,.. K1 )
E(i) = eq(i)(1- ps(i)) i=1,.. K1 (8)

From equation (1) and (2) and the above conditions the following set of equations can
be derived (see [6,7] for details):

E(1)=E@2)=..=EK-1) 9)
E(i-D=¢e(1-ps(i-D-ppli) i=2,..,K-1 (10)
Now using (7), (8) and (9), after some manipulation, (10) can be written as:

1 1 1 1
+ = +—
eali-1) e EG-D e

i=2, .., K1 (11)

Consider again the failure/repair medianism of madine M (i). As discussd
abowve, a failure of madiine M (i) represents either a failure or a starvation d madine
M;. A starvation d macine M; is a mnsequence of either a failure or a starvation o
macdiine M;_;. In the decomposition, a fallure or a starvation d madine M, is
represented by a failure of madine M (i-1). Therefore, a failure of madine M (i)
results from either a failure of madine M; or afailure of madine M y(i-1). Let a(i) be
the propartion d time the cause of the fail ure of madciine M (i) is a failure of macdine
M(i-1). As a result, the repair time of macine M (i) is either the repair time of
madine M;, or the residual repair time of madciine M (i-1) at the instant of starvation o
madiine M;. Thus, the repair time distribution d madine M (i) is a probabilistic
mixture of the residual repair time distribution d madine M (i-1) (with probability
ay(i)) and d therepair time distribution o madiine M; (with probability 1-a (i)). Since
we aume that the repair time of Madine M (i-1) has a two-stage hyper-exporential
distribution and because of using the memoryless property of exporentia distributions,
it follows that the repair time distribution d madiine M (i-1) at the instant of starvation
of Madiine M; is also a two-stage hyper-exporential distribution with rates p ;4 (i-1) and
Ho(i-1). Let ply(i —1) (respedively p{o(i —1)) be the probability that the repair time
of Madhine M (i-1) at the time of starvation d Madiine M; is exporentialy distributed
with rate p1(i-1) (respedively po(i-1)). As a result, the repair time distribution o
madine M (i) is athreestage hyper-exporential distribution with probabiliti es 1-a(i),
ay(i) pip(i —1) anday(i) pin(i —1) correspondng respedively to the rates 1, py;(i-1),
andp(i-1) respectively (see figure 4).
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Figure 4: Illustration of the construction of the repair time distribution
of machine N|(i).

Let us now cdculate the quantity a(i). a (i) is the ratio of the average number
of failures (per unit of time) of madine M (i) which result from a failure of madine
M(i-1) to the average number of failures (per unit of time) of macine M (i). Let

m&l)(i)be the average repair time of madine M (i). Let D(i) be the probability of
madhine M (i) being in a fallure wndtion. Then, the average number of failures (per
unit of time) occurring on macdiine M (i), which is equal to that of repairs, is equal to

Du(i)/mf})(i). On the other hand, the probability of madiine M (i) being in a failure
condtionwhich isa consequenceof afailure of macine M (i-1), isequal to pyi-1). Let
m;,(i—1) be the average residua repair time of machine M (i-1) a the instant of

starvation d macdine M (i). Then, the average number of fail ures (per unit of time) of
M (i) that result from a failure of maciine M (i-1), which is equal to that of repairs, is

equal to g(i-l)/mL(i —-1). As a result the quantity,(i) is given by:

oGy = P~ HmE ()
Du(Hmy(@i -1

i=2, .., K1 (12)

The probability of madine M (i) being in failure wndtion, D(i), can be epressed as
(see Property 1 in the Appendix of [7]):

Du(i)z%—@z(i) i=1,.., K1 (13)

By definition, the quantityn&l) (i) is given by:

m® (i) = a ()Ml -1 + (2 -a, ()Hm?Y i=2, .., K1 (14)



where mi(l) the average repair time of macdine M; is given by mi(l) -t and

i
my,(i—1), the aerage residua repair time of madine M(i-1) at the instant of
starvation is given by:

i Pu(i=1)  pla(i-1) C ]
my (i 1)_Hu1(i‘1)+uu2(i—1) i=2,..,K-1 (15)

As a result, using (15), (14) can be written as:

m® () = o u(i)Eb[ﬂ(i 1) , Pl —1)% 1-ay()
B

. : i=1, .. K1 (16)
w( -0 pe@-DF W

Using (13), (15), and (16,,(i) can finally be expressed as:

ay(i) = :

% 1 L. 0

—1UFE(1-1
o OB O ‘ )_15%0510 -1, Pl2(-DF,
i[J . : :

% ps(i —1) w@=1  pya(i-1)

We have thus obtained a first representation d the repair time distribution o
M (i) as athreestage hyper-exporential distribution. However we have assumed a two-
stage hyper-exporential distribution as the daraderization d this repar time
distribution o macdine M (i). In order to oltain this distribution, we gproximate the
threestage HE distribution by a two-stage HE distribution, wsing a three moment
approximation, as ill ustrated in Figure 5. As shown in Appendix B, for any threestage

HE distribution, there eists a two-stage HE distribution having the same first three
moments.

1C
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Figure 5: lllustration of the three moment approximation of the three-stage hyper-
exponential repair time distribution of maching, by a two-stage HE-distribution.

Leem®P (i), mP (i) and m{® (i) be the first, second and third moments of the

origina threestage hyper-exporential distribution. They can be cdculated using the
following expressions:

Inwa):Guﬁkmﬂf-ﬁ+GUUM$20-D+1-GUU)

Myt (i —1) Hu2(i—1 Hi
) i :Zauaﬂﬂnﬁ‘1)+20uaﬂﬂ20‘4)+2ﬂ‘0u0»
M a7 -1 M
) = Pl -1, 63 plal -1, 61-01y()
Uul('“l) “uZ('“l) Hi

From the three first moments of the threestage hyper-exporential distribution
we can derive the parameters, p1(i), py2(i), Hya(i) and pyo(i) of the two-stage
hyper-exponential distribution by means of the equations given in Appendix B.

A totally similar analysis of the failure-repair medianism of Madiine My(i) can
be developed. First the repair time distribution d madine M(i) can be represented as a
three-stage hyper-exporential distribution (seefigure 5). The quantity o 4 (i) denotes the

propartion d time afail ure of madhine M (i) is caused by afailure of madine My(i+1).
It can be expressed as:

pp (i +)m{) (i)
Dg(i)miy(i +1)

ag(i) =

11



Following derivations smilar to those used for a (i), aq4(i) can finally be epressd
as:

ag(i)= 1 - .
E—_ -1TFE@l+1
L0 D(”)_ P +1) , Pap(i+HH
'*E Pp(i +2) ar(i+1)  pgp(i+1)

Finally, there are boundary conditions:

Au(1) =Aq; pua(1) =pg; Hy2(1) =Hg; pua(1) = 15 (1) = 0; (17)
Ag(K-1) =Ag; Hga(K-1) =t Hga(K-1) = P Pga(K-1)= 1; pyp(K-1)= 0; (18)

These boundary condtions sSmply expressthe fad that madiine M (i) shoud be exadly
identicd to macdiine M4, while madiine M y4(K-1) shoud be exadly identica to madcine
Mg.

4. Computational Algorithm

In this fdion, we propcse a general algorithm to determine the unknown
parameters of the decompasition method, which is the generdlization d the DDX
algorithm [5,6]. First of al, it is important to recognize that it is possble to oktain the
exad anaysis of a two-madine production line model with fallure and repair time
distributions charaderized by exporentia and two-stage HE distributions, respedively
(a brief discusson d the solution is given in Appendix A and cetalls can be foundin
[16]). This implies that for given values of the parameters A (i), Hy1(i), Hy2(), Py,
Pu2(1), Ag(i), Hg1(i), pga(i) and pyo(i) of line L(i), the parameters of interest, E(i), pg(i),
P(), Pua(), PL2(i), pgi(i) and pg (i) can easily be derived. With equations derived
in sedion 3,the parameters of the upstream madine M (i) of line L(i) can be obtained
from the performance parameters of line L(i-1). Similarly, the parameters of the
downstream machine of line L(i) can be obtained from the performance parameters of
line L(i+1).

In order to oltain the final computational algorithm, let us transform the original
set of equations. After some manipulation, the 2(K-2) equations given by (9) and (11)
can be equivalently transformed into the following equations (see [8]):

1 __1 1 __ 1 i=2, .., K1 (19)
ey(i) E(-1) & e(i-1)
1 _ 1 1 1 i=1, .., K2 (20)

eq)  E(i+1) e e+l
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The following iterative dgorithm can be used to determine the unknown
parameters of the upstream and dowvnstrean machines of al the linesL(i), i=1, ...,K-1.
Asal DDX-type dgorithms, it consists of aforward peth (step 2) that caculate upcdeted
estimates of the parameters of the upstream madines, and a badkward path (step 3) that
calculate updated estimates of the parameters of the downstream machines.

Algorithm

Step 1. Set:
A(1) =Ag; Hya(2) =Hg; HuA(1) =pg; pua(l) = 15 pio(1) = 0;
Ad(K-1) = Ay; Hga(K-1) = H; Mga(K-1) = pk; pga(K-1) = 1; gyo(K-1) = 0;
Initialize
Ad() = Aivgs Ba() = Hivs Ha2() = Kieg: Paa() = 1 (i) =05 1=1, ..., K-2

Step 2. For i=2, 3,..., K-1:

Analyse line L(i-1) and calculate E(i-1pg(i —1) , p{z(i —1), and pj» (i —1)

1 _ 1 .1 1
ey E(-1) ¢ ei-1)
Gu0)= 1 EE [3
H -y 0
ey O ( D_ pia(i-1) _ pu2(i-9Y
Hi : 1 : + : +1
E ps(i —1) (=1 He2(-1
m® (i) = Gu(i)p[_n(i‘l)JrO‘u(i)pL_z(i—1)+1‘0‘u(i)
My (i —1) Hy2(i =1 Hi
m@ i) = Zdu(i)p[n(i—D+20(u(i)p[;2(i‘3)+2(1‘0(u(i))
’ My (i - 1) M2 (i - )2 ne
) iy = 60, ()Pl (i—1) 60, (I)pLa(i—1) | 6(1-ay(i))
B P T Y T BT

Calculate the HE parametefs,((i), Hy2(1), Pya(i), py(i)) of the repair time
distribution of M(i) (using the formulas in given Appendix B)

O O
BL__J-D
Cey(i) O

M= 540, pe®

M) Hy2(i)
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Step 3. For i = K-2, K-3,..., 1:

Analyse line L(i+1) and calculate E(i+1py, (i +1), p{jl(i +1), and p{jz(i +1)

1 1 N 1 1
ed(') E(+) e ey(i+)
L 1
ag(i) = ) o a
%. -1E(i +1) .
" Oeq() O _1 Pan(i+1) | paa(i+DH
O i+ q(i +1) “d2(|+1)%

|

(1)(|)_0‘d(')pd1('+1) ag(pap(i+1) , 1-aqy()
Ha (i +1) Hg2(i +1) Hi+1
m@ (i) = 20(d(|)pd1(|+1) 20(d(|)pd2(|+1) 2(1- 0(o|2(l))
Mar(i +1)? Maa(i +1)2 Hi+1
m@ i) = 60‘d(')pd1(|+1) 60(d(l)pd2('+1) 6(1- O(d?)(l))
Mar(i+D)° Hao(i +1)° Hi+1

Calculate the HE parametefg;((i), Hg2(i), Pg1(i), Pg2(i)) of the repair time
distribution of My(i) (using the formulas in given Appendix B)

U1 g
0~ -0
Eed(l) O

Ag(i) =

Par() , Pa2(i)
Har()  Hg2(i)

Step 4. Go to Step 2 until convergence of the unknown parametgi, (1,1(1), Hy2(i),
Put(i), Puz(i), Ad(D): Ha1(0), Haa(i), Par() and gip(i), i=1, ..., K-1
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5. Numerical Experiments

In this sdion, we present two examples that illustrate the behavior of the new
decompasition method. For eat example, we provide the results obtained using the
original decomposition method with exporential approximations of the repair time
distributions as described in [6], referred to as the E-method, the method pesented in
[8] with general exporential approximations of the repair time distributions, referred to
as the GE-method, and the new method pesented in this paper, referred to as the HE-
method. For ead example the cmnvergence parameter is st to 1.107. This means that
we stop the dgorithm if the relative difference of ead parameter (A,(i), Hy1(1), Hy2(1),
Pu1()s Pu2(), Ag(i), Mg1(), pga(i) and pyo(i), 1 = 1, ...,K-1) between two iterations of the
algorithm is lessthan 1.107. The three different algorithms are computationally very
efficient and give the results aimost instantaneously on a Pentium100 madine (seetable
5 for a comparison d the time required to achieve cnwvergencefor ead algorithm). We
compare these results with simulation results of the wntinuows flow model of the
origina production lines. We ran long enowgh simulations © that the outcome of these
simulations can be used as a reference to compare the three decomposition methods as
can be seen from the wrrespondng confidence intervals. For ead example, we provide
the production rate of the line a& well as the average buffer levels. We dso provide the
relative aror of eaty decompaosition methodwith resped to the simulation results. In all
examples, the common speed of the machines is U=1.

The first example (Example 1) pertains to a line @nsisting of 10 machines. The
parameters are given in table 1. This example, athough nd coming diredly from an
indwstrial case, is however representative of production lines that are encourtered in
industry. The isolated efficiencies of the madines range from 0.870to 0.952.The
average times to repair are fairly different from one madine to the other (ratio of 1 to
10). We onsider three different sets of buffer cgpadties, referred to as A, B, and C.
The buffer capadties of example 1-B are twice thase of example 1-A, and the buffer
cgpadties of example 1-C are twice thase of example 1-B. The results obtained using
the E-method, the GE-method and the HE-method are given in table 2. The main
performance parameter of interest is the production rate of the line, which can be
interpreted as the production cgpadty of the system. For the three onfigurations, it
appeas that the production rates obtained using the GE-method a the HE-method are
significantly more acarate than those obtained using the E-method. Indeed, the arors
of the GE-method ant the HE-method are of the order of 1%, whereas the eror of the E-
method can be doseto 10% (see example 1-A). The significant errors encourtered with
the E-methodis due to the fad that the exporential approximation d the repair timeisa
poa approximation d the adua repair time distributions in situations where the
average repair time of the macdines are very different, which is the cae in example 1.
For the three onfigurations, the average aror of the GE-method is 0.73%, and the
average eror of the HE-methodis 0.6 @6, whereas the average eror of the E-methodis
5.1%%. On the other hand, the results pertaining to the buffer levels are naot as
significantly different. Nevertheless it appeas that the HE-method das dightly better
than the GE-method, which in turns does dightly better than the E-method. Indeed, the
average aror of the HE-method is 5.%%, whereas that of the GE-method is 7.8% and
that of the E-method is 12.4%.

The second example (Example 2) is derived from example 1 as follows. The
average time to failure (respedively time to repair) of macines 2, 4, 6, 8and 10are
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mutliplied by 2 (respedively 4) with resped to the parameters of the first example. The
other madines are unchanged. The isolated efficiencies of the madiines now range
from 0.769to 0.952.The average times to repair are now significantly different from
one madhine to the other (ratio of 1 to 40. We wnsider the same threediff erent sets of
buffer cgpadties, referred to as A, B, and C. . The parameters are given in table 3. The
results obtained using the E-method, the GE-method and the HE-method are given in
table 4. Let usfirst discussthe results pertaining to the production rate. As expeded, the
results obtained using the E-method are fairly poar. Indeed, the eror is larger than 10%
for the three onfigurations. Now, it appeas that for this example, the GE-method also
leads to some significant errors, in particular when the buffer sizes are small (the eror is
close to 5% for configuration 2A). On the other hand, the HE-method is gill fairly
robust since the largest error is lessthan 2%. For the three ©nfigurations, the average
error of the GE-methodis 2.8%, whereas the average eror of the HE-method is 1.30%
and the average eror of the E-method is 13.43%. For the average buffer levels, the
superiority of the HE-method ower the other two methods beammes cleaer. Indedd, the
average (respedively maximum) error of the HE-methodis 5.%%, (respedively 17.84%)
whereas that of the GE-methodis 9.9 (respedively 28.43 and that of the E-methodis
18.1% (respectively 39.93).

The mnclusions drawn by means of these two examples were acually confirmed
by the results obtained with many other examples we tested.(see [15 for other
examples) These mnclusions can be summarized as follows. The E-method can lead to
large arors in the estimation d the production rate in situations where the average
repair times of the different madiines have different orders of magnitudes. In such
cases, the GE-method dees provide good results, exped when the buffer sizes are too
small, in which case it can aso leal to significant errors. On the other hand the HE-
method appeas to be very robust in the sense that regarles of the parameters of the
production line (reliability parameters of the madines and sizes of the buffers), it
always provide reasonnably accurate results.

Let us briefly discussthe convergence and computational complexity of the new
algorithm, referred to as the HE-DDX algorithm, and compare them with those of GE-
DDX algorithm, derived for the GE-method, and the E-DDX algorithm derived for the
E-method. We tested many examples with qute different parameters and onall these
examples, the GE-DDX and HE-DDX algorithms aways converged. The time to
adhieve onvergence of the GE-DDX algorithm is very similar to the mnwvergence time
of the origina E-DDX algorithm, whereas the @nwergence time of the HE-DDX
algorithm can be ten times larger (seetable 5). Thisis due to the fad that the analysis of
ead two-madine production line requires sgnificantly more time in case the repair
time distribution d the equivalent madhines is charaderized by HE-distributions.
However, it shoud be naticed that even the HE-DDX adgorithm is very fast
(convergence is always readed in less than ore second for production lines with a
number of machines of the order of 10).
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6. Conclusion

In this paper, we proposed an improvement of Gershwin's original
deacompaosition methodthat provides acairate results in situations where the GE-method
and the original E-method can leal to significant errors. This is the cae when the
reliability parameters (average fallure time and average repair time) of the different
madhines have different orders of magnitude and the buffer cgpadties are small. Such a
situation may be encourtered in red production lines. The basic diff erence between the
deaomposition method presented in this paper with that of Gershwin and that presented
in [8] is that the times to repair of the equivalent madines are modeled as two-stage
hyper-exporential distribution instead of generalized exporentia or exporential
distributions. This allows us to use athreemoment approximation instead of a two-
moment approximation a a one-moment approximation d the repair time distributions
of these equivalent madines. Our results show that the HE-method is very robust in
terms of accuracy, while still being fast enough to be used in an interactive way.
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Appendix A : Analysis of the continuous flow model of a two-machine production
line with exponential failure time and two-stage hyper-exponential
repair timedistributions

In this appendix, we briefly show the analysis of the continuows flow model of a two-
madchine production line with exporentia failure time and two-stage hyper-exporential
repair time distributions. Detail s pertaining to the analysis and the formulas for the
performance parameters can be foundin [16]. Consider the mntinuows flow model of a
two-madahine production line with afinite storage buffer. Each madine can fail. Let i =
1,2 denote the number of the madiine in the production line (i=1 for the upstream
madhine and i=2 for the downstrean macine). The time to falure of macdiine i is
exporentialy distributed with rate A; (i = 1,2). The distribution d the repair time of
madinei is atwo-stage hyper-exporential distribution with parameters 4, Hj2, pj1 and
Pi2-:

Let C be the finite cgadty of the buffer. Let U be the mnstant transfer rate of all the
madhines of the line. Let x be the quantity of material in the buffer and a; (i=0, 1,2) be
avariable indicating whether macdinei is operational (a;=0), uncer repair by the stage 1
(0j=1) of the hyper-exporentia distribution d the repair times, or under repair by the
stage 2@;=2).

Let fq L0 (X) be the steady-state probability density of the internal states (a4, oy, X)
where 0 < x < C. Let P, L0 (0) be the steady-state probabiliti es of the boundry states
where x = 0. LetPy 1,0 (C) be the steady-state probabiliti es of the boundxry states
where x = C.

I nter nal equations of the steady-state probability density

We define internal states as dates (a4, oo, X) where 0 < x < C. All other states are
boundry states. Internal equations are the balance euations that do nd include any
boundary states. The rest are called boundary equations.

P11 1f 01 (X) + P21A 2f10(X) = (M1 +H21)f11(X) =0 (AL)

P12A1f 01 (X) + P21A 2f 20 (X) = (M2 +H21)f21(X) =0 (A2)

P11A1f 02 (X) + P22 2f 10 (X) = (M1 +H22)f12(X) =0 (A3)

P12A 1f g2 (X) + P22A 2f o (X) = (H12 +H22)f22(X) =0 (A4)
0 f

-U 3 1(0 (X) = praA1f oo (X) +H2nf12(X) +H21f11(X) - (11 +A2)f1p(X) (A5)
0 f

U220 = prahafoo () +hzaf22(9) +harf2100- (k12 *A2)f0()  (A6)
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o0f
3 ())(1 (X) = 12 For(X) +H11f11(X) +P21A of 0o (X) - (H21 +A1)f 0 (X)

U

0 X

U (X) = M1z Foo (X) +H11f12(X) +P22A 2f 00 (X) - (M2 +A1)f2(X)

M11 F10(X) + H12fo0(X) + 21 for(X) +Hoofp2(X)- (Ao +A 1) fp(X) =0

Boundary eguations of the steady-state probability
M21P01(C) = P21A 2P0 (C) +f01(C)

H22P02(C) = p22A 2P0 (C) +f02(C)

(A1 +A 2)P(C) = U21P01(C) +H22P02(C)
H11P10(0) = P11A1Po (0) +f10(0)

H12P20(0) = P12A1P0(0) +20(0)

(A1 +A2)Pp(0) =H11Ro(0) +H12 Bo(0

Po1(0) = Ry2(0) = Ro(C) =Py (C) =0

P11(0) = R2(0) = B1(0 = B2(0 =0

P11(C) = P1o(C) =P, (C) =P,,(C) =0

f10(C) = P11A 1Py (C)
f20(C) = P12A 1Py (C)
f01(0) = P21A 2P0 (0)

f02(0) = P22A 2Po (0)

Analysis of internal equations

(A7)

(A8)

(A9)

(A10)
(A1)
(A12)
(A13)
(A14)
(A15)
(A16)
(A17)
(A18)
(A19)
(A20)
(A21)

(A22)

By summing all the internal equations, we obtain the following relationship:

0fo1(x) , 9fga(x) _ 0F10(x) | 9Fr0(x)
0 X 0 X 0 X 0 X

which implies that:
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fo1(X) +fo2(X) =f19(X) +f2o(X) +K

By using the boundxry eguations, we can find that K is equal to zero. As a result, the
previous equation can be written as:

fo1(X) + 2 (X) = f19(X) +fxo(X) (A23)

By using equations (A1), (A2), (A3), (Ad), (A9) and (A23), equations (A5), (A7), and
(A8) can be written as:

of10(x A A A
Mot %\2 g + P () ) - P22 P 2”21%10()()
0x O A +Ao Mi1+Ho2  Hip +H21 U

+Up1 Ho1 %
- 9117\1%112 + 01(X)
OAp+Ap M1 +H2 0

12 *H2 Koo %
'pll)\lE’J + 02(X)
OAp+Ao Uy +HO

0f g1 (X +
U doa¥) _ p21)\2E}111 B . Ha1 B %10()()
ox OAp+Ao Mg +Hpp Hip +H21 O
O A A A + A
sHAy —py +P2MM2 | Pudibn | Por 2(M12 +H21) | PaAoMip %010()
d M1 +Hp1  Hyg +Ho1 A tA M1p + Mo O
+ oo H12 %
+Po1Ao Elle + 02(X)
OAp+Ao M1 +Hp1 0
of +
() 5 Huithi  Hn Mo %10()()

22M 2
ox OAp+Ao  Hi1+Hpp Mo+ 0

2 o1 M1 %
+PooAs Epl + 01(X)
OAp+Ao Mo +HxpO

O A A A + A
SEA, —pgp + P22 | il | P 2(M12 +M22) | P22 2“12%02(@
O Mig Moz Mg +Hp AL+Ag Mz +Hoo

The solutions of the previous system is given by the following equations:

f10(x) = Cyx€R* +Cox £72% +C 3 R
for(x) = ClyleRlX +Coy 2eRZX +Cy §R3X
foa(X) = C121€™¥ +C 2 ,eR2X +C 7 £7
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By using the boundary and internal equations and the following normalization equation,

2 2

> > %’chalu ,(X)dx+Ry o ,(C)+R ¢ 2(O)%:l, we can derive the values of the
a,=00a,=0
following parameters:xy;, z, R;, G (i=1,2,3). From these parameters we can derive
the steady-state probability densities of the internal states as well as the steady-state
probabilities of the boundary states.

Let E be the efficiency of the original line. E is given by the following

relationship:

2
E= zﬁffalo(x)dxwalo(cwpa 0(0F

;=
The average buffer level Q is given by:

2 2
=5 Y %’gxfalqz(x)dx+CPqu(C)E

a,=00,=0
The probability of blocking and starvation can easily be obtained using :

E E
=1-— andp, =1-—
Ps e, Pb &

Let pj, be the probability that the residual repair times of the first madine ae

exporentialy distributed with rate py4 and p{z be the probability that the residua

repair times of the first macine ae exporentialy distributed with rate p1,. These two
probabilities are given by :

ol = P10(0)H1y
P10(0)H11 + P2o(O)H12
ro_ P20 (0)H12
P12

~ p10(0)H11 + P20 (O)H12

Similarly p5;, the probability that the residual repair times of the seaond madine ae

exporentialy distributed with rate p,4 and p52, the probability that the residual repair

times of the sscond madiine ae exporentialy distributed with rate 1, are given by the
two following relationships:

oy = Po1(0)H 21
Po1(0)H21 + P2 (O 22
ro_ P2 (0)H 22
P22 =

Po1(0)H21 + Po2 (O 22
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Appendix B: Three-moment approximation of an arbitrary hyper-exponential
distribution by a two-stage hyper-exponential distribution.

We seach the parameters of atwo-stage hyper-exporential distribution such that
the three first moments of this distribution are equal to those of a given hyper-
exponential distribution with an arbitrary number of stages.

Let m(l), m@ and m® pe the first, the second and the third first moment
respedively of this distribution. Let p;, po, M1 and [, be the four parameters of the two-
stage hyper-exporential distribution where p; (respedively p,) is the probability that the
distribution d the repair times is exporential with rate p; (respedively p,). The
relationships between the four parameters of the two-stage hyper-exporential
distribution and the three first moments of the abitrary hyper-exporential distribution
are given by the following equations:

Py P2 _ @

M1 M2

2p1 2P _ (2
2P 2P _ @)
H1 Ho

P P2 _ 3
I113 H23

wherep; + py =1
Let D andA be defined as following:
(©) 3
m- _ @

b= 6D @ O
m®3gm

m®?

1
D2
Om@ O

4 —_
2
m®

AD =1-
+1

Considerable manipulation is required to show that the parameters p;, po, p1 and
Ho are given by the following relationships (details can be found in [13]):
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P1= >
1-./Ap
P2 =
2
if D=0
U
i:m(l)%_ & m(2) -
My g\ PLpm®?
0 2
1w, pHm?
M2 g P2 Hm®?
if D<O
) % m®
K1 - E; ®2

@
) Hm? _%
m
D\/ Fom®?

It can be shown that there dways exists a two-stage hyper-exporential
distribution such that its first three moments match those of a given arbitrary hyper-
exporential distribution. Indeed, the parameters of the two-stage hyper-exporential
distribution must satisfy the two following relationships :

Om@ O

p1 0[0 and pO[01 0 %27 2%>0D cov?>1
m

(2)2 3)
L ooad Lson M - <M
Hy H2 am® " 6

The first relationship is always true in the cae of hyper-exporential distributions. To
verify the seaond relationship we define the third first moment of a n-stage hyper-
exponential distribution as:

n

m® = zﬂ

(B1)
- i
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— [
= (B2)
2 ; e
@ n 4,
m> _ Pi
— =) — (B3)
6 % b3
Using (B1) and (B3) we can written:
(1) (3) n n 1 0 n piz (84)
+ _
ZZ @h U] Ui Ujsg iZﬂ1i4

T2 > b Qﬁ@*ip'ﬁ (B5)
i=1j>i i M =1 Mi

By using equations (B4) and (B5), (B6) is given by:

m®m® m(2)2 n n

n 0 o 0O
6 |21]Z| P pj@h U U| UJ Q |zljZipiH%i2Uj2§ (9

Equation given by (B6) can be equivalently transformed into the following relationship:
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1 2 3 4 5 6 7 8 9 10
1IN 50 400 150 200 400 100 500 600 100 800
1y 5 60 10 15 40 5 40 60 5 60
g 0.909| 0.870| 0.938| 0.930| 0.909 0.95( 0.926( 0.909( 0.952( 0.930
1-A |G 25 30 10 15 15 25 35 25 30
1-B |G 50 60 20 30 30 50 70 50 60
1-C |G 100 120 40 30 60 100 140 100 120

Table 1: Data for Example 1

X Q1 Qo Q3 Q4 Qs Qs Qy Qg Qg

1-A |simulation | 0.725717.2844 20.4284 5.6094 6.6124 6.267( 8.2159 10.384 6.6884 4.6174

+/- 0.0009 0.027 0.0381 0.0124 0.0209 0.0214 0.0494 0.0629 0.0279 0.0294

E-method | 0.7880 16.577118.3129 5.279¢ 6.573§ 6.5539 8.0139 9.3169 7.2413 3.8153
error(%) +8.58| -4.09| -10.36| -5.89| -0.59| +4.58 -246| -10.28 +8.27| -17.37

GE-method| 0.723( 17.037421.179( 6.1467 6.9564 5.4191 7.6964 9.4754 5.656( 4.002§
error(%) -0.37] -143| +3.67| +9.57| +519| -1353] -6.32| -8.75| -15.44| -13.31

HE-method| 0,7304 17,0754 20,7931 5,565 6,4954 6,1183 7,4104 9,065 6,431 4,0184

error (%) +0,70| -1,21) +1,79| -0,78| -1,78| -2,37| -9,81| -12,70| -3,84| -12,97

1-B |simulation [ 0.7919 34.226§ 36.9555 10.9399 13.0374 11.2069 17.575( 22.347¢ 12.5643 11.693§

+- 0.0001 0.0077 0.0013 0.0034 0.0061 0.006¢ 0.0113 0.0171 0.0093 0.0109

E-method | 0.822731.297431.2859 9.6343 11.881( 11.2549 13.885¢ 18.8964 12.7174 9.8993
error(%) +3.89| -856| -15.34 -11.93( -8.87| +0.42| -20.99| -15.44| +1.22| -15.35

GE-method| 0.7854 33.1647 38.379(0 11.5549 12.7199 10.0924 15.2029 19.785% 12.3587 10.4234
error(%) -0.82| -310| +3.85| +5.62| -244| -9.95| -13.50| -11.46| -1.64| -10.86

HE-method| 0,792 33,245§ 37,6359 10,605 12,064 10,9034 15,8454 20,259 12,3961 10,610¢
error(%) +0,01| -2,87| +1,84| -3,06| -746| -2,71| -984| -935 -134| -926

1-C |simulation | 0.826§ 66.8604 60.839]1 21.1887 26.2214 18.428( 36.2304 47.42579 21.6444 28.0404

+/- 0.0001] 0.0421 0.0944 0.0214 0.0439 0.0424 0.0844 0.1389 0.054d4 0.0854

E-method | 0.851458.290§ 43.190( 17.1389 20.9367 15.548§ 28.292] 39.9943 17.325¢ 22.8954
error(%) +2.95( -12.82( -29.01 -19.12 -20.15( -15.62| -21.91| -15.67| -19.95| -18.35

GE-method| 0.835( 62.9059 61.0859 20.7649 22.812] 17.186§ 30.1354 41.692( 22.7044 25.489¢
error(%) +0.99| -591] +041] -2.00] -13.00, -6.74| -16.82| -12.09] +4.90| -9.10

HE-method| 0,8374 62,5861 59,1194 19,8889 23,0859 17,1141 31,9574 43,9564 21,1452 25,7703
error (%) +1,28( -6,39 -283 -613| -11,96( -7,13| -11,79] -7,31] -231] -8,10

Table 2: Comparison of the results obtained using the three decomposition methods (example 1)

26



1 2 3 4 5 6 7 8 9 10
Y 50 800 150 400 400 200 500 1200 100 1600
]_/pi 5 240 10 60 40 20 40 240 5 240
§ 0.909( 0.769| 0.938 0.87( 0.909| 0.909( 0.926] 0.833( 0.952 0.87
2-A |G 25 30 10 15 15 25 35 25 30
2-B |G 50 60 20 30 30 50 70 50 60
2-C |G 100 120 40 30 60 100 140 100 120
Table 3: Data for Example 2
X Q1 Qo Q3 Q4 Qs Qs Q7 Qg Qg
2-A |simulation | 0.547¢ 19.795721.9794 5.9581 7.709¢ 6.9254 8.1589 9.8484 5.744¢ 4.0244
+/- 0.0004 0.0124 0.0379 0.0114 0.018(Q 0.0207 0.0370 0.0549 0.0257 0.03071
E-method 0.6284 19.4587 19.452§ 5.1377 6.3805 5.877(0 7.4793 11.76127 8.038¢ 3.6234
error (%) +14.77 -1.70f -11.50( -13.77( -17.24| -15.14 -8.33| +19.42| +39.93 -9.96
GE-method| 0.5224 18.464¢ 22.1774 6.9203 7.8791 6.3234 8.1173 9.8347 4.1113 3.6774
error(%) -4.60 -6.72| +0.90( +16.15( +2.20 -8.69 -0.51 -0.14( -28.43 -8.62
HE-method| 0.5539 20.0934 22.6185 6.0175 7.5509 6.6764 7.7633 8.8142 5.2903 3.3244
error(%) +1.15( +1.50f +2.91| +1.00 -2.06 -3.60 -4.85( -10.50 -7.91( -17.40
2-B |simulation | 0.597( 40.3524 41.347¢ 11.5761 14.6174 13.3527 16.8954 22.633€¢ 11.738( 10.392(
+/- 0.0004 0.0103 0.022§ 0.0083 0.014§ 0.0143 0.0229 0.0385 0.0223 0.02871
E-method 0.6827 39.5144 36.446( 8.8814 10.703] 10.5064 13.4509 22.9703 16.001¢ 8.8074
error (%) +14.36 -2.08( -11.85( -23.28 -26.78| -21.32( -20.39| +1.49| +36.32| -15.25
GE-method| 0.5779 38.4531 43.0504 13.780¢ 15.208( 12.1914 15.765] 20.6954 9.1171 8.8124
error (%) -3.20| -4.71] +4.12| +19.05| +4.04] -8.70| -6.69| -856| -22.33| -15.20
HE-method| 0.6077 40.8673 42.969€ 11.585¢ 14.3059 13.0935 16.0473 19.8744 10.5427 8.5384
error (%) +1.79| +1.28[ +3.92 +0.08 -2.13 -1.94 -5.02| -12.19( -10.18( -17.84
2-C |simulation | 0.6563 80.369] 72.432] 22.5689 26.3027 24.664] 34.6634 53.634€ 24.608Y 27.5444
+/- 0.000§ 0.0935 0.244(Q 0.067¢ 0.1123 0.1274 0.2439 0.3590 0.136§ 0.174(
E-method 0.729€ 78.5173 60.2297 14.852§ 16.3419 17.639( 25.3253 45.1407 26.9122 22.0427
error (%) +11.17 -2.30f -16.85( -34.19( -37.87| -28.48( -26.94| -15.84| +9.36| -19.97
GE-method| 0.6523 77.3404 78.405€ 26.653€¢ 27.999¢ 22.9221 30.250( 45.1274 21.1209 23.018]
error (%) -0.61 -3.77 +8.25( +18.10( +6.45 -7.06| -12.73( -15.86| -14.17| -16.43
HE-method| 0.6700 80.3439 74.805§ 22.0147 25.353§ 24.1737 32.321( 47.0364 22.200§ 23.8824
error (%) +0.98 -0.03| +3.28 -2.46 -3.61 -1.99 -6.76( -12.30 -9.78 -13.29

Table 4: Comparison of the results obtained using the three decomposition methods (example 2)
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E-DDX Algorithm | GE-DDX Algorithm| HE-DDX Algorithm
(1.10* second) |  (1.10* second) (1.10% second)
1-A 28.02 23.08 145.60
1-B 31.87 30.77 166.48
1-C 31.87 35.16 188.46
2-A 30.05 27.02 151.78
2-B 32.85 31.05 171.40
2-C 33.01 36.28 191.50

Table 5: Time required to achieve convergence of each algorithm
with the convergence parameter equal to 7.10
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