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Abstract

We consider production lines consisting of a series of machines separated by
finite buffers. The processing time of each machine is deterministic and all the machines
have the same processing time. All machines are subject to failures. As usually the case
for production systems we assume that the failures are operation dependent [3,7].
Moreover, we assume that the times to failure and the times to repair are exponentially
distributed. To analyze such systems, a decomposition method was proposed by
Gershwin [11]. The computational eff iciency of this method was later significantly
improved by the introduction of the so-called DDX algorithm [5,6]. In general, this
method provides fairly accurate results. There are however cases for which the accuracy
of this decomposition method may not be so good. This is the case when the reliabilit y
parameters (average failure time and average repair time) of the different machines have
different orders of magnitude. Such a situation may be encountered in real production
lines. In [8] an improvement of Gershwin's original decomposition method has been
proposed that in general provides more accurate results in the above mentioned
situation. This other method is referred to as the GE-method. The basic difference
between the GE-method with that of Gershwin is that it uses a two-moment
approximation instead of a one-moment approximation of the repair time distributions
of the equivalent machines. There are however still cases for which the accuracy of the
GE-method is not as good as expected. This is the case for example when the buffer
sizes are too small i n comparison with the average repair time. We present in this paper
a new decomposition method that is based on a better approximation of the repair time
distributions. This method uses a three-moment approximation of the repair time
distributions of the equivalent machines. Numerical results show that the new method is
very robust in the sense that it seems to provide accurate results in all situations.

Keywords: production lines, unreliable machines, finite buffers, decomposition method,
hyper-exponential distributions
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1. Introduction

In this paper, we consider production lines consisting of a series of machines
separated by finite buffers. The processing time of each machine is deterministic, i.e., a
fixed amount of time is required to perform the operation. Moreover, we assume that all
the machines have the same processing time, that is we restrict our attention to so-called
homogeneous lines [6]. All machines are subject to failures. As is usually the case for
production systems we assume that the failures are operation dependent [3,7]. This
means that a machine can fail only while it is working. Moreover, we assume that the
times to failure and the times to repair are exponentially distributed. Finally, we assume
that there are always raw parts available at the input and that there is always room to
accommodate the finished parts at the output. Models of production lines with
deterministic processing times and exponentially distributed times to failure and times
to repair are referred to as asynchronous models [7].

A number of methods have been developed for analyzing production lines with
unreliable machines and finite buffers (also called transfer lines). See [7] for a survey
and a list of references. Obtaining exact analytical solutions of asynchronous models of
production lines is in general not feasible. As a result, different models have been used
to approximate the behavior of asynchronous models [7]: the synchronous model [2]
and the continuous flow model [17]. These models provide a good approximation of the
original asynchronous model as long as the average times to failures are significantly
larger than the processing times, which is usually the case in production systems [1]. For
both models, exact solutions of a line consisting of two machines separated by a finite
buffer can be obtained; see e.g. [3,13] in the case of the synchronous model and [9,11]
in the case of the continuous flow model.

The analysis of longer lines is based on approximation methods [7]. Among
these methods, the decomposition method proposed by Gershwin [11] in the context of
the synchronous model appears to be quite accurate. Moreover, using the iterative
algorithm proposed in [5], this method can be made very eff icient and reliable. A
similar decomposition method was proposed in the case of the continuous flow model
[6]. However, there are situations for which the accuracy of this decomposition method
may not be so good. This is the case when the reliabilit y parameters (average failure
time and average repair time) of the different machines have different order of
magnitudes. Such a situation may be encountered in real production lines.

In [8] an improvement of Gershwin's original decomposition method was
proposed that in general provides accurate results even in the above mentioned situation.
This other method is referred to as the GE-method. The basic difference between the
GE-method with that of Gershwin is that it uses a two-moment approximation instead of
a one-moment approximation of the repair time distributions of the equivalent
machines. The repair time distributions of the equivalent machines are approximated by
generalized exponential (GE) distributions, which can easily be handled in the
decomposition method without involving any additional complexity with respect to the
exponential approximation used by Gershwin.[4,8]. Even though the GE-method is
fairly robust, there are still situations for which the accuracy is not satisfactory. This is
the case for example when the buffer sizes are too small i n comparison with the average
repair time. We present in this paper a new decomposition method that is based on a
better approximation of the repair time distribution. This method is again an extension
of Gershwin’s decomposition method. The main feature of the new method is that the
repair time distributions of the equivalent machines are approximated by two-stage
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Hyper-Exponential (HE) distributions. The HE-method uses a three-moment
approximation of the repair time distributions. In this paper, we compare the
performance results obtained by using the HE-method with those obtained by using a
simulation. We also compare the accuracy of the new method with that of Gershwin's
original method, referred to as the exponential method (E-method), as well as that of the
GE-method proposed in [8]. It appears that the HE-method is very robust in terms of
accuracy.

The paper is organized as follows. The continuous flow model is presented in
Section 2. The HE decomposition method is described in Section 3. The HE-DDX
computational algorithm is given in Section 4. Finally, numerical examples are reported
in Section 5.

2. The Continuous Flow Model

We consider the continuous flow model of a production line consisting of a
series of K machines (M1, M2, ..., MK) separated by K-1 intermediate buffers (B1, B2,
...,  BK-1). Parts flow from outside the system to machine M1, then to buffer B1, then to
machine M2, and so forth until they reach machine MK, after which they leave the
system. We assume that there are always parts available at the input of the system and
space available at the output of the system. The intermediate buffers are each of f inite
capacity (C1, C2, ..., CK-1). A four machine production line is shown in Figure 1.

The quantity of material in each buffer Bi at any time is a real number hi(t),
where 0 ≤ hi(t) ≤ Ci. Each machine can be in two states: operational (not in a failure
condition) or down (under repair). When operational, it can be either working or idle. A
machine is idle if it is starved or blocked. Machine M i is starved at time t if one of the
upstream machines is down and all buffers between this machine and machine M i are
empty. Machine M i is blocked if one of the downstream machines is down and all the
buffers in between this machine and machine M i are full . A machine that is operational
and neither starved nor blocked is working. When machine M i is working, it transfers
material from its upstream buffer, Bi-1, to its downstream buffer, Bi, at a constant rate
U. That is a quantity of material Udt is transferred in time dt. Note that U=1/T, where T
is the processing time of all the machines in the original asynchronous model. A
machine may fail only while it is working. The time to failure and the time to repair of
machine Mi are exponentially distributed with rates λi and µi, respectively.

Throughout the rest of the paper we assume that T = 1 and that, as a result U = 1.
This is without loss of generality since the time unit can always be chosen so that this
condition is satisfied. Let L denote the continuous flow model of the production line.
Let us define the following performance parameters of the continuous model:
ei: Isolated efficiency of machine Mi.

ei
i

i i i

i

=
+

=
+

µ
λ µ λ

µ

1

1

Ei: Efficiency of machine Mi; proportion of time machine Mi is working in line L.
psi: Probability of machine Mi being starved in line L.
pbi: Probability of machine Mi being blocked in line L.
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Since U = 1, Ei can equivalently be interpreted as the production rate of machine
M i in line L. The following relationships have been established in [6] for the continuous
flow model of tandem production lines.

E1 = E2 = ... = EK (1)
Ei = ei (1 - psi - pbi ) i = 1, ..., K (2)

The first relation is related to conservation of f low. The second equation relates
the eff iciency of machine M i in line L, Ei, to its eff iciency when considered in isolation
ei. It is an exact relationship in the case of the continuous flow model because a machine
cannot be simultaneously starved and blocked [6].

M1 B1 M2 B2 M3 B3 M4

L

λ1 C1 λ2 C2 λ3 C3 λ4
µ1 µ2 µ3 µ4

Mu(1) B(1) Md(1)

L(1)

λu(1) C1 λd(1)
µu1(1), pu1(1) µd1(1), pd1(1)
µu2(1), pu2(1) µd2(1), pd2(1)

Mu(2) B(2) Md(2)

L(2)

λu(2) C2 λd(2)
µu1(2), pu1(2) µd1(2), pd1(2)
µu2(2), pu2(2) µd2(2), pd2(2)

Mu(3) B(3) Md(3)

L(3)

λu(3) C3 λd(3)
µu1(3), pu1(3) µd1(3), pd1(3)
µu2(3), pu2(3) µd2(3), pd2(3)

Figure 1: A four-machine production line
and its decomposition into three two-machine production lines.
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3. Decomposition Method

In this section we present the two-stage hyper-exponential decomposition
method for the analysis of the continuous flow model. The principle of this method is to
decompose the K-machine line into a set of K-1 two-machine lines L(i), for i = 1, ..., K-
1 (see Figure 1). Each line L(i) is a continuous flow model consisting of an upstream
machine Mu(i), a downstream machine, Md(i), and an intermediate buffer, B(i). There is
an infinite supply of material in front of machine Mu(i), i.e, Mu(i) is never starved,
while there is an infinite amount of storage available at the output of machine Md(i), i.e,
Md(i) is never blocked. Each system L(i) must be defined in such a way that the
behavior of the material flow in buffer B(i) closely matches that of the material flow in
buffer Bi of line L. Machine Mu(i) represents (in an aggregate way) the part of the line
upstream of buffer Bi, while machine Md(i) represents (in an aggregate way) the part of
the line downstream of buffer Bi (upstream and downstream refer to the direction of the
flow of material). In other words, machine Mu(i) models how material is transferred into
buffer Bi, while machine Md(i) models how material is transferred out of buffer Bi.

To achieve the above goal, the equivalent machines Mu(i) and Md(i) of each line
L(i) are characterized as follows. Both machines have the same processing rate as the
machines of line L, that is U = 1. The capacity of buffer B(i) is the same as that of buffer
Bi, that is Ci. The failure times of machine Mu(i) and Md(i) have exponential
distributions with parameters λu(i) and λd(i), respectively. So far, this is totally similar
to Gershwin’s approach. As stated in the introduction, the difference between the
method proposed in this paper and that of Gershwin lies in the characterization of the
repair time distributions. Let us recall that in Gershwin’s method, the repair time
distributions of the equivalent machines are assumed to be exponential.

In order to define the characterization of the repair time distributions, consider
for instance the failure/repair mechanism of machine Mu(i). A failure of machine Mu(i)
represents either a failure or a starvation of machine M i. A starvation of machine M i is a
consequence of either a failure or a starvation of machine M i-1. A starvation of machine
M i-1 is in turn a consequence of either a failure or a starvation of machine M i-2, and so
forth. Thus, a failure of Machine Mu(i) is caused either by a failure of machine M i or by
a failure of one of the upstream machines (M i-1, ..., M1). As a result, the repair of
Machine Mu(i) will be the consequence of a repair of machine M i, in case machine M i is
down, or of a residual repair time of one of the upstream machines (M i-1, ..., M1) at the
instant of starvation, in case machine M i is starved. Now, since the repair time of every
machine j, j = i-1,..., 1, is exponentially distributed, its residual repair time is also
exponentially distributed with the same rate µj. Thus, we conclude that the repair time
of machine Mu(i) should be characterized by an so-called hyper-exponential distribution
(i.e., a probabili stic mixture of exponential distributions) consisting of i stages, with
rates µi, µi-1,..., µ1, as shown in figure 2. Similarly, the repair time of machine Md(i)
should be characterized by an hyper-exponential distribution consisting of K-i stages,
with rates µi+1, µi+2,..., µK.
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Figure 2: Illustration of the repair time distribution of Machine Mu(i).

Before going any further, one important question arises pertaining to the analysis
of each subsystem L(i). Indeed, in any decomposition method, the overall method relies
on the analysis of each subsystem L(i). If this analysis is too complex, then the
decomposition method may become too cumbersome and not suitable for solving large
production lines. It turns out that this may be the case if we are directly using the above
characterization. Indeed, the analysis of line L(i) would imply solving the continuous
flow model of a two-machine subsystem with exponential failure time distributions and
hyper-exponential repair time distributions with i and K-i stages for the upstream and
downstream machines, respectively. This would involve solving a set of K-1 differential
equations, which is very tedious, if not impossible [15].

To reduce the complexity, while retaining the idea of this new characterization,
we propose to replace the characterization of the repair time distributions using hyper-
exponential distributions with arbitrary number of stages by a characterization using
hyper-exponential distributions consisting of only two stages. The idea behind this
simpli fication, is that an arbitrary hyper-exponential distribution can always be
approximated by a two-stage hyper-exponential distribution having the same first three
moments (see Appendix B). Now, it turns out with this characterization, the analysis of
line L(i) implies solving the continuous flow model of a two-machine subsystem with
exponential failure time distributions and two-stage hyper-exponential repair time
distributions. This reduces to solving a set of 3 differential equations, which can easily
be done (a brief discussion of the solution is given in Appendix A and details can be
found in [16]).

Thus, we assume that repair time distribution of machine Mu(i) is characterized
by a two-stage hyper-exponential distribution with parameters (µu1(i), µu2(i), pu1(i),
pu2(i)) (see Figure 3). This means that, with a probabilit y pu1(i) the repair time is
exponentially distributed with rate µu1(i), while with a probabilit y pu2(i), it is
exponentially distributed with rate µu2(i), where pu1(i) and pu2(i) verify the following
relationships:

p i p iu u1 2 1( ) ( )+ = (3)

µi

µi-1

µ1
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Similarly, we assume that the repair time distribution of machine Md(i) is characterized
by a two-stage hyper-exponential distribution with parameters (µd1(i), µd2(i), pd1(i),
pd2(i)). This means that, with a probabilit y pd1(i) the repair time is exponentially
distributed with rate µd1(i), while with a probabilit y pd2(i), it is exponentially
distributed with rate µd2(i), where pd1(i) and pd2(i) verify the following relationships:

p i p id d1 2 1( ) ( )+ = (4)

Figure 3: Illustration of the two-stage hyper-exponential approximation of the repair
time distribution of machine Mu(i).

It is then expected that using a three moment approximation of the repair time
distributions of the equivalent machines will l ead to a better accuracy of the
decomposition method compared to previous methods: Gershwin’s method [6,11] that
uses a first moment approximation of the repair time distributions and the GE-method
[8] that uses a two moment approximation.

In order to determine the unknown parameters λu(i), µu1(i), µu2(i), pu1(i), pu2(i),
λd(i), µd1(i), µd2(i), pd1(i) and pd2(i), for each two-machine line L(i), i=1, ..., K-1, we
need a set of 10(K-1) independent equations. Since pu1(i) and pu2(i) (respectively pd1(i)
and pd2(i)) are related through equation (3) (respectively (4)), we actually only need an
additional set of 8(K-1) independent equations. In the sequel of this section we derive
these equations.

Let us define the following quantities:

e i

i
p i

i

p i

i

u

u
u

u

u

u

( )

( )
( )

( )

( )

( )

=
+ +









1

1 1

1

2

2
λ

µ µ

i = 1, ..., K-1 (5)

e i

i
p i

i

p i

i

d

d
d

d

d

d

( )

( )
( )

( )

( )

( )

=
+ +









1

1 1

1

2

2
λ

µ µ

i = 1, ..., K-1 (6)

eu(i) and ed(i) represent the efficiencies of machines Mu(i) and Md(i) in isolation.
For each line L(i), we define the following performance parameters:

pu1(i)

pu2(i)

µu1(i)

µu2(i)
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E(i): Efficiency of line L(i). This is the proportion of time machine Md(i) is working.
ps(i): Probability of machine Md(i) being starved in line L(i).
pb(i): Probability of machine Mu(i) being blocked in line L(i).

Again since U = 1, E(i) can equivalently be interpreted as the production rate of line
L(i). These performance parameters are functions of the parameters of the upstream and
downstream machines of L(i). We have the following relationships [7]:

E i e i p iu b( ) = ( )( - ( ))1 i = 1, ..., K-1 (7)

E i e i p id s( ) = ( )( - ( ))1 i = 1, ..., K-1 (8)

From equation (1) and (2) and the above conditions the following set of equations can
be derived (see [6,7] for details):

E(1) = E(2) = = E(K -1)K (9)
E i e p i p ii s b( - ) = ( - ( - ) - ( ))1 1 1 i = 2, ..., K-1 (10)

Now using (7), (8) and (9), after some manipulation, (10) can be written as:

1

1

1 1

1

1

e i e i E i ed u i( ) ( ) ( )−
+ =

−
+ i = 2, ..., K-1 (11)

Consider again the failure/repair mechanism of machine Mu(i). As discussed
above, a failure of machine Mu(i) represents either a failure or a starvation of machine
M i. A starvation of machine M i is a consequence of either a failure or a starvation of
machine M i-1. In the decomposition, a failure or a starvation of machine M i-1 is
represented by a failure of machine Mu(i-1). Therefore, a failure of machine Mu(i)
results from either a failure of machine M i or a failure of machine Mu(i-1). Let αu(i) be
the proportion of time the cause of the failure of machine Mu(i) is a failure of machine
Mu(i-1). As a result, the repair time of machine Mu(i) is either the repair time of
machine M i, or the residual repair time of machine Mu(i-1) at the instant of starvation of
machine M i. Thus, the repair time distribution of machine Mu(i) is a probabili stic
mixture of the residual repair time distribution of machine Mu(i-1) (with probabilit y
αu(i)) and of the repair time distribution of machine M i (with probabilit y 1-αu(i)). Since
we assume that the repair time of Machine Mu(i-1) has a two-stage hyper-exponential
distribution and because of using the memoryless property of exponential distributions,
it follows that the repair time distribution of machine Mu(i-1) at the instant of starvation
of Machine M i is also a two-stage hyper-exponential distribution with rates µu1(i-1) and

µu2(i-1). Let p iu
r
1 1( )−  (respectively p iu

r
2 1( )− ) be the probabilit y that the repair time

of Machine Mu(i-1) at the time of starvation of Machine M i is exponentially distributed
with rate µu1(i-1) (respectively µu2(i-1)). As a result, the repair time distribution of
machine Mu(i) is a three-stage hyper-exponential distribution with probabiliti es 1-αu(i),

αu(i) p iu
r
1 1( )−  and αu(i) p iu

r
2 1( )−  corresponding respectively to the rates µi, µu1(i-1),

and µu2(i-1) respectively (see figure 4).
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µu2(i-1)

     µi

µu2(i-1)

     µi

µu1(i-1)αu(i)

1−αu(i)

αu(i)

p iu
r
1 1( )−

p iu
r
1 1( )−

p iu
r
2 1( )− p iu

r
2 1( )−

Figure 4: Illustration of the construction of the repair time distribution
of machine Mu(i).

Let us now calculate the quantity αu(i). αu(i) is the ratio of the average number
of failures (per unit of time) of machine Mu(i) which result from a failure of machine
Mu(i-1) to the average number of failures (per unit of time) of machine Mu(i). Let

m iu
( ) ( )1 be the average repair time of machine Mu(i). Let Du(i) be the probabilit y of

machine Mu(i) being in a failure condition. Then, the average number of failures (per
unit of time) occurring on machine Mu(i), which is equal to that of repairs, is equal to

D iu ( ) / m iu
( )1 ( ) . On the other hand, the probabilit y of machine Mu(i) being in a failure

condition which is a consequence of a failure of machine Mu(i-1), is equal to ps(i-1). Let

m iu
r ( )−1  be the average residual repair time of machine Mu(i-1) at the instant of

starvation of machine Mu(i). Then, the average number of failures (per unit of time) of
Mu(i) that result from a failure of machine Mu(i-1), which is equal to that of repairs, is

equal to ps(i-1)/ m iu
r ( )−1 . As a result the quantity αu(i) is given by:

α u
s u

u u
r

i
p i m i

D i m i
( )

( ) ( )

( ) ( )

( )
=

−
−

1

1

1
i = 2, ..., K-1 (12)

The probabilit y of machine Mu(i) being in failure condition, Du(i), can be expressed as
(see Property 1 in the Appendix of [7]):

D i
e i

E iu
u

( )
( )

( )= −








1
1 i = 1, ..., K-1 (13)

By definition, the quantity m iu
( ) ( )1  is given by:

m i i m i i mu u u
r

u i
( ) ( )( ) ( ) ( ) ( ( ))1 11 1= − + −α α i = 2, ..., K-1 (14)

µu1(i-1)

αu(i)

1−αu(i)
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where mi
( )1  the average repair time of machine M i is given by mi

i

( )1 1=
µ

 and

m iu
r ( )−1 , the average residual repair time of machine Mu(i-1) at the instant of

starvation is given by:

m i
p i

i

p i

iu
r u

r

u

u
r

u
( )

( )

( )

( )

( )
− =

−
−

+
−
−

1
1

1

1

1
1

1

2

2µ µ
 i = 2, ..., K-1 (15)

As a result, using (15), (14) can be written as:

m i i
p i

i

p i

i

i
u u

u
r

u

u
r

u

u

i

( ) ( ) = ( ) +
- ( )1 1

1

2

2

1

1

1

1

1
α

µ µ
α
µ

( )

( )

( )

( )

−
−

+
−
−













i = 1, ..., K-1 (16)

Using (13), (15), and (16), αu(i) can finally be expressed as:

α

µ
µ µ

u

i
u

s

u
r

u

u
r

u

i

e i
E i

p i

p i

i

p i

i

( )

( )
( )

( )

( )

( )

( )

( )

=
−







 −

−
−



















−
−

+
−
−









 +

1

1
1 1

1
1

1

1

1

1
11

1

2

2

We have thus obtained a first representation of the repair time distribution of
Mu(i) as a three-stage hyper-exponential distribution. However we have assumed a two-
stage hyper-exponential distribution as the characterization of this repair time
distribution of machine Mu(i). In order to obtain this distribution, we approximate the
three-stage HE distribution by a two-stage HE distribution, using a three moment
approximation, as ill ustrated in Figure 5. As shown in Appendix B, for any three-stage
HE distribution, there exists a two-stage HE distribution having the same first three
moments.
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µu2(i-1)

     µi

µu1(i-1)
αu(i)

αu(i)

p iu
r
1 1( )−

p iu
r
2 1( )−

Figure 5: Illustration of the three moment approximation of the three-stage hyper-
exponential repair time distribution of machine Mu(i) by a two-stage HE-distribution.

Let m iu
( ) ( )1 , m iu

( ) ( )2  and m iu
( ) ( )3 be the first, second and third moments of  the

original three-stage hyper-exponential distribution. They can be calculated using the
following expressions:

m i
i p i

i

i p i

i

i
u

u u
r

u

u u
r

u

u

i

( ) ( )
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( )1 1

1

2
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1

1

1

1
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−
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+
−

−
+

−α
µ

α
µ

α
µ
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i p i

i

i p i

i

i
u

u u
r

u
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r

u

u

i

( ) ( )
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( ) ( )
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( ( ))2 1

1
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2
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2 2

2 1

1

2 1

1
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From the three first moments of the three-stage hyper-exponential distribution
we can derive the parameters, p iu1( ) , p iu2( ) , µu i1( )  and µu i2( )  of the two-stage

hyper-exponential distribution by means of the equations given in Appendix B.

A totally similar analysis of the failure-repair mechanism of Machine Md(i) can
be developed. First the repair time distribution of machine Md(i) can be represented as a
three-stage hyper-exponential distribution (see figure 5). The quantity α d i( ) denotes the
proportion of time a failure of machine Md(i) is caused by a failure of machine Md(i+1).
It can be expressed as:

α d
b d

d d
r

i
p i m i

D i m i
( )

( ) ( )

( ) ( )

( )

=
+

+

1

1

1

1−αu(i)

µu1(i)

µu2(i)

pu1(i)

pu2(i)
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Following derivations similar to those used for α u i( ) , α d i( )  can finally be expressed
as:

α

µ
µ µ

d

i
d

b

d
r

d

d
r

d

i

e i
E i

p i

p i

i

p i

i

( )

( )
( )

( )

( )

( )

( )

( )

=
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





 +

+
−



















+
+

+
+
+









 ++

1

1
1 1

1
1

1

1

1

1
11

1

1

2

2

Finally, there are boundary conditions:

λu(1) = λ1; µu1(1) = µ1; µu2(1) = µ1; pu1(1) = 1; pu2(1) = 0; (17)
λd(K-1) = λK; µd1(K-1) = µK; µd2(K-1) = µK; pd1(K-1)= 1; pd2(K-1)= 0; (18)

These boundary conditions simply express the fact that machine Mu(i) should be exactly
identical to machine M1, while machine Md(K-1) should be exactly identical to machine
MK.

4. Computational Algorithm

In this section, we propose a general algorithm to determine the unknown
parameters of the decomposition method, which is the generalization of the DDX
algorithm [5,6]. First of all , it is important to recognize that it is possible to obtain the
exact analysis of a two-machine production line model with failure and repair time
distributions characterized by exponential and two-stage HE distributions, respectively
(a brief discussion of the solution is given in Appendix A and details can be found in
[16]). This implies that for given values of the parameters λu(i), µu1(i), µu2(i), pu1(i),
pu2(i), λd(i), µd1(i), pd1(i) and pd2(i) of line L(i), the parameters of interest, E(i), ps(i),

pb(i), p iu
r
1( ) , p iu

r
2( ) , p id

r
1( )  and p id

r
2( )  can easily be derived. With equations derived

in section 3, the parameters of the upstream machine Mu(i) of line L(i) can be obtained
from the performance parameters of line L(i-1). Similarly, the parameters of the
downstream machine of line L(i) can be obtained from the performance parameters of
line L(i+1).

In order to obtain the final computational algorithm, let us transform the original
set of equations. After some manipulation, the 2(K-2) equations given by (9) and (11)
can be equivalently transformed into the following equations (see [8]):

1 1

1

1 1

1e i E i e e iu i d( ) ( ) ( )
=

−
+ −

−
i = 2, ..., K-1 (19)

1 1

1

1 1

11e i E i e e id i u( ) ( ) ( )
=

+
+ −

++
i = 1, ..., K-2 (20)
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The following iterative algorithm can be used to determine the unknown
parameters of the upstream and downstream machines of all the lines L(i), i=1, ..., K-1.
As all DDX-type algorithms, it consists of a forward path (step 2) that calculate updated
estimates of the parameters of the upstream machines, and a backward path (step 3) that
calculate updated estimates of the parameters of the downstream machines.

Algorithm

Step 1. Set:
λu(1) = λ1; µu1(1) = µ1; µu2(1) = µ1; pu1(1) = 1; pu2(1) = 0;
λd(K-1) = λK; µd1(K-1) = µK; µd2(K-1) = µK; pd1(K-1) = 1; pd2(K-1) = 0;
Initialize
λd(i) = λi+1; µd1(i) = µi+1; µd2(i) = µi+1; pd1(i) = 1; pd2(i) = 0;  i = 1, ..., K-2

Step 2. For i=2, 3,..., K-1:

Analyse line L(i-1) and calculate E(i-1), p is( )−1 , p iu
r
1 1( )− , and p iu

r
2 1( )−
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=

−
+ −

−

α

µ
µ µ

u

i
u

s

u
r

u

u
r

u

i

e i
E i

p i

p i

i

p i

i

( )

( )
( )

( )

( )

( )

( )

( )

=
−







 −

−
−



















−
−

+
−
−









 +

1

1
1 1

1
1

1

1

1

1
11

1

2

2

m i
i p i

i

i p i

i

i
u

u u
r

u

u u
r

u

u

i

( ) ( )
( ) ( )

( )

( ) ( )

( )

( )1 1

1

2

2

1

1

1

1

1
=

−
−

+
−

−
+

−α
µ

α
µ

α
µ

m i
i p i

i

i p i

i

i
u

u u
r

u

u u
r

u

u

i

( ) ( )
( ) ( )

( )

( ) ( )

( )

( ( ))2 1

1
2

2

2
2 2

2 1

1

2 1

1

2 1
=

−
−

+
−

−
+

−α
µ

α
µ

α
µ

m i
i p i

i

i p i

i

i
u

u u
r

u

u u
r

u

u

i

( ) ( )
( ) ( )

( )

( ) ( )

( )

( ( ))3 1

1
3

2

2
3 3

6 1

1

6 1

1

6 1
=

−
−

+
−

−
+

−α
µ

α
µ

α
µ

Calculate the HE parameters (µu1(i), µu2(i), pu1(i), pu2(i)) of the repair time
distribution of Mu(i) (using the formulas in given Appendix B)
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Step 3. For i = K-2, K-3,..., 1:

Analyse line L(i+1) and calculate E(i+1), p ib( )+1 , p id1
r ( )+1 , and p id

r
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Calculate the HE parameters (µd1(i), µd2(i), pd1(i), pd2(i)) of the repair time
distribution of Md(i) (using the formulas in given Appendix B)
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Step 4. Go to Step 2 until convergence of the unknown parameters (λu(i), µu1(i), µu2(i),
pu1(i), pu2(i), λd(i), µd1(i), µd2(i), pd1(i) and pd2(i)), i=1, ..., K-1
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5. Numerical Experiments

In this section, we present two examples that ill ustrate the behavior of the new
decomposition method. For each example, we provide the results obtained using the
original decomposition method with exponential approximations of the repair time
distributions as described in [6], referred to as the E-method, the method presented in
[8] with general exponential approximations of the repair time distributions, referred to
as the GE-method, and the new method presented in this paper, referred to as the HE-
method. For each example the convergence parameter is set to 1.10-7. This means that
we stop the algorithm if the relative difference of each parameter (λu(i), µu1(i), µu2(i),
pu1(i), pu2(i), λd(i), µd1(i), pd1(i) and pd2(i), i = 1, ..., K-1) between two iterations of the
algorithm is less than 1.10-7. The three different algorithms are computationally very
eff icient and give the results almost instantaneously on a Pentium100 machine (see table
5 for a comparison of the time required to achieve convergence for each algorithm). We
compare these results with simulation results of the continuous flow model of the
original production lines. We ran long enough simulations so that the outcome of these
simulations can be used as a reference to compare the three decomposition methods as
can be seen from the corresponding confidence intervals. For each example, we provide
the production rate of the line as well as the average buffer levels. We also provide the
relative error of each decomposition method with respect to the simulation results. In all
examples, the common speed of the machines is U=1.

The first example (Example 1) pertains to a line consisting of 10 machines. The
parameters are given in table 1. This example, although not coming directly from an
industrial case, is however representative of production lines that are encountered in
industry. The isolated eff iciencies of the machines range from 0.870 to 0.952. The
average times to repair are fairly different from one machine to the other (ratio of 1 to
10). We consider three different sets of buffer capacities, referred  to as A, B, and C.
The buffer capacities of example 1-B are twice those of example 1-A, and the buffer
capacities of example 1-C are twice those of example 1-B. The results obtained using
the E-method, the GE-method and the HE-method are given in table 2. The main
performance parameter of interest is the production rate of the line, which can be
interpreted as the production capacity of the system. For the three configurations, it
appears that the production rates obtained using the GE-method or the HE-method are
significantly more accurate than those obtained using the E-method. Indeed, the errors
of the GE-method ant the HE-method are of the order of 1%, whereas the error of the E-
method can be close to 10% (see example 1-A). The significant errors encountered with
the E-method is due to the fact that the exponential approximation of the repair time is a
poor approximation of the actual repair time distributions in situations where the
average repair time of the machines are very different, which is the case in example 1.
For the three configurations, the average error of the GE-method is 0.73%, and the
average error of the HE-method is 0.67%, whereas the average error of the E-method is
5.14%. On the other hand, the results pertaining to the buffer levels are not as
significantly different. Nevertheless, it appears that the HE-method does slightly better
than the GE-method, which in turns does slightly better than the E-method. Indeed, the
average error of the HE-method is 5.9%, whereas that of the GE-method is 7.8% and
that of the E-method is 12.4%.

The second example (Example 2) is derived from example 1 as follows. The
average time to failure (respectively time to repair) of machines 2, 4, 6, 8 and 10 are
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mutliplied by 2 (respectively 4) with respect to the parameters of the first example. The
other machines are unchanged. The isolated eff iciencies of the machines now range
from 0.769 to 0.952. The average times to repair are now significantly different from
one machine to the other (ratio of 1 to 40). We consider the same three different sets of
buffer capacities, referred  to as A, B, and C. . The parameters are given in table 3. The
results obtained using the E-method, the GE-method and the HE-method are given in
table 4. Let us first discuss the results pertaining to the production rate. As expected, the
results obtained using the E-method are fairly poor. Indeed, the error is larger than 10%
for the three configurations. Now, it appears that for this example, the GE-method also
leads to some significant errors, in particular when the buffer sizes are small (the error is
close to 5% for configuration 2-A). On the other hand, the HE-method is still fairly
robust since the largest error is less than 2%. For the three configurations, the average
error of the GE-method is 2.8%, whereas the average error of the HE-method is 1.30%
and the average error of the E-method is 13.43%. For the average buffer levels, the
superiority of the HE-method over the other two methods becomes clearer. Indeed, the
average (respectively maximum) error of the HE-method is 5.9%, (respectively 17.84%)
whereas that of the GE-method is 9.9% (respectively 28.43) and that of the E-method is
18.1% (respectively 39.93).

The conclusions drawn by means of these two examples were actually confirmed
by the results obtained with many other examples we tested.(see [15] for other
examples) These conclusions can be summarized as follows. The E-method can lead to
large errors in the estimation of the production rate in situations where the average
repair times of the different machines have different orders of magnitudes. In such
cases, the GE-method does provide good results, expect when the buffer sizes are too
small , in which case it can also lead to significant errors. On the other hand the HE-
method appears to be very robust in the sense that regarles of the parameters of the
production line (reliabilit y parameters of the machines and sizes of the buffers), it
always provide reasonnably accurate results.

Let us briefly discuss the convergence and computational complexity of the new
algorithm, referred to as the HE-DDX algorithm, and compare them with those of GE-
DDX algorithm, derived for the GE-method, and the E-DDX algorithm derived for the
E-method. We tested many examples with quite different parameters and on all these
examples, the GE-DDX and HE-DDX algorithms always converged. The time to
achieve convergence of the GE-DDX algorithm is very similar to the convergence time
of the original E-DDX algorithm, whereas the convergence time of the HE-DDX
algorithm can be ten times larger (see table 5). This is due to the fact that the analysis of
each two-machine production line requires significantly more time in case the repair
time distribution of the equivalent machines is characterized by HE-distributions.
However, it should be noticed that even the HE-DDX algorithm is very fast
(convergence is always reached in less than one second for production lines with a
number of machines of the order of 10).
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6. Conclusion

In this paper, we proposed an improvement of Gershwin's original
decomposition method that provides accurate results in situations where the GE-method
and the original E-method can lead to significant errors. This is the case when the
reliabilit y parameters (average failure time and average repair time) of the different
machines have different orders of magnitude and the buffer capacities are small . Such a
situation may be encountered in real production lines. The basic difference between the
decomposition method presented in this paper with that of Gershwin and that presented
in [8] is that the times to repair of the equivalent machines are modeled as two-stage
hyper-exponential distribution instead of generalized exponential or exponential
distributions. This allows us to use a three-moment approximation instead of a two-
moment approximation or a one-moment approximation of the repair time distributions
of these equivalent machines. Our results show that the HE-method is very robust in
terms of accuracy, while still being fast enough to be used in an interactive way.
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Appendix A : Analysis of the continuous flow model of a two-machine production
line with exponential failure time and two-stage hyper-exponential
repair time distributions

In this appendix, we briefly show the analysis of the continuous flow model of a two-
machine production line with exponential failure time and two-stage hyper-exponential
repair time distributions. Details pertaining to the analysis and the formulas for the
performance parameters can be found in [16]. Consider the continuous flow model of a
two-machine production line with a finite storage buffer. Each machine can fail . Let i =
1,2 denote the number of the machine in the production line (i=1 for the upstream
machine and i=2 for the downstream machine). The time to failure of machine i is
exponentially distributed with rate λi (i = 1,2). The distribution of the repair time of
machine i is a two-stage hyper-exponential distribution with parameters µi1, µi2, pi1 and
pi2.

Let C be the finite capacity of the buffer. Let U be the constant transfer rate of all the
machines of the line. Let x be the quantity of material in the buffer and αi (i=0, 1, 2) be
a variable indicating whether machine i is operational (αi=0), under repair by the stage 1
(αi=1) of the hyper-exponential distribution of the repair times, or under repair by the
stage 2 (αi=2).

Let f xα α1 2, ( )  be the steady-state probabilit y density of the internal states (α1, α2, x)

where 0 < x < C. Let Pα α1 2
0, ( )  be the steady-state probabiliti es of the boundary states

where x = 0. Let P Cα α1 2, ( ) be the steady-state probabiliti es of the boundary states

where x = C.

Internal equations of the steady-state probability density

We define internal states as states (α1, α2, x) where 0 < x < C. All other states are
boundary states. Internal equations are the balance equations that do not include any
boundary states. The rest are called boundary equations.

p f x p f x f x11 1 01 21 2 10 11 21 11 0λ λ µ µ( ) ( ) ( ) ( )+ − + = (A1)

p f x p f x f x12 1 01 21 2 20 12 21 21 0λ λ µ µ( ) ( ) ( ) ( )+ − + = (A2)

p f x p f x f x11 1 02 22 2 10 11 22 12 0λ λ µ µ( ) ( ) ( ) ( )+ − + = (A3)

p f x p f x f x12 1 02 22 2 20 12 22 22 0λ λ µ µ( ) ( ) ( ) ( )+ − + = (A4)

− = + + +U x p f x f x f x f x
∂
∂

λ µ µ µ λ
  f

  x
- (10

11 1 00 22 12 21 11 11 2 10( ) ( ) ( ) ( ) ) ( ) (A5)

− = + + +U x p f x f x f x f x
∂
∂

λ µ µ µ λ
  f

  x
- (20

12 1 00 22 22 21 21 12 2 20( ) ( ) ( ) ( ) ) ( ) (A6)
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U x x f x p f x f x
∂
∂

µ µ λ µ λ
  f

  x
 f - (01

12 21 11 11 21 2 00 21 1 20( ) ( ) ( ) ( ) ) ( )= + + + (A7)

U x x f x p f x f x
∂
∂

µ µ λ µ λ
  f

  x
 f - (02

12 22 11 12 22 2 00 22 1 02( ) ( ) ( ) ( ) ) ( )= + + + (A8)

µ µ µ µ λ λ11 10 12 20 21 01 22 02 2 1 00 0 f  f - (( ) ( ) ( ) ( ) ) ( )x f x x f x f x+ + + + = (A9)

Boundary equations of the steady-state probability

µ λ21 01 21 2 00 01P C p P C f C( ) ( ) ( )= + (A10)

µ λ22 02 22 2 00 02P C p P C f C( ) ( ) ( )= + (A11)

( ) ( ) ( ) ( )λ λ µ µ1 2 00 21 01 22 02+ = +P C P C P C (A12)

µ λ11 10 11 1 00 100 0 0P p P f( ) ( ) ( )= + (A13)

µ λ12 20 12 1 00 200 0 0P p P f( ) ( ) ( )= + (A14)

( ) ( ) ( ) ( )λ λ µ µ1 2 00 11 10 12 200 0 0+ = +P P P (A15)

P P P C P C01 02 10 200 0 0( ) ( ) ( ) ( )= = = = (A16)

P P P P11 12 21 220 0 0 0 0( ) ( ) ( ) ( )= = = = (A17)

P C P C P C P C11 12 21 22 0( ) ( ) ( ) ( )= = = = (A18)

f C p P C10 11 1 00( ) ( )= λ (A19)

f C p P C20 12 1 00( ) ( )= λ (A20)

f p P01 21 2 000 0( ) ( )= λ (A21)

f p P02 22 2 000 0( ) ( )= λ (A22)

Analysis of internal equations

By summing all the internal equations, we obtain the following relationship:
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 f

 x
01 02 10 20( ) ( ) ( ) ( )x x x x
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which implies that:
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f x f x f x f x K01 02 10 20( ) ( ) ( ) ( )+ = + +

By using the boundary equations, we can find that K is equal to zero. As a result, the
previous equation can be written as:

f x f x f x f x01 02 10 20( ) ( ) ( ) ( )+ = + (A23)

By using equations (A1), (A2), (A3), (A4), (A9) and (A23), equations (A5), (A7), and
(A8) can be written as:
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The solutions of the previous system is given by the following equations:

f x C x e C x e C x eR x R x R x
10 1 1 2 2 3 3

1 2 3( ) = + +

f x C y e C y e C y eR x R x R x
01 1 1 2 2 3 3

1 2 3( ) = + +

f x C z e C z e C z eR x R x R x
02 1 1 2 2 3 3

1 2 3( ) = + +
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By using the boundary and internal equations and the following normalization equation,

( ) ( ) ( )f x dx P C P
C

α α α α α α
αα

1 2 1 2 1 2

21
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2
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==
=1, we can derive the values of the

following parameters: xi, yi, zi, Ri, Ci (i=1,2,3). From these parameters we can derive
the steady-state probability densities of the internal states as well as the steady-state
probabilities of the boundary states.

Let E be the efficiency of the original line. E is given by the following
relationship:
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The average buffer level Q is given by:
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The probability of blocking and starvation can easily be obtained using :

p
E
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E

eb = −1
1

Let pr
11 be the probabilit y that the residual repair times of the first machine are

exponentially distributed with rate µ11 and pr
12 be the probabilit y that the residual

repair times of the first machine are exponentially distributed with rate µ12. These two
probabilities are given by :
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Similarly pr
21, the probabilit y that the residual repair times of the second machine are

exponentially distributed with rate µ21 and pr
22 , the probabilit y that the residual repair

times of the second machine are exponentially distributed with rate µ22 are given by the
two following relationships:
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Appendix B: Three-moment approximation of an arbitrary hyper-exponential
distribution by a two-stage hyper-exponential distribution.

We search the parameters of a two-stage hyper-exponential distribution such that
the three first moments of this distribution are equal to those of a given hyper-
exponential distribution with an arbitrary number of stages.

Let m( )1 , m( )2  and m( )3  be the first, the second and the third first moment
respectively of this distribution. Let p1, p2, µ1 and µ2 be the four parameters of the two-
stage hyper-exponential distribution where p1 (respectively p2) is the probabilit y that the
distribution of the repair times is exponential with rate µ1 (respectively µ2). The
relationships between the four parameters of the two-stage hyper-exponential
distribution and the three first moments of the arbitrary hyper-exponential distribution
are given by the following equations:
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Let D and ∆ D be defined as following:
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Considerable manipulation is required to show that the parameters p1, p2, µ1 and
µ2 are given by the following relationships (details can be found in [13]):
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It can be shown that there always exists a two-stage hyper-exponential
distribution such that its first three moments match those of a given arbitrary hyper-
exponential distribution. Indeed, the parameters of the two-stage hyper-exponential
distribution must satisfy the two following relationships :
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The first relationship is always true in the case of hyper-exponential distributions. To
verify the second relationship we define the third first moment of a n-stage hyper-
exponential distribution as:

m
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(B1)
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Using (B1) and (B3) we can written:
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Similarly using (B2) we can written:
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By using equations (B4) and (B5), (B6) is given by:
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Equation given by (B6) can be equivalently transformed into the following relationship:
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1 2 3 4 5 6 7 8 9 10

1/λi 50 400 150 200 400 100 500 600 100 800

1/µi 5 60 10 15 40 5 40 60 5 60

ei 0.909 0.870 0.938 0.930 0.909 0.95 0.926 0.909 0.952 0.930

1-A Ci 25 30 10 15 15 25 35 25 30

1-B Ci 50 60 20 30 30 50 70 50 60

1-C Ci 100 120 40 30 60 100 140 100 120

Table 1: Data for Example 1

X Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

1-A simulation 0.7257 17.2846 20.4284 5.6098 6.6129 6.2670 8.2159 10.3845 6.6884 4.6173

+/- 0.0008 0.027 0.0381 0.0124 0.0209 0.0217 0.0494 0.0629 0.027 0.0294

E-method 0.7880 16.5771 18.3125 5.2796 6.5738 6.5539 8.0139 9.3169 7.2413 3.8152

error(%) +8.58 -4.09 -10.36 -5.89 -0.59 +4.58 -2.46 -10.28 +8.27 -17.37

GE-method 0.7230 17.0377 21.1790 6.1467 6.9562 5.4191 7.6964 9.4754 5.6560 4.0028

error(%) -0.37 -1.43 +3.67 +9.57 +5.19 -13.53 -6.32 -8.75 -15.44 -13.31

HE-method 0,7308 17,0754 20,7937 5,5658 6,4954 6,1183 7,4102 9,0655 6,4318 4,0185

error(%) +0,70 -1,21 +1,79 -0,78 -1,78 -2,37 -9,81 -12,70 -3,84 -12,97

1-B simulation 0.7919 34.2268 36.9555 10.9399 13.0374 11.2069 17.5750 22.3478 12.5643 11.6938

+/- 0.0001 0.0077 0.0013 0.0034 0.0061 0.0060 0.0113 0.0171 0.0093 0.0109

E-method 0.8227 31.2972 31.2859 9.6343 11.8810 11.2543 13.8858 18.8962 12.7172 9.8993

error(%) +3.89 -8.56 -15.34 -11.93 -8.87 +0.42 -20.99 -15.44 +1.22 -15.35

GE-method 0.7854 33.1647 38.3790 11.5549 12.7199 10.0923 15.2029 19.7857 12.3587 10.4235

error(%) -0.82 -3.10 +3.85 +5.62 -2.44 -9.95 -13.50 -11.46 -1.64 -10.86

HE-method 0,792 33,2458 37,6359 10,605 12,0645 10,9034 15,8459 20,259 12,3961 10,6108

error(%) +0,01 -2,87 +1,84 -3,06 -7,46 -2,71 -9,84 -9,35 -1,34 -9,26

1-C simulation 0.8268 66.8602 60.8391 21.1887 26.2214 18.4280 36.2305 47.4257 21.6445 28.0408

+/- 0.0001 0.0421 0.0948 0.0212 0.0435 0.0427 0.0842 0.1383 0.0546 0.0854

E-method 0.8512 58.2908 43.1900 17.1383 20.9367 15.5488 28.2921 39.9943 17.3256 22.8954

error(%) +2.95 -12.82 -29.01 -19.12 -20.15 -15.62 -21.91 -15.67 -19.95 -18.35

GE-method 0.8350 62.9057 61.0857 20.7649 22.8121 17.1868 30.1355 41.6920 22.7045 25.4899

error(%) +0.99 -5.91 +0.41 -2.00 -13.00 -6.74 -16.82 -12.09 +4.90 -9.10

HE-method 0,8374 62,5861 59,1195 19,8889 23,0857 17,1141 31,9574 43,9566 21,1452 25,7703

error(%) +1,28 -6,39 -2,83 -6,13 -11,96 -7,13 -11,79 -7,31 -2,31 -8,10

Table 2: Comparison of the results obtained using the three decomposition methods (example 1)
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1 2 3 4 5 6 7 8 9 10

1/λi 50 800 150 400 400 200 500 1200 100 1600

1/µi 5 240 10 60 40 20 40 240 5 240

ei 0.909 0.769 0.938 0.87 0.909 0.909 0.926 0.833 0.952 0.87

2-A Ci 25 30 10 15 15 25 35 25 30

2-B Ci 50 60 20 30 30 50 70 50 60

2-C Ci 100 120 40 30 60 100 140 100 120

Table 3: Data for Example 2

X Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

2-A simulation 0.5476 19.7957 21.9794 5.9581 7.7096 6.9254 8.1589 9.8485 5.7446 4.0244

+/- 0.0007 0.0122 0.0375 0.0114 0.0180 0.0207 0.0370 0.0549 0.0257 0.0307

E-method 0.6285 19.4582 19.4528 5.1377 6.3805 5.8770 7.4793 11.7612 8.0386 3.6234

error(%) +14.77 -1.70 -11.50 -13.77 -17.24 -15.14 -8.33 +19.42 +39.93 -9.96

GE-method 0.5224 18.4646 22.1775 6.9203 7.8791 6.3234 8.1173 9.8347 4.1113 3.6774

error(%) -4.60 -6.72 +0.90 +16.15 +2.20 -8.69 -0.51 -0.14 -28.43 -8.62

HE-method 0.5539 20.0935 22.6185 6.0175 7.5509 6.6764 7.7633 8.8142 5.2903 3.3242

error(%) +1.15 +1.50 +2.91 +1.00 -2.06 -3.60 -4.85 -10.50 -7.91 -17.40

2-B simulation 0.5970 40.3525 41.3476 11.5761 14.6174 13.3527 16.8955 22.6336 11.7380 10.3920

+/- 0.0002 0.0103 0.0228 0.0083 0.0148 0.0143 0.0229 0.0385 0.0223 0.0287

E-method 0.6827 39.5146 36.4460 8.8814 10.7031 10.5062 13.4509 22.9703 16.0016 8.8076

error(%) +14.36 -2.08 -11.85 -23.28 -26.78 -21.32 -20.39 +1.49 +36.32 -15.25

GE-method 0.5779 38.4531 43.0505 13.7808 15.2080 12.1912 15.7651 20.6955 9.1171 8.8126

error(%) -3.20 -4.71 +4.12 +19.05 +4.04 -8.70 -6.69 -8.56 -22.33 -15.20

HE-method 0.6077 40.8673 42.9696 11.5858 14.3059 13.0935 16.0473 19.8744 10.5427 8.5385

error(%) +1.79 +1.28 +3.92 +0.08 -2.13 -1.94 -5.02 -12.19 -10.18 -17.84

2-C simulation 0.6563 80.3691 72.4321 22.5689 26.3027 24.6641 34.6635 53.6346 24.6085 27.5443

+/- 0.0008 0.0935 0.2440 0.0670 0.1123 0.1274 0.2439 0.3590 0.1368 0.1740

E-method 0.7296 78.5173 60.2291 14.8528 16.3419 17.6390 25.3253 45.1407 26.9122 22.0427

error(%) +11.17 -2.30 -16.85 -34.19 -37.87 -28.48 -26.94 -15.84 +9.36 -19.97

GE-method 0.6523 77.3405 78.4056 26.6536 27.9996 22.9221 30.2500 45.1272 21.1203 23.0181

error(%) -0.61 -3.77 +8.25 +18.10 +6.45 -7.06 -12.73 -15.86 -14.17 -16.43

HE-method 0.6700 80.3439 74.8058 22.0147 25.3538 24.1737 32.3210 47.0364 22.2008 23.8824

error(%) +0.98 -0.03 +3.28 -2.46 -3.61 -1.99 -6.76 -12.30 -9.78 -13.29

Table 4: Comparison of the results obtained using the three decomposition methods (example 2)
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E-DDX Algorithm

(1.10-4 second)

GE-DDX Algorithm

(1.10-4 second)

HE-DDX Algorithm

(1.10-4 second)

1-A 28.02 23.08 145.60

1-B 31.87 30.77 166.48

1-C 31.87 35.16 188.46

2-A 30.05 27.02 151.78

2-B 32.85 31.05 171.40

2-C 33.01 36.28 191.50

Table 5: Time required to achieve convergence of each algorithm
with the convergence parameter equal to 1.10-7


