
HAL Id: hal-02547619
https://hal.science/hal-02547619v1

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automatique Technique for CTL* Model Checking
Khalil Ajami, Jean-Michel Ilié

To cite this version:
Khalil Ajami, Jean-Michel Ilié. An Automatique Technique for CTL* Model Checking. [Research
Report] lip6.1997.017, LIP6. 1997. �hal-02547619�

https://hal.science/hal-02547619v1
https://hal.archives-ouvertes.fr

Une technique Automatique de Vérification
de propriétés des Systèmes Symétriques*

Résumé
Dans cet article, nous proposons une technique de vérification des propriétés des systèmes
symétriques à partir du graphe de marquages symboliques. Un Graphe de Marquages Sym-
boliques (GMS) est une représentation condensée du graphe d’états construit automatique-
ment à partir d’une spécification en termes de réseaux colorés. La construction d’un tel
graphe utilise les symétries structurelles du système pour agréger les états et les actions en-
tre les états (les transitions) dans des classes d’équivalences en choisissant des représentant
des classes pour décrire l’évolution du système. Notre technique consiste à adapter et à uti-
liser, dans un modèle opérationnel, l’approche formelle, de la vérification des propriétés
exprimées en CTL* (computational Temporal Logic Star), proposée par Emerson & al [1].
Nous proposons une logique temporelle CPN-CTL* (computational Temporal Logic Star
for Colored Petri Nets), dérivée de CTL* et adaptée syntaxiquement à nos spécifications
en termes de réseaux bien formés. Nous montrons, comment la vérification des propriétés
peut être réalisée directement, sur le graphe de marquages symboliques malgré sa cons-
truction à partir des représentants des classes d’équivalences des états et des transitions. En
effet, dans une telle représentation, les identités des objets spécifiés par la formule n’appa-
raissent pas dans les marquages du graphe, seule une notion de groupe d’objets est préser-
vée indiquant la nature des objets dans le groupe ainsi que sa cardinalité. Cette technique
donne lieu à une nouvelle spécification du système permettant la vérification directe des
propriétés sur le graphe de marquages symboliques. Cette vérification est équivalente à la
vérification des mêmes propriétés sur le graphe d’états ordinaire (graphe d’accessibilité).

Sujet: Méthodes Formelles, Vérification.

Mots Clés: Logique Temporelle, CTL*, Symétries, Graphe de Marquages Sym-
boliques, Réseaux de Petri bien formés.

* Version intégrale de l’article "Model Checking through Symbolic Reachability Graph" Publié
dans: TapSoft’97, Lille, France, Avril 1997, Springer-Verlag, LNCS 1214.

 K.Ajami, J-M Ilié

LIP6 (Laboratoire d’Informatique deParis6)
CNRS ERS 587, Univ. Pierre & Marie Curie,

Tour 65-66, Bureau 204
4, place Jussieu, 75252 Paris Cedex 05

e.mail.: Khalil.Ajami@lip6.fr, Jean-Michel.Ilie@lip6.fr

-2-

An automatic technique for CTL* Model Checking

Abstract
In this paper, we propose an automatic technique for CTL* Model checking through the
Symbolic Reachability Graph (SRG). SRG is a highly condensed representation of system
state space built automatically from a specification of system in terms of Well-formed net.
The building of such graph profits from the presence of object symmetries to aggregate ei-
ther states or actions within symbolic representatives. Our technique consists in making the
formal approach of CTL* model checking presented in [1], operational. We propose a de-
rived temporal logic CPN-CTL* (computational Temporal Logic Star) equivalent to CTL*
and built to express properties of systems specified by means of a Well-formed net. We
show how to perform the model checking of such a formula directly through SRG by re-
trieving the behavior of the objects specified within these formulas. Effectively, SRG are
built according to definitions of representatives of symmetrical object groups for which the
identity of objects is not preserved, i.e. only the nature of objects and the cardinality of
groups are known. This technique leads to a new specification of system, from which we
can prove that model checking through a state space is equivalent to model checking
through the symbolic reachability graph.

Topic: Formal Methods, Model Checking.

Keywords: Temporal Logic, CTL*, Symmetries, Symbolic Reachability Graph,
Well-formed Net.

1. Introduction

Checking system correctness can be performed by the verification of CTL* formulas
through a state-transition graph which models the system behavior. Such verification
has to cope with combinatorial explosion problem in space and time, and several works
aim at reducing the size of the graph to be built, with regards to some desired properties.

One of the most promising technique has been initiated by Emerson & al [1]. It exploits
the symmetries of both the system and the formula. Such a technique builds a quotient
graph in which each node represents an equivalent class of states. The relation is in-
duced by a subgroup of permutations preserving the state graph and the formula. In
practice, the permutations act on a set of system processes with identical behavior. Pre-
vious works have been already developed focusing on the safeness properties (with
BDD) [3,5,9,10]. Further developments include operational algorithms [2,15], model
checking under fairness constraints [7] and application to system bisimulation [4].

 K.Ajami, J-M Ilié

LIP6 (Laboratoire d’Informatique deParis6)
CNRS ERS 587, Univ. Pierre & Marie Curie,

Tour 65-66, Bureau 204
4, place Jussieu, 75252 Paris Cedex 05

e.mail.: Khalil.Ajami@lip6.fr, Jean-Michel.Ilie@lip6.fr

-3-

The aim of this paper is to present a technique which makes the formal approach pre-
sented in [1] operational. It consists in exploiting the theory of well-formed net and the
associated symbolic reachability graph, proposed in [5][6]. Well-formed nets (WN) are
colored Petri Nets which enable one to specify systems in a parametric form on the basis
of object classes and related action types. WN inherits from the concision of CPN since
the same structure can be used to describe the behavior of similar objects.

Symbolic reachability graphs (SRG) is a highly condensed abstraction of the state space
of a system specified in terms of a well-formed net. This abstraction is performed by
representing classes of equivalent states and equivalent actions. The equivalence rela-
tion between states or actions is based on structural symmetries which are directly read
off from the types of objects defined in the system specification. By defining convenient
types of actions for these types of objects, it can be ensured that states which are equiv-
alent let the future behavior of the system unchanged. SRG gathers the following ad-
vantages: to be built automatically from the well-formed net specification, and, to
enable efficient symbolic approach by defining canonical symbolic representatives of
states and actions.

Our contribution shows how to specify a system in order to perform the model check-
ing, directly, through the SRG. The difficulty to bypass is to retrieve the behavior of the
objects specified within temporal logic formulas. The starting point of our method con-
sists in determining, for a given formula, the groups of symmetrical objects that leave
the formula invariant in order to isolate the objects specified within this formula. The
isolation process is based on the intersection between the two symmetry groups of the
graph and formula. This intersection allows the construction of a new group of structur-
al symmetries which is expressed by means of the refinements of the original groups of
symmetrical objects. The WN defined on the refined groups can be used to build a suit-
able SRG, through which the formula can be checked directly. The proposed method-
ology allows one to evaluate in advance (structurally) the efficiency of using the system
symmetries in the model checking of a formula. Effectively, two cases appear in limits:
the best one where the structural symmetries of the WN are entirely used, causing a
maximal condensation of the represented state space and the worse case in which any
group of symmetrical objects is reduced to a singleton, leading the new SRG to be large
as well as the standard reachability graph.In our context, the formal approach presented
in [1] must be adjusted since the correspondence lemma between the quotient and the
ordinary structures is not respected by the original SRG.

The next sections are organized as follows: part 2 briefly recalls the technique to build
SRG and highlights the major properties of SRG as well as the difficulties to perform
model checking through it; part 3 presents the syntax and the semantic of the proposi-
tional logic CPN-CTL* used here to express properties of systems specified by means
of well-formed nets; part 4 presents the problems of checking properties through SRG
and the refinement approach (with respect to a formula); part 5 contains the algorithms
used to verify a formula through the new SRG; part 6 presents the formal proof of the
validity of the presented work; part 7 is our conclusion.

We assume that the reader knows the basic theories of colored Petri nets, reachability
graph and temporal logic. However, some known notions which must be expressed
within symbolic approach are defined again.

-4-

2. Symbolic Reachability Graph

The building of a SRG starts from the specification of a system in terms of well-formed
nets (WN) [5]. Such nets are colored Petri nets but their color domains and associated
functions are defined fromclasses of primitive objects and fromstatic subclasses of
these objects. Classes gather (ordered or unordered) objects having the same nature,
while static subclasses gather objects having the same nature and behavior. Moreover,
in the case of ordered objects, static subclasses are ordered so as to preserve the succes-
sor relation of objects.

Example 1:
One may define class C1=Process={p1,p2,p3} in order to model three ordered process-
es, and may split Process in two static subclasses the first is D1,1=Interactive={p1,p2}
and the second is D1,2=Batch={p3}.

Like in colored Petri net, a color domain is attached to each node of the net (place or
transition). In well-formed nets, color domains are defined as cartesian products of ei-
ther object classes or static subclasses. Any state of the system is represented by a mark-
ing of the net. Effectively, any place is marked by a collection of colors (possibly
empty) defined with respect to the place color domain.

The dining philosophers is a good example of resource sharing process, with possible
deadlocks, that we can use to present a model of WN. It is used also as a case study for
the verification of CTL* formulas using our method. In the standard presentation, the
considered classes are ordered, however, we introduce an alternative version in which
unordered classes are defined in order to bring out the reducing effects of using sym-
metries.

Example 2:

 Fig. 1.The Well-formed Net of the Philosophers System with the Initial Marking

Let us consider a finite set of philosophers who spend their time thinking and eating
around a circular table. Initially, any philosopher has a direct access to a set of free
forks that contains as many forks as the number of philosophers. A philosopher can pick
up one fork or two forks if they are free. However, he needs two forks to eat. After eat-
ing, he returns the two forks together. In any case, he does not relax the forks before
eating, therefore, deadlocks appear when all the philosophers have taken one fork in
the same time. From a modelling point of view, our philosophers can be in one of the
following three states: "thinking while ignoring the forks", "waiting for a fork but hav-

t3t2t1

Forks

EatingWaiting

Thinking
t1 Waiting t2 Eating t3

x <x,y> <x,y>

zy

<x,y+z> <x,y+z>

y+z

x

PH

F

-5-

ing another", or "eating". In terms of well-formed net, three places are used to repre-
sent these states and a fourth place must be added to model the unused forks. The color
domains attached to these places are defined from the two following basic classes: phi-
losophers PH and forks F. By noting C(r) the color domain of node r, we have:
C(Thinking)=PH, C(Waiting)= , C(Eating)= , C(Forks)=F.
For instance, the marking which models three philosophers and three forks such that
the first thinks, the second waits for a fork but detains the fork number one, and the third
eats with forks number two and three, is the following:
m(Thinking) = Ph1; m(Forks) = 0; m(Waiting)=<Ph2,f1>;
m(Eating)=<Ph3,f2+f3>=<Ph 3,f2>+<Ph 3,f3>;

The set of collections of colors representing the possible markings of place p is noted
Bag(C(p)) according to the color domain of place p, and any marking is expressed as a
linear combination of tuples wherein each component relates to a simple color from a
class. In a color domain, a class may appear one or many times in the domain:

, the indexes i,j of a simple color de-

note respectively the class number and the occurrence number of color in mk.

Basically, the construction of the symbolic reachability graph is defined from the notion
of symbolic marking.

2.1. Symbolic Marking

Roughly speaking, a symbolic marking is a representative object of an equivalence
class of markings for which the equivalence relation is deduced from a set of "admissi-
ble symmetries". Such symmetries operate on the object classes of the studied WN.
They preserve the static subclasses and the successor relation on ordered classes when
defined.

Let N be a WN and CD={C(r)| } be the set of the color domains attached to
either places or transitions inN. Let C={Ci: Ci class of colors} be the set of all the class-
es ofN. Let us consider any color domain C(r) from CD.

Definition 2.1.1: Symmetry and Group of Symmetries
A symmetry S on C(r) is a permutation on the color domain C(r). A set of symme-
tries, , onN is defined as the family of symmetries S which operate on the ele-
ments of CD. (, o) forms the group of symmetries ofN. The set ofadmissible
symmetries of N, AS(N), is a subset of that satisfies the two conditions: (1)
(AS(N),o) is a subgroup of (,o), (2) Let Ci be an object class and Di,q one of its
static subclasses, then we have: , . The set of

static subclasses of the netN can be formally defined as the equivalence classes that

result from the quotient structure .

It must be noted that, admissible symmetries on ordered classes are restricted to rota-
tions in order to preserve the order of colors. In consequence, admissible symmetries of
ordered classes, composed of many static subclasses, are restricted to identity.

PH F× PH F×

M pi() αkmk
k
∑

 Bag C pi()()∈ mk ci

j

j
∏

i
∏=,= ci

j

ci
j

r P T∪∈

ζ
ζ

ζ
ζ

s∀ AS N()∈ c∀ Di q,∈, s c() Di q,∈

Ĉ C AS N()⁄=

-6-

In WN, due to the restricted (but well chosen) operators defined on object classes, it has
been proved that symmetrical colors in a given marking leads the system to have sym-
metrical behaviors (They lead to define equivalent markings and firing sequences).
Therefore for a given state, symmetrical colors can be aggregated in equivalence classes
in such a way that only representatives are used. Such representatives express quantity
of objects from their static subclass while forgetting identities of objects Hence, mark-
ings having the same representation can be represented only once. They correspond to
the notion of dynamic subclasses, from which symbolic marking is expressed.

Let M be the set of all the markings ofN, the symbolic marking is defined as follows:

Definition 2.1.2: Dynamic Subclasses and Symbolic Markings
 A dynamic subclass of Ci represents a subset of colors belonging to a static sub-
class of Ci. It is featured by the name of the concerned static subclass and by the

cardinality of the subset. We note the jth dynamic subclass of Ci.

According to AS(N), is the set of equivalence classes of markings.

Each class of is represented by a canonical representative calledSymbolic Mark-
ing. It is expressed in terms of vector of marked places where colors are symboli-
cally represented by dynamic subclasses. Its useful notation is .

We define a morphism on Bag(C) (C is the set of color classes) where de-

notes the representative of a color c in . Mainly, this morphism is used, by extension,
to compare the representatives of symmetrical markings. Effectively, two markings m,

 such that for a symmetry have the same representative.
We have: .

Example 3:
The marking of Example 2 can be expressed symbolically by considering that one phi-
losopher thinks, one waits for a second fork and one eats. The corresponding symbolic
marking is deduced by introducing convenient dynamic subclasses defined on the static
subclasses (the class of philosophers presents a static subclass as well as the class of
forks). The class of philosophers is divided in three dynamic subclasses, the cardinality
of each is one. The class of forks must be split in two dynamic subclasses, the first is
associated with the philosopher who eats and represents two forks, the second is asso-
ciated with the philosopher who waits and represents one fork:

(Thinking)= ; (Forks)= 0; (Waiting) =< , > where ; (Eat-

ing)=< , > where and

In fact, represents eighteen markings obtained by operating the admissible permu-

tations on the class PH and the associated class F when they are represented in .

2.2. Symbolic Reachability Graph Construction

In [5], a symbolic firing rule is introduced in order to compute a new symbolic marking
directly from a current one. The classical notion of instance of transition is replaced by
the notion of symbolic instance which corresponds to a splitting of the dynamic sub-

Zi
j

M̂ M AS N()⁄=

M̂

m̂

αm̂ αm̂ c()

m̂

m′ s m() m′= s AS N() o,()∈
αm̂ m() s αm̂ m()() αm̂ s m()() αm̂ m′() m̂= = = =

m̂ Z1
1

m̂ m̂ Z1
2

Z1
2 Z1

2 1= m̂

Z3
1 Z2

2 Z2
2 2= Z1

1
Z1

2
Z1

3
+ + 3=

m̂

m̂

-7-

classes of the current marking in order to isolate quantities of colors that can be used for
the firing. The definitions of symbolic marking and symbolic firing rule allow us to
build symbolic reachability graphs. In this graph, the nodes are the symbolic markings
expressed in a canonical form.

Example 4:
Figure 2 represents the SRG for three philosophers. It contains 6 nodes and 9 arcs
while the corresponding reachability graph contains 88 nodes and 207 arcs. It is worth
noting that important properties like deadlock can be directly verified (e.g. state 5 has
no successor):

 Fig. 2.SRG for three Philosophers

3. The Temporal Logic CPN-CTL*

In order to perform our model checking, we use the Propositional form of the Compu-
tational Tree Logic star (CTL*) proposed in [1], [7] and [8] that respect a specification
of the system in terms of a colored petri net. Classically, the linear temporal operators
are introduced as follows: F (sometimes), G (always), X (next time) and U (strong until)
[11]. Moreover, path quantifiers are represented either by symbol A for all full paths or
E for some full paths. Like in [7] too, two types of formulas are considered: state for-
mulas (which holds in a specific state) and path formulas (which holds along a specific
path). LetAP be the set of atomic propositions. A state formula is either [7]:
- a if ;
- if f and g are state formulas, then and are state formulas.
- if f is a path formula, then E(f) is a state formula.
A path formula is either:
- a state formula;
- if f and g are path formulas, then , , Xf and fUg are path formulas.
By definition, CTL* is the set of state formulas generated by the above rules.
It must be noted that any CTL* formula can be transformed to be temporally expressed
by the two boolean operators, the negation and the disjunction and the temporal opera-
tors E, X, U presented previously using the general transformations [8]:
(1) , ;(2) ;(3) ;(4) .

In the current context of Petri nets, formulas must be expressed in terms of markings.
We call such expression CPN-CTL* and present its syntax in the next section.

3.1. CPN-CTL* Syntax

In order to specify properties of WN, formulas must be expressed in terms of colors of
classes and quantities of colors. Moreover, they must refer to places since colors in plac-
es represent the system variables assigned to specific values. Hence, state formulas ex-

The meaning of the markings is:
(0) Three philosophers think.
(1) Two philosophers think and one philosopher eats.
(2) Two philosophers think, one philosopher waits.
(3) One philosopher thinks, one waits and one eats.
(4) One philosopher thinks, two philosophers wait.
(5) The three philosophers wait.

2

3
4

0
1

5

a AP∈
f¬ f g∨

f¬ f g∨

f g∧ f¬ g¬∨()¬≡ f g→ f¬ g∨≡ A f() E¬ f¬()≡ Gf F f¬¬≡ Ff TrueUf≡

-8-

press that tokens (i.e. markings) exist in places (i.e. mark the places). For more clarity,
quantities are assumed to be always equal to one in this paper. In fact, considering dis-
tinct values do not represent any theoretical difficulties.

Depending on the fact that a color domain of a place p can be built on an object or a
cartesian product of object classes, we now introduce the form of our formulas on a sim-
ple color domain: (i) a(c) where tests if a color, from a color domain Ci,

mark place p; (ii) where f is a CPN-CTL* formula tests if there is a color x from

a color domain Ci over which f is verified. Similarly, the expression needs to
test the verification of f for all the colors of Ci. Observe that the form used for complex
color domain is a straightforward extension since such a domain is directly composed
of simple color domains.

For more clarity, we use indexed CTL*. Consequently, universal and existential quan-
tifiers are now re-expressed in terms of disjunction or conjunction operators. The form
of the previous formulas can be re-expressed as: Vi f(ci) or Λ i f(ci) where V andΛ are
respectively the disjunction and the conjunction operators. It must be noted that for a
color b from color domain Ci we have the following equivalence:

. Moreover, the conjunction operator in a state formula cor-

responds to the (+) operator used in marking expressions. So we define:
 where . Further, this

allows us to simplify the presentation by comparing atomic propositions and marking
of the form .

3.2. CPN-CTL* Semantics

We define the semantics of CPN-CTL* with respect to the structure of a reachability
graph R=<M, R, E> whereM is the set of the system markings,R=M x M is the set of
edges between markings andE is the evaluation function defined onM and used to ver-
ify the correctness of an atomic formula. A path in R is an infinite sequence of markings
π=m0m1... such that for every i, we have .πi denotes the suffix
of π starting at mi. We use the standard notation to indicate that a state formula f holds
in a structure: R,m|=f means that f holds at the marking m, similarly, R,π|=f means that
the path formula f holds along pathπ.

To present the semantic of CPN-CTL* formula through a R structure, we start by de-
fining a projection function that can be used to expressE, the evaluation function. With
respect to a marking m of the net, let us consider an atomic propositiona defined as a
marking of place p and have one of the two forms expressed previously. We define the
subdomain SDa of ap as SDa: such that:

 where if the ith

component of the tuple expressed in ap belongs to and if not.

We note Prj[SDa](M) the projection of marking M with respect to the subdomain SDa,

hence: .

a c() c p•=

x∃ f x(),
x∀ f x(),

f b() x∃ f x(), V if ci()⇔ ⇔

ck
k
∑

 p• c1 p• … ci p• …∧ ∧ ∧[] f Λkf ck()=⇔ ⇔ f ck() ck p•=

c p•

i 0≥() mi mi 1+,() R∈

Bag C p()() Bag C p()()→
SDa Ci1

…× Cin
×

 SDa 1, Ci1

() … SDa n, Cin
()××= SDa i, Ci j

() Ci j
=

Ci j
SDa i, Ci j

() ∅=

a E m()∈ a⇔ Prj SDa[] m()=

-9-

The next rules of presents the semantics of CPN-CTL*. We assume that f1, f2 are two
state formulas, g1, g2 are two path formulas. The relation|= is defined inductively as fol-
lows [8]:

(1) R,m |= a iff .

(2) R,m |= iff Not(R,m |=f1).

(3) R,m |= iff R,m |= f1 or R,m|= f2.

(4) R,m |= E(g1) iff starting from m such that R,π |= g1.
(5) R,π |= f1 iff m is the first marking ofπ and R,m|= f1.

(6) R,π |= iff Not(R,m |= g1).

(7) R,π |= iff R,π |= g1 or R,π |= g2.

(8) R,π |= X(g1) iff R,π1 |= g1.

(9) R,π |= g1Ug2 iff such that: R,πk |= g2 and such that we
have R,πi |= g1.

In the next section we present the difficulties that we must bypass in order to perform
model checking directly through the symbolic reachability graph, then we introduce a
way to built a highly condensed but convenient SRG.

4. Symbolic Reachability graph built with Respect to a Formula

Using CPN-CTL* formulas, two kinds of properties can be checked, using a reachabil-
ity graph which presents the state space of a system specified in terms of well-formed
net. State properties and path properties. State properties presents properties verified by
a set of colors or a tuple of colors in a given marking of the graph. In consequence, they
are presented as a boolean combination of atomic propositions. Path properties presents
properties that are verified, through a path of the graph, either by a set of colors or tuple
of colors. They are represented in terms of both boolean and temporal combination of
atomic propositions.

In this section we present the properties which can be directly verified through the sym-
bolic reachability graph, as well as properties which need additional informations. Fi-
nally, we present the unfolding process that exploit symmetries in order to add
sufficient informations for performing general model checking while saving a highly
condensed representation of the state space.

4.1. Model Checking Problem

Due to color representations in the symbolic approach, two major difficulties appear
when performing model checking through SRG. The first consists in checking proper-
ties based on color identities since identities of colors are not preserved. The second is
due to the fact that path properties expressed symbolically (i.e. expressed for an arbi-
trary quantities of symmetrical colors) cannot be checked. Effectively, it can be proved
that a symbolic path between two symbolic markings may represent not only real paths
but also wrong paths. Here again, path properties which require the verification of color
dependencies between some markings cannot be checked even if they are expressed
symbolically. Anyhow, SRG allows direct model checking of state properties expressed

a E m()∈
f1¬

f1 f2∨

π∃

g1¬

g1 g2∨

k∃ 0≥ i∀ k i> 0≥

-10-

symbolically. Effectively, the quantity of colors represented by a dynamic subclass in
a marking represents a set of colors that have the same behavior. In consequence, sev-
eral properties which are not color dependent can be checked directly like the absence
of deadlock, the existence of home space (resp. unavoidable home space) or the exist-
ence of an infinite path.

Example 5:
In the example of philosophers, we mentioned that deadlock are directly detected by
searching the states that do not have outcoming edges, we can detect deadlocks, like
state 5 in the graph presented in figure 2. Contrarily, properties like fairness cannot be
proved through the SRG. For example, let us consider the formula

, which means that, for all the paths
of the graph a philosopher who is thinking will eat. Further, the verification of such a
formula needs to span the graph depicted in figure 2 in such a way that f is satisfied
through all of its paths. Unfortunately, this verification is impossible since identities are
not preserved in the markings of the graph. For example, let us consider the infinite
path of the symbolic reachability graph, "2,4,3,2,4,3...". Through this path, it is not pos-
sible to determine that the philosopher who thinks in symbolic marking 2 is the same
who eats in symbolic marking 3.

Hopefully, as a partial solution for the model checking through symbolic paths, the next
section will show that checking properties on groups can be reduced to check them on
representatives of the groups.

4.2. Studying the Behaviors of Symmetrical Colors

In order to perform model checking of properties expressed for a color or a subset of
colors from the same static subclass, we prove that a property is verified for a color if
and only if it is verified for all the colors of the same static subclass under the assump-
tion that all those colors have symmetrical initial states (which is our assumption here
in this paper). In this case, the verification of a symbolic path property expressed for all
the objects can be substituted by the verification of this property for one color or a sub-
set of colors from the same static subclass. This leads to isolate the chosen colors, only,
in order to trace their behaviors. Such a partial process of isolation corresponds to a par-
tial unfolding of the SRG.

It is worth noting that there is no need to isolate colors for the verification of symbolic
state properties since the verification of the reachability is performed through the SRG
directly [5].

Let us consider an atomic proposition g expressed as a marking of a WN,N, two mark-
ings m1, m2 of N and s a symmetry from AS(N). We prove that symmetrical markings
yields symmetrical projections with respect to an atomic proposition:

 Lemma 1:

Proof: This proof considers first a marking build with a unique color of a simple
color domain, then, it is extended to complex color domain. Firstly, let us consider
any place p of the net and let us assume that m1(p)=c where is a simple color

f ΛPh PH∈ AG Ph Thinking• F Ph Eating•()⇒[]=

Prj SDg[] m1() m2= Prj SDg[] s m1()()⇔ s m2() s∀ AS N()∈,=

c C∈

-11-

and let us suppose that H: holds. We have either:

(1) i.e m2(p)=0. This is equivalent to car s(c) is
an object of C. Since s(m1(p))=s(c), then we have:

.

(2) . From H and we deduce that

m2(p)=c. This is equivalent to s(m1(p)) = s(m2(p)) = s(c). Since s(c) is also a color

then we have: .

In case of complex color domains the former proof can be extended to deal in a sim-
ilar way with each component of the tuple.

From the previous lemma, we can conclude that state properties are preserved for sym-
metrical colors.

 Proposition 1:
, (R,m|= |=s(gc)) where R is the state space and

s(gc)=gs(c), gc is an atomic proposition.
Proof: Starting from the semantic rules of section 3.2:
R,m|= .

From lemma 1: , which is equiva-

lent to . So we have R,s(m)|=s(gc) where s(gc)=gs(c).

Proposition 1 makes it easy to prove that path properties are preserved for symmetrical
colors. Path properties are expressed in terms of CPN-CTL* path formulas. We start our
proof for a restricted set of formula EXf and E(fUg) (f, g are atomic propositions) from
which the generalization to CPN-CTL* formulas is made using the rules of section 3.2:

 Proposition 2:
(1) R,π|= ,π|=EXga where object a, is chosen arbitrary from Di.

(2) R,π|= ,π|=E(faUgb).

where fc, gc are atomic propositions, Di, Dj are static subclasses or cartesian prod-
ucts of static subclasses and a,b are respectively chosen arbitrary from Di and Dj.
Proof:
(1) is simply proved because means that EXga1

holds and... EXgan holds where a1,...an are the objects of Di. For ,

 holds by assumption, i.e. R,π|=EXga whereπ=m1m2...mn. From the seman-

tic rules of 3.2 we have: R,m2 |=ga so, . From proposition

1, this is equivalent to so,

 holds in s(m2(p)). In consequence, s(EXga)=EX(gs(a))

holds in s(π) for each s and consequently for each element of the static subclass.

Prj SDg[] m1 p()() m2 p()=

c C∈∀ c, g∉ s c() g∉ s∀ AS N()∈,

Prj SDg[] s m1 p()()() s m2 p()() 0= =

c C∈∃ c, gp∈ Prj SDg[] m1 p()() m2 p()=

Prj SDg[] s m1 p()()() s c() s m2 p()()= =

s AS N()∈∀ gc) R(s m(),⇔

gc gc E m()∈() P(rj SDgc
m()⇔ ⇔ gc)=

Prj SDgc
m() gc= Prj SDgc

s m()()⇔ s gc()=

s gc() E s m()()∈

Λc D∈ EXgc, R⇔

Λc Di∈ c′ Dj∈, E fcUgc′(), R⇔

the direction⇒ Λc D∈ EXgc,

the direction⇐
EXga

Prj SDga
m2 p()() ga=

Prj SDga
s m2 p()()() s ga() s AS N()∈∀,=

s AS N()∈∀ s, ga() gs a()=

-12-

(2) Like in the former proof, is straightforward, since

 holds means that E(fa1Ugb1) holds and.... where ai, bj are

objects respectively chosen from Di and Dj. For , holds,

by assumption and, from the semantic rules presented in section 3.2, we deduce:
, , ,

. Like in part (1) of this proposition and for each marking of the path we use

proposition 2 to prove that: holds in

and holds in . This is equivalent to:

s(E(faUgb))=E(fs(a)Ugs(b)) holds in s(π), for each s and consequently for each object
of the static subclass.

Finally, the former proposition can be generalized to any path formula of CPN-CTL*
by using the semantic rules of the temporal logic mentioned in section 3.2.

The next section shows how to refine the WN description so as to define the subgroup
of the admissible symmetries that leaves the formula invariant. The propositions of the
current section are used to drive the net transformation.

4.3. Subgroup of Admissible Symmetries that Respect a Formula

Roughly speaking, the conditions that allow the building of a SRG through which a for-
mula can be checked are the three followings: detect the colors that appear in the for-
mula; find symmetries between that colors in order to form the group of symmetries that
leave the formula invariant; and save the admissible symmetries of colors that do not
appear in the formula as well as those of colors which appear in the formula (such ad-
missible symmetries correspond to those that leave the formula invariant). More prac-
tically, the former three points lead us to succeed the two following stages:
(1) Determine the automorphism group of the formula that reflects the symmetries ex-
pressed by the isolated colors;
(2) Consider only a subgroup of the group of admissible symmetries that leave the for-
mula invariant. SRG will be built on the basis of such subgroup.
In WN, this subgroup is determined statically since admissible symmetries can be de-
duced, directly, from the description of static subclasses. It corresponds to a refinement
of static subclasses in order to isolate the colors of the formula within the considered
net specification.

4.3.1. The Unfolding Formal Approach

Let us assume the existence ofN, a given WN. The determination of a subgroup of
(AS(N),o) that leaves formula invariant requires to express the structural symmetries re-
flected in the formula. Such symmetries can be formally defined by the notion of auto-
morphism group of a formula.

Definition 4.3.1.1: Automorphism Group of a Formula
The automorphism group of f, Aut(f), is the group of permutations of colors that
leave f invariant.

the direction⇒
Λc Di∈ c′ Dj∈, E fcUgc′(),

the direction⇐ E faUgb()

π(m1 … m, k …), ,=∃ Prj SDfa
ml p()() fa= l∀ k≤, Prj SDgb

mt q()() gb=

t∀ k≥
s AS N()∈∀ s, fa() fs a()= s ml p()() l∀ k≤,

s gb() gs b()= s mt q()() t∀ k≥,

-13-

The former definition of automorphism group means that: , but it
does not always ensure that neither the splitting of colors in static subclasses nor the re-
strictions imposed on symmetries for ordered classes are respected. Therefore we must
consider a subgroup of which expresses the admissible symmetries

that leave f invariant [1]. Of course, the largest subgroup, , is

desirable for maximal compression of state space. AS(Nf) is a restriction of the admis-
sible structural symmetries enabled inN, therefore, it is always possible to form a new
well-formed net,Nf according to this subgroup.

The static subclasses ofNf are obtained by refinement of static subclasses ofN. This
leads to a new definition of admissible symmetries.

Definition 4.3.1.2: Admissible Symmetries with Respect to a Formula
The group of admissible symmetries with respect to f, (AS(Nf),o), is a subgroup of

(,o) that satisfies one of the two following equivalent conditions:

1. (AS(Nf),o) is a subgroup of (,o) such that:

2. Let Ci be an object class and Di,q one of its static subclass, we

have:

One may note that no refinement is needed for a given class Ci when Aut(f)=Sym(Ci).

In consequence: if .

Let us consider R as the structure of the reachability graph deduced fromN. The SRG,
built from the specification ofNf, enables model checking for the formula f. Such SRG
denoted SRGN,f represents the quotient structure which saves the largest symmetries for
N that leave f invariant.

Property 4.3.1.3: Correspondence property
Let and be respectively a marking and a path of SRN,f, we have the following
two properties for symbolic markings and symbolic paths:
(1) , SRGN,f, |= ,m|=f;

(2) , SRGN,f, |= ,π|=f.

This important property enables one to perform the model checking of f, directly
through SRGN,f. The proof of the former property is included in the proof of model
checking equivalence presented in Section 6. The computation of AS(Nf) consists,
mainly, in determining Aut(f) since AS(N) is given initially byN. The determination of
Aut(f) is presented in the next section.

4.3.2. Determination of a Formula Automorphisms Group

In [1], some rules which concern the determination of automorphism group, are present-
ed in the context of CTL* formulas model checking through a state transition graph.
Many difficulties appear when one performs model checking through SRG due to the

s∀ Aut f()∈ s f() f=,

AS N() Aut f()∩
AS Nf() AS N() Aut f()∩=

ζ
ζ AS Nf() A= S N() Aut f()∩

s∀ AS Nf()∈ c∀ Di q,∈ s c() Di q,∈ s f() f=∧(), ,

A(ut f() Sym Ci())
i

∪= A(S Nf()⇔ AS N())=

m̂ π̂

s∀ AS Nf() m αm̂ s m()() m̂=,∀,∈ m̂ f R⇔

s∀ AS Nf() π απ̂ s π()() π̂=,∀,∈ π̂ f R⇔

-14-

particularity of color representations in the symbolic approach (see section 4.1). In con-
sequence, the rules must be adapted not only to respect the conditions presented in the
introduction of section 3.2 but also to cope with those difficulties. Such an adaptation
allows the building of a SRG through which a formula can be checked directly.

Let be one of the two boolean operators or V. In the following, we consider a for-
mula f built on a subset of colorsK. Such a subset may be either a class, a static subclass
or a subset of a static subclass. We define Sym(K) as the set of all the permutations on
K. We now define,τ, the transformation function of static subclasses and its correlated
function I used to isolate an arbitrary object that isolate an arbitrary object or set of ob-
jects by splitting the concerned static subclass:

τ: and for a cartesian product of static subclasses we have:

where: and Ii(Di) is the ith component of the isolation function ap-

plied on the ith component of the cartesian product such that:
I i: , where C is a class of colors, such that for .

Moreover, the isolation function defined over a tuple must take into account additive
integrity constraint. This can be formalized by defining a general isolation function as

follows: I: , I=<I1,...,In> such that:

(1) ;

(2) .
Using such definitions, we can present the rules that determine the automorphisms
group of the formula and use isolation and transformation functions to calculate this
group.

Rules 4.3.2.1: Generic rules to determine Aut(f)
 (1) If f is trivial (f or is a validity) then for all the

classes of colors Ci.
 (2) If built for a specific color, b, or a tuple of colors b=<b1,.,bm>

from a static subclass or a cartesian product of static subclasses D then
Aut(f)=Sym(D\{b}) where and I(D)=b.

 (3) If built for a set of tuples of colors from

a color domain then Aut(f)=Aut() where

 (4) If where D is a static subclass then Aut(f)=Sym(D) if f is a

state formula, if not, Aut(f)=Aut(gΙ(D)) where .
 (5) If f is a temporal formula of the form f = Xg where g has one of the forms

presented by the current rules then Aut(f)=Aut(g).
 (6) If f is a temporal formula of the form f = g U h where g, h has one of the

forms presented by the current rules then Aut(f)= .

θ Λ

CD CD
2→ D1 … Dn××

τ D1 … Dn××() I D1 … Dn××() D′1 … D′n, , ,〈 〉 I1 D1() … In Dn() D′1 … D′n, , , , ,〈 〉= =

D′i Di\ I i Di(){ }=

C C→ Di C⊆ I i Di(), ci{ } Di⊆=

C
n

C
n→

I i I j≠() Di Dj≠() Di Dj=() I j Dj() I i D′i()=()∧{ }∨⇔

I i I j=() I i Di() I j Dj()= ci{ }= D′i D′j=()∧{ }⇔

f¬ Aut f() Sym Ci()
i

∪=

f g= b D∈

τ D() I D() D′,〈 〉=
f θci1

D1∈ …θcin
Dn∈ g ci1

…cin
〈 〉=

D1 … Dn×× gI D1 …× Dn×()

τ D1 … Dn××() I D1 … Dn××() D′1 … D′n, , ,〈 〉=

f θc D∈ gc=

τ D() I D() D′,〈 〉=

Aut g() Aut h()∩

-15-

Example 6:
Again, let us consider the following fairness property[2]:

, meaning that "for each path, it is

always possible to eat for a philosopher who thinks". Initially, PH has only one static
subclass, PH itself. Formula f is a path formula which corresponds to rule 4-b of rules
4.3.2.1, then the automorphism group of f is: Aut(f)=Sym(fτ(PH)). We suppose that
τ(PH)=<{Ph1}, {Ph2, Ph3}).
We have AS(N)=Sym(PH), in consequence, the new group of admissible symmetries is
AS(Nf)=Sym(PH\{Ph1}). In order to check the formula, PH must be partitioned in two
static subclasses: FirstPhilosopher={Ph1} and OtherPhilosophers={Ph2, Ph3}. The
new SRG built on such admissible symmetries is presented in Figure 3. It worth noting
that, the advantage of such isolation process is that static subclasses which do not ap-
pear in the formula are saved, like the class Forks in our example. The presented graph
remains highly condensed (11 nodes and 20 arcs instead of 88 nodes and 207 arcs).

In the next section we present the model checking process of a formula f through the
symbolic reachability graph SRGN,f built with respect to f.

5. Model Checking through SRG with respect to a formula

The verification of formula f through SRGN,f is explained first for an atomic proposition
formed by simple colors, then we extend it to the case of atomic propositions expressed
with tuples. Finally, we consider general CPN-CTL* formulas. Let us consider first a
formula f built on a class of colors C or a static subclass D of C. The verification of ei-
ther conjunctive or disjunctive forms is processed according to the refinement method
imposed by AS(Nf). The atomic proposition holds in a symbolic

marking of p if at least one color of D marks p. It must be noted that atomic propositions

 Fig. 3.SRG built with respect to formula f for three philosopher

f ΛPh PH∈ AG Ph Thinking• F Ph Eating•()→[]=

2

3

4

0

1

7

 8

96

5
10

The meaning of the markings is:
(0) Three philosophers think.
(1) The one of FirstPhilosopher thinks. One of OtherPhiloso-
phers thinks and one eats.
(2) The one of FirstPhilosopher thinks One of OtherPhiloso-
phers thinks and one waits.
(3) The one of FirstPhilosopher thinks. One of OtherPhiloso-
phers waits and one eats.
(4) The one of FirstPhilosopher thinks. Each philosopher of Oth-
erPhilosophers waits.
(5) The three philosophers wait.
(6) The one of FirstPhilosopher eats The two of OtherPhiloso-
phers Think.
(7) The one of FirstPhilosopher waits. The two of Otherphiloso-
phers Think.
(8) The one of FirstPhilosopher waits. One of OtherPhiloso-
phers thinks and one eats.
(9) The one of FirstPhilosopher waits. One of OtherPhiloso-
phers waits and one thinks.
(10) The one of the FirstPhilosopher eats. One of the OtherPhi-
losophers Thinks, One waits.

f V c D∈ c p•()=

-16-

 form a particular case of the disjunctive form since colors specified in such an

atomic proposition are isolated in static subclasses. Similarly, formula

holds, with respect to a symbolic marking, if all the colors of D mark p. In both cases,
the verification process must take into account that place color domains of a WN can
be complex (i.e. cartesian product of classes). We consider first the verification of atom-
ic propositions defined on a simple and a complex domain, then, we generalize the ver-
ification to basic path formula expressed in proposition 6. Finally, we generalize the
verification to any formula CPN-CTL* by the application of the semantics rules of the
temporal logic presented in section 3.2.

 Proposition 3: Disjunctive Atomic Proposition on a Simple Color Domain
SRGN,f, |= iff such that .

Proof: is proved by definition of symbolic markings. Effectively,

since formula f holds in , we can be sure that there is a dynamic subclass repre-

senting some colors of D in (p). Moreover, since projection is achieved accord-
ing to formula f, that dynamic subclass is present in the symbolic marking

. is proved since the presence of a dynamic sub-

class of D in , means that a quantity of colors of D exists in with

respect to p.

 Proposition 4: Conjunctive Atomic Proposition on a Simple Color Domain
SRGN,f, |= iff the two following conditions hold:

(1) . (2) we have: .

Proof: The proof is similar to the one of proposition 3 with the exception that con-
dition (2) must be taken into account. For , in order to prove the

second condition, we must consider that all the colors of D are in . In this case,

the cardinality of the union of dynamic subclasses of D, in , is equal to the car-
dinality of D. Moreover, since projection is made according to formula f, that dy-
namic subclass is present in . uses the same

reasoning for the second condition.

Let us consider now atomic proposition for tuples, propositions 3 and 4 can be simply
extended as follows:

 Proposition 5: Extension to Atomic Propositions on a Complex Color Domain
SRGN,f, |= iff the two conditions hold:

(1) for each component .

(2) for each q where , we have: .

Proof: The proof is directly derived from those of 3 and 4.

f c p•=

f Λc D∈ c p•()=

m̂ f V c D∈ c p•()= Z∃ D⊆ Z Prj SDf[] m̂ p()()∈

the direction⇒
m̂

m̂

Prj SDf[] m̂ p()() the direction⇐

Prj SDf[] m̂ p()() m̂

m̂ f Λc D∈ c p•()=

Z∃ Z Z
j

D⊆ Z
j

Prj SDf[] m̂ p()()∈{ }=
 , Z

j∀ Z∈ Z
j

j
∑ D=

the direction⇒
m̂

m̂

Prj SDf[] m̂ p()() the direction⇐

m̂ f θc1 D1∈ …θcn Dn∈ c1 … cn, ,〈 〉 p•()=

cq Dq∈ Zq∃ Zq Z j
q Dq⊆ Z j

q Prj SDf[] m̂ p()()∈{ }=
 , ,

θq Λq= Z j
qj

∑ Dq=

-17-

Finally, we present our verification rules in the case of model checking of conjunctive
and disjunctive forms of path formula. We have the two following propositions con-
cerning the verification of a path formula expressed by simple colors:

 Proposition 6: Conjunctive and Disjunctive Path Formulas
(1) SRGN,f, |= , |= EXgτ(D).

(2) SRGN,f, |= , |= E(fτ(Di)Ugτ(Dj)).

where fc, gc are atomic propositions, Di, Dj are static subclasses or cartesian prod-
ucts of static subclasses and a,b are chosen arbitrary from Di and Dj respectively.
Let us recall thatτ(Di) (resp.τ(Dj)) represents the isolation and the transformation
processes of the static subclasses Di (resp. Dj)
Proof: The prove can be deduced from proposition 2 of Section 4.2.

Effectively, the former proposition can be generalized also to complex color domain.
and in the case of simple or complex color domain, the verification is restricted to the
verification of the property for the colors isolated by means of the functionτ. Since this
colors are isolated in new static subclasses that appear in the markings of the graph. In
consequence, the verification of the formula can be performed directly by the applica-
tion of both the verification rules depending on the linear and boolean operators (prop-
osition 7) and the verification rules of the atomic subformula contained in the formula
(propositions 3, 4 and 5).

Now, we can deal with CPN-CTL* formulas, by applying the semantic rules depicted
in section 3.2. Let us consider f1, f2 be two state formulas and g1, g2 two path formulas,

let a path in the SRGN,f. We note . The following prop-

osition introduces the general rules used to check CTL* formula through SRGN,f:

 Proposition 7: Generalization to CPN-CTL* Formulas
(1) |= iff Not |=f1.

(2) |= iff |=f1 or |=f2.

(3) |=E(g1) iff starting from mk such that |=g1.

(4) |= iff it is false that |=g1.

(5) |= iff |=g1 or |=g2.

(6) |=X(g1) iff |=g1.

(7) |=g1 U g2 iff such that: |=g2 and such

that we have |=g1.

Proof: The proof of the rules can be based simply on the definitions of the operators
used in the former formulas.

Example 7:
Let us perform model checking of

through SRGN,f depicted in Figure 3.

π̂ Λc D∈ EXgc, SRGN f,⇔ π̂

π̂ Λc Di∈ c′ Dj∈, E fcUgc′(), SRGN f,⇔ π̂

π̂ m̂0 … m̂n, ,= π̂i m̂i … m̂n, ,=

SRGN f, m̂k, f1¬ SRGN f, m̂k,

SRGN f, m̂k, f1 f2∨ SRGN f, m̂k, SRGN f, m̂k,

SRGN f, m̂k, π∃ SRGN f, m̂k,

SRGN f, π̂, g1¬ SRGN f, π̂,

SRGN f, π̂, g1 g2∨ SRGN f, π̂, SRGN f, π̂,

SRGN f, π̂, SRGN f, π̂1,

SRGN f, π̂, k∃ 0≥ SRGN f, π̂k, i∀

k i> 0≥ SRGN f, π̂i,

f ΛPh PH∈ AG Ph Thinking• F Ph Eating•()⇒[]=

-18-

Formula f can be normalized by using the standard transformation rules presented in
[8] and recalled in the introduction of section 3. This yields the following form of
f: . Such a formula
is verified using the propositions of section 5: from proposition 4, we can reduce the
model checking of f to the model checking of f1 expressed by Ph1 selected by using rule
5 of rules 4.3.2.1 and the associated transformation function:

. Then formula f1 is
checked recursively using the rules presented in [7] which correspond, inductively, to
the verification of the subformulas. Finally, Proposition 3 is applied in order to check
the atomic subformulas, and , at the end of
the recursion loop. In consequence, by scanning SRGN,f of figure 3 we can find an infi-

nite path through which f does not hold (is the symbolic

marking corresponding to node i)

6. The Model Checking Equivalence

We prove that the proposed verification method through structure SRGN,f is equivalent
to the one performed through the reachability graph ofN noted RGN.

Theorem: Model checking equivalence for atomic formulas
(i) state formulas:

RGN, |= |=f, where .

(ii) path formulas: RGN,π|= |=f

(a) From M, ifπ=m0, m1,...,mn is a path of markings for which M,π|=f then there

is an image of corresponding representatives where

|=f.

(b) From SRGN,f, if is a symbolic path for which f holds then for

every marking such that where in RGN there ex-

ists a corresponding path through which the formula f,
holds.

Proof:
For (i), the equivalence is proved by the following reasoning: assume that s is a
symmetry of AS(Nf) such that s()= . In consequence RGN,s()|=s(f) Since

s(f)=f by definition of AS(Nf), we have |=f.

For (ii)-(a) The proof is immediate since for any firing sequence there is a symbolic
firing sequence in the associated SRG [6].
For (ii)-(b) Let us consider symbolic paths of the form we have

the two following cases:
(1) f=EX(g), from rules 3 and 6 of proposition 7 we have a path of

length 1, i.e. edge in SRGN,f, such that |=g. From part (i) of this theorem

f ΛPhA TrueU Ph Thinking•¬() TrueU Ph Eating•()()∨[]¬{ }¬=

f1 A TrueU Ph1 Thinking•() TrueU Ph1 Eating•()()¬∧[]{ }¬=

f1 1, Ph1 Thinking•= f1 2, Ph1 Eating•=

π̂ m̂2 m̂4 m̂3 m̂2, , ,= …, m̂i

m′ f SRGN f, m̂,⇔ m′∀ s m̂()= s AS Nf()∈

f SRGN f, π̂,⇔

π̂ m̂0 … m̂n, ,=

SRGN f, π̂,

π̂ m̂0 … m̂n, ,=

m0′ s m0′() m̂0= s AS Nf()∈

π m′0 m′1 … m′n, , ,=

m′ m̂ m′
SRGN f, m̂,

π̂ m̂0 m̂1,= … m̂n, ,

π̂ m̂0 m̂1,=

SRGN f, m̂1,

-19-

we have RGN, |= |=g, where . Since

the g holds for all the marking represented by , the formula f holds for all the

corresponding ordinary paths represented by the symbolic path . In con-
sequence the verification of such formula is equivalent through the two graphs.
(2) f=E(g1Ug2) from rule 3 and 7 such that: |=g2 and such

that we have |=g1. In each state of the atomic

formula g1 holds and from (i) it holds for all the ordinary markings represented by
a symbolic marking. In consequence, the formula g1 holds for all the corresponding

ordinary paths represented by the symbolic path . Same proof for g2.
In consequence the verification of f is equivalent through both the ordinary and the
symbolic graph.

7. Conclusion

The proposed technique to verify CTL* formulas is derived from the symbolic theory,
based on well-formed nets and the formal approach of model checking in [1]. Due to
the ability of refining static subclasses in order to take the symmetries expressed in a
formula into account, we have shown that CTL* formula are able to be checked through
a symbolic reachability graph built on the refined static subclasses. The main advantage
of our method is that it can lead to a complete automatic verification, due to the auto-
matic building of SRG that takes the structural symmetries of system objects into ac-
count. Like in [1][7][8], a graph is built for a class of properties specified by a class of
formulas which correspond to the same automorphism group. The proposed methodol-
ogy allows one to evaluate in advance (structurally) the efficiency of using the system
symmetries in the model checking of a formula. Effectively, two cases appear in limits:
the best one where the structural symmetries of the WN are entirally used, causing a
maximal condensation of the represented state space and the worse case in which any
group of symmetrical objects is reduced to a singleton, leading the new SRG to be large
as well as the standard reachability graph.In our context, the formal approach presented
in [1] must be adjusted since the correspondence lemma between the quotient and the
ordinary structures is not respected by the original SRG.Currently, we aim at extending
this method in order to deal with specifications, in terms of well-formed nets, based on
partial symmetries and the associated Extended Symbolic Reachability Graph (ESRG)
[12]. This correspond to the case of a system, the behaviors of which sometimes depend
on the process identities (i.e. static priorities based on identities), and sometimes not.
However, our perspective is to enforce the efficiency of model checking process by re-
laxing the dependency of the formula on the graph computations.

m′ g SRGN f, m̂1,⇔ m′∀ s m̂1()= s AS Nf()∈

m̂1
π̂ m̂0 m̂1,=

k∃ 0≥ SRGN f, π̂k, i∀

k i> 0≥ SRGN f, π̂i, π̂i m̂i … m̂n, ,=

π̂i m̂i … m̂n, ,=

-20-

8. References

[1] E. Allen Emerson, A. Prasad Sistla, “Symmetry and Model Checking”, 5th con-
ference on Computer Aided Verification (CAV), June 1993.

[2] E. Allen Emerson, A. Parsad Sistla, "Utilizing Symmetry when Model Checking
under Fairness Assumptions: An Automata-theoric Approach", 7th conference
on Computer Aided Verification (CAV), LNCS 939, pp. 309-324, Liège, Bel-
giume, July 1995.

[3] C. Norris IP and D. Dill, "Better Verification Through Symmetry", In Formal
Methods in System Design, Vol 9, August 96, pp 41-76.

[4] F. Michel, P. Azéma, F. Vernadat. "Permutable Agents and Process Algebra", In
Proc. of TACAS’96, pages 187-207, Passau, Germany, 1996, Springer-Verlag,
LNCS 1055.

[5] G. Chiola, C. Dutheillet, G. Franceschinis, S. Haddad, “On Well-formed Col-
ored Nets and their Symbolic Reachability Graph”, proc. of 11th International
Conference on Application and Theory of Petri Nets, Paris-France, June 1990.

[6] G. Chiola, R. Gaeta, "Efficient Simulation of Parallel Architectures Exploiting
Symmetric Well-formed Petri Net Models", Sixth International Workshop on
Petri nets and Performance Models, Durham, NC, USA, IEEE Computer Soci-
ety Press, October 1995.

[7] E.M. Clarke, T. Filkorne, S. Jha, “Exploiting Symmetry In Temporal Logic
Model Checking”, 5th Computer Aided Verification (CAV), June 1993.

[8] E. Clarke, O. Grumberg, D. Long, "Verification Tools for Finit-State Concurrent
Systems", "A Decade of Concurrency - Reflections and Perspectives", LNCS
vol 803, 1994.

[9] K. Jensen, G. Rozenberg (eds), "High Level Petri Nets, Theory and Applica-
tion", Springer-Verlag, 1991.

[10] K. Schmidt, "Symmetry Calculation", Workshop CSP Warschau 1995
[11] R. Gerth, D. Peled, M. Vardi, P. Wolper, "Simple On-the-fly Automatic Verifi-

cation of linear Temporal Logic", Protocol Specification Testing and Verifivca-
tion, 1995, Warsaw, Poland.

[12] S. Haddad, JM. Ilié, B. Zouari, M. Taghelit, "Symbolic Reachability Graph and
Partial Symmetries", In Proc. of the 16th International Conference on Applica-
tion and Theory of Petri Nets, pp 238-257, Torino, Italy, June 1995.

[13] Z. Manna, A. Pnueli. "The temporal Logic of Reactive and Concurrent Systems:
Specification", Springer-Verlag, 1992.

[14] Claude Dutheillet, "Symmetries dans les Reseaux Colorés, Définition, Analyse
et Application a l’Evaluation des Performances", PH-D thesis, MASI Laborato-
ry, University of ParisVI, Paris, France, march 1992.

[15] J-M. Ilié, K. Ajami, "Model Checking through the Symbolic Reachability
Graph", in Proc of TapSoft’97 - CAAP, pp 213-224, Lille, France, Springer-
Verlag, LNCS 1214, Avril 1997.

