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The diamagnetic inequality for the

Dirichlet-to-Neumann operator

A.F.M. ter Elst1 and E.M. Ouhabaz2

Abstract

Let Ω be a bounded domain in Rd with Lipschitz boundary Γ. We

define the Dirichlet-to-Neumann operator N on L2(Γ) associated with

a second order elliptic operator A = −
∑d

k,j=1 ∂k(ckl ∂l) +
∑d

k=1 bk ∂k−
∂k(ck·) + a0. We prove a criterion for invariance of a closed convex set

under the action of the semigroup of N . Roughly speaking, it says that

if the semigroup generated by −A, endowed with Neumann boundary

conditions, leaves invariant a closed convex set of L2(Ω), then the

‘trace’ of this convex set is invariant for the semigroup of N . We use

this invariance to prove a criterion for the domination of semigroups of

two Dirichlet-to-Neumann operators. We apply this criterion to prove

the diamagnetic inequality for such operators on L2(Γ).
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Private bag 92019 351, Cours de la Libération

Auckland 1142 33405 Talence

New Zealand France

terelst@math.auckland.ac.nz Elmaati.Ouhabaz@math.u-bordeaux.fr



1 Introduction

The well known diamagnetic inequality states that the semigroup associated with a Schrö-

dinger operator with a magnetic field is pointwise bounded by the free semigroup of the

Laplacian. More precisely, let ~a = (a1, . . . , ad) be such that each ak is real-valued and

locally in L2(Rd). Set H(~a) = (∇ − i~a)∗(∇ − i~a). Then the corresponding semigroup

(e−tH(~a))t≥0 satisfies

|e−tH(~a)f | ≤ et∆|f |

for all t > 0 and f ∈ L2(Rd). The same result holds in presence of a real-valued poten-

tial V , i.e., with operators H(~a) + V and −∆ + V .

The diamagnetic inequality plays an important role in spectral theory of Schrödinger op-

erators with magnetic potential. We refer to [Sim] and references there.

The main objective of the present paper is to prove a similar result for the Dirichlet-

to-Neumann operator with magnetic field on the boundary Γ of a Lipschitz domain Ω

in Rd. In its most simplest case, the diamagnetic inequality we prove says that for all

~a ∈ (L∞(Ω,R))d, the solutions of the two problems
∂tTru+ (∂ν − i~a · ν)u = 0 on (0,∞)× Γ

(∇− i~a)∗(∇− i~a)u = 0 on (0,∞)× Ω

Tru = ϕ

and 
∂tTr v + ∂νv = 0 on (0,∞)× Γ

∆v = 0 on (0,∞)× Ω

Tr v = |ϕ|
satisfy

|u(t, x)| ≤ v(t, x) for a.e. (t, x) ∈ (0,∞)× Γ.

Here ∂ν is the normal derivative and ν is the outer normal vector to Ω. We prove more in

the sense that we are able to deal with variable and non-symmetric coefficients. To be more

precise, we consider ckl, bk, ck, a0 ∈ L∞(Ω,R) for all k, l ∈ {1, . . . , d} with (ckl) satisfying

the usual ellipticity condition. For all ~a ∈ (L∞(Ω,R))d as above we consider the magnetic

Dirichlet-to-Neumann operator N (~a) defined as follows. If ϕ ∈ H1/2(Γ), we solve first

−
d∑

k,l=1

(∂k − iak)
(
ckl (∂l − ial)u

)
+

d∑
k=1

bk (∂k − iak)u− (∂k − iak)(ck u) + a0 u = 0 on Ω,

Tru = ϕ

with u ∈ W 1,2(Ω) and then define N (~a)ϕ as the conormal derivative (when it exists as an

element of L2(Γ)). Formally,

N (~a)ϕ =
d∑

k,l=1

νk Tr (ckl ∂lu)− i
d∑

k,l=1

νkTr (ckl al u) +
d∑

k=1

νk Tr (ck u).
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If (S~a(t))t≥0 denotes the semigroup generated by −N (~a) on L2(Γ), then we prove (under

an accretivity condition) that

|S~a(t)ϕ| ≤ S0(t)|ϕ|

for all t ≥ 0 and ϕ ∈ L2(Γ). In the symmetric case, ckl = clk and bk = ck = 0, we obtain as

a consequence a trace norm estimate for the eigenvalues of N (~a) and if the coefficients are

Hölder continuous and Ω is of class C1+κ for some κ > 0 we obtain that the heat kernel

of N (~a) satisfies a Poisson upper bound on Γ. We also prove other results on positivity

(when ~a = 0) and L∞-contractivity of the corresponding semigroup. For example, in the

symmetric case ckl = clk, bk = ck and a0 are all real, then the semigroup S0 is positive if

a0 > −λ0, where λ0 is the first positive eigenvalue of the elliptic operator

−
d∑

k,j=1

∂k(ckl ∂l) +
d∑

k=1

bk ∂k − ∂k(ck·) (1)

with Dirichlet boundary conditions. In other words, the quadratic form

u 7→ a(u, u) =
d∑

k,l=1

∫
Ω

ckl (∂lu) ∂ku+
d∑

k=1

∫
Ω

bk (∂ku)u+ bk u ∂ku+

∫
Ω

a0 |u|2 (2)

is positive on W 1,2
0 (Ω). It is not clear whether this latter condition remains sufficient for

positivity of the semigroup in the non-symmetric case. See Proposition 3.4 and Section 4.

It is worth mentioning that the Dirichlet-to-Neumann operator is an important map

which appears in many problems. In particular, it plays a fundamental role in inverse prob-

lems such as the Calderón inverse problem. The magnetic Dirichlet-to-Neumann operator

also appears in the study of inverse problems in the presence of a magnetic field. We refer

to [BC] and the references therein.

In order to prove the diamagnetic inequality we proceed by invariance of closed convex

sets for an appropriate semigroup. This idea appeared already in [Ouh1]. Despite the fact

that it is an abstract result, the invariance result proved in [Ouh1], however, does not seem

to apply in an efficient way to the Dirichlet-to-Neumann operator. The reason is that in

this setting one has to deal with the harmonic lifting (with respect to the elliptic operator)

of functions and it is not clear how to describe such harmonic lifting for complicated

expressions (see Section 5 below). What we do is to rely first on a version from [AE1]

of the invariance criterion of [Ouh1] and then prove new criteria for invariance of closed

convex sets which make a bridge between invariance on L2(Γ) for the Dirichlet-to-Neumann

semigroup and invariance on L2(Ω) for the semigroup of the elliptic operator with Neumann

boundary conditions. The latter is easier to handle. The result is efficient when dealing

with the Dirichlet-to-Neumann operator. The diamagnetic inequality is obtained from

a domination criterion which is obtained by checking the invariance of the convex set

{(ϕ, ψ) ∈ L2(Γ)× L2(Γ) : |ϕ| ≤ ψ} for the semigroup

(
S~a(t) 0

0 S0(t)

)
t≥0

.
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2 Background material

The aim of this section is to recall some well known material on sesquilinear forms and

make precise several notations which will be used throughout the paper.

Let H̃ be a Hilbert space with scalar product (·, ·)H̃ and associated norm ‖ · ‖H̃ . Given

another Hilbert space V which is continuously and densely embedded into H̃. Let

a:V × V → C

be a sesquilinear form. We assume that a is continuous and quasi-coercive. This means

respectively that there exist constants M ≥ 0, µ > 0 and ω ∈ R such that

|a(u, v)| ≤M ‖u‖V ‖v‖V and

Re a(u, u) + ω ‖u‖2
H̃
≥ µ ‖u‖2

V

for all u, v ∈ V . It then follows that a is a closed sectorial form and hence one can associate

an operator Ã on H̃ such that for all (u, f) ∈ H̃ × H̃ one has

u ∈ D(Ã) and Ãu = f

if and only if

u ∈ V and a(u, v) = (f, v)H̃ for all v ∈ V.

It is a standard fact that Ã is a densely defined (quasi-)sectorial operator and −Ã generates

a holomorphic semigroup S̃ = (S̃(t))t≥0 on H̃. See, e.g., [Kat] or [Ouh2].

Let now H be another Hilbert space and j:V → H be a linear continuous map with

dense range. Suppose that the form a:V × V → C is continuous. Following [AE1], we say

that a is j-elliptic if there exist constants ω ∈ R and µ > 0 such that

Re a(u, u) + ω ‖j(u)‖2
H ≥ µ ‖u‖2

V

for all u ∈ V . In this case, there exists an operator A, called the operator associated

with (a, j), defined as follows. For all (ϕ, ψ) ∈ H ×H one has

ϕ ∈ D(A) and Aϕ = ψ

if and only if

there exists a u ∈ V such that

[
j(u) = ϕ and

a(u, v) = (ψ, j(v))H for all v ∈ V.

Then A is well defined and −A generates a holomorphic semigroup S = (S(t))t≥0 on H.

(See [AE1] Theorem 2.1.)

We illustrate these definitions by two important examples in which we define the

Dirichlet-to-Neumann operator and the magnetic Dirichlet-to-Neumann operator on the

boundary of a Lipschitz domain.
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Example 2.1 (The Dirichlet-to-Neumann operator). Let Ω be a bounded Lipschitz domain

in Rd with boundary Γ. We denote by Tr :W 1,2(Ω) → L2(Γ) the trace operator. Let

ckl, bk, ck, a0 ∈ L∞(Ω,C) for all k, l ∈ {1, . . . , d}. We assume the usual ellipticity condition:

there exists a constant µ > 0 such that

Re
d∑

k,l=1

ckl(x) ξk ξl ≥ µ |ξ|2 (3)

for all ξ ∈ Cd and almost every x ∈ Ω. We define the sesquilinear form a:W 1,2(Ω) ×
W 1,2(Ω)→ C by

a(u, v) =
d∑

k,l=1

∫
Ω

ckl (∂lu) ∂kv +
d∑

k=1

∫
Ω

bk (∂ku) v + ck u ∂kv +

∫
Ω

a0 u v. (4)

It is a basic fact that the form a is continuous and quasi-coercive. We denote by A the

operator associated with a on L2(Ω). Define the operator A:W 1,2(Ω)→ W−1,2(Ω) by

〈Au, v〉W−1,2(Ω)×W 1,2
0 (Ω) = a(u, v).

Let u ∈ W 1,2(Ω) with Au ∈ L2(Ω) and ψ ∈ L2(Γ). Then we say that u has weak

conormal derivative ψ if

a(u, v)− (Au, v)L2(Ω) = (ψ,Tr v)L2(Γ)

for all v ∈ W 1,2(Ω). Then ψ is unique by the Stone–Weierstraß theorem and we write

∂aν u = ψ. Formally,

∂aν u =
d∑

k,l=1

νk Tr (ckl ∂lu) +
d∑

k=1

νkTr (ck u),

where (ν1, . . . , νd) is the outer normal vector to Ω. Suppose now that 0 is not in the

spectrum of A endowed with Dirichlet boundary conditions (i.e., the form a is taken on

V = W 1,2
0 (Ω)). Then we say that u ∈ W 1,2(Ω) is A-harmonic if

a(u, v) = 0

for all v ∈ W 1,2
0 (Ω). Since 0 is not in the spectrum of the Dirichlet operator, for all

ϕ ∈ H1/2(Γ) there exists a unique A-harmonic u ∈ H1(Ω) such that Tru = ϕ. We then

define on L2(Γ) the form b:H1/2(Γ)×H1/2(Γ)→ C by

b(ϕ, ξ) := a(u, v), (5)

where u, v ∈ W 1,2(Ω) are A-harmonic with Tru = ϕ and Tr v = ξ, respectively. One

proves that the form b is continuous, sectorial and closed. The associated operator N is

the Dirichlet-to-Neumann operator. For more details see [EO1] Section 2, [EO2] Section 2
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or [AM]. The operator N is interpreted as follows. For all ϕ ∈ H1/2(Γ), one solves the

Dirichlet problem

−
d∑

k,l=1

∂k

(
ckl ∂l u

)
+

d∑
k=1

bk ∂ku− ∂k(ck u) + a0 u = 0 weakly in Ω,

Tru = ϕ

with u ∈ W 1,2(Ω) and if u has a weak conormal derivative, then ϕ ∈ D(N ) and Nϕ = ∂aν u.

Alternatively, let j := Tr and H = L2(Γ). Suppose in addition that a is j-elliptic, that

is, suppose that Re a0 is large enough. Then one checks easily that N is the operator

associated with (a, j).

Example 2.2 (The magnetic Dirichlet-to-Neumann operator). Let ~a := (a1, . . . , ad) be

such that ak ∈ L∞(Ω,R) for all k ∈ {1, . . . , d}. Set

Dk := ∂k − iak

for all k ∈ {1, . . . , d}. We define as above a(~a):W 1,2(Ω)×W 1,2(Ω)→ C by

a(~a)(u, v) =
d∑

k,l=1

∫
Ω

ckl (Dlu)Dkv +
d∑

k=1

∫
Ω

bk (Dku) v + ck uDkv +

∫
Ω

a0 u v. (6)

Then one can define exactly as above the associated operator A(~a) on L2(Ω) as well as the

magnetic Dirichlet-to-Neumann operator N (~a). Formally, if u ∈ W 1,2(Ω) is A(~a)-harmonic

with trace Tru = ϕ, then

N (~a)ϕ = ∂a(~a)
ν u =

d∑
k,l=1

νk Tr (ckl ∂lu)− i
d∑

k,l=1

νkTr (ckl al u) +
d∑

k=1

νk Tr (ck u).

3 Invariance of closed convex sets

As previously, we denote by H̃ and V two Hilbert spaces such that V is continuously

and densely embedded into H̃. Let a:V × V → C be a quasi-coercive and continuous

sesquilinear form. We denote by Ã the corresponding operator and S̃ = (S̃(t))t≥0 the

semigroup generated by −Ã on H̃.

Let C̃ be a non-empty closed convex subset of H̃ and P̃ : H̃ → C̃ the corresponding

projection. We recall the following invariance criterion (see [Ouh1] or [Ouh2] Theorem 2.2).

Theorem 3.1. The following conditions are equivalent.

(i) The semigroup S̃ leaves invariant C̃, that is, S̃(t)C̃ ⊂ C̃ for all t ≥ 0.

(ii) P̃ V ⊂ V and Re a(P̃ u, u− P̃ u) ≥ 0 for all u ∈ V .

If a is accretive, then the previous conditions are equivalent to

(iii) P̃ V ⊂ V and Re a(u, u− P̃ u) ≥ 0 for all u ∈ V .
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The theorem is stated and proved in [Ouh1] or [Ouh2] for accretive forms but the

proof given there for the equivalence of (i) and (ii) does not use accretivity. On the other

hand, the implication (ii) ⇒ (i) is proved in [ADO] Theorem 2.2 in a general setting of

non-autonomous quasi-coercive forms with a non-homogeneous term.

Let now H be a Hilbert space and j:V → H a bounded linear map with dense range.

We assume that a is j-elliptic and denote by A the operator associated with (a, j). The

semigroup generated by −A on H is denoted by S = (S(t))t≥0.

We consider a non-empty closed convex set C of H and denote by P :H → C the

projection. In the context of j-elliptic forms, the previous theorem has the following

reformulation (see [AE1], Proposition 2.9).

Proposition 3.2. Suppose that a is accretive and j-elliptic. Then the following conditions

are equivalent.

(i) C is invariant for S.

(ii) For all u ∈ V there exists a w ∈ V such that P (j(u)) = j(w) and Re a(w, u−w) ≥ 0.

(iii) For all u ∈ V there exists a w ∈ V such that P (j(u)) = j(w) and Re a(u, u−w) ≥ 0.

The following invariance criterion is implicit in [AE1]. It allows to obtain invariance

of a closed convex set C in H for the semigroup S from the invariance of a certain closed

convex set C̃ for the semigroup S̃ in H̃.

Proposition 3.3. Assume a is accretive and j-elliptic. Suppose that the convex set C̃ is

invariant for the semigroup S̃ and that

P ◦ j = j ◦ P̃ . (7)

Then the convex set C is invariant for the semigroup S.

Proof. First, note that the term in the right hand side of condition (7) makes sense because

of the fact that P̃ V ⊂ V by Theorem 3.1 and j:V → H.

Let now u ∈ V and define w = P̃ u. Then w ∈ V and Pj(u) = j(P̃ u) = j(w). Moreover,

Re a(w, u− w) = Re a(P̃ u, u− P̃ u) ≥ 0

by Theorem 3.1 and the assumption that C̃ is invariant for the semigroup S̃. We conclude

by Proposition 3.2 that C is invariant for S.

There are interesting situations where one would like to relax the accretivity assumption

in the previous results. A typical situation is when one applies the above criteria to

positivity of the Dirichlet-to Neumann semigroup. For example, if one considers the form

given by (2) with a0 = λ ∈ R, then the accretivity (on W 1,2(Ω)) holds only if λ ≥ 0.

The accretivity on W 1,2
0 (Ω), however, holds if λ ≥ −λ0, where λ0 is the first (positive)

eigenvalue of the elliptic operator given in (1) with Dirichlet boundary conditions. It is

then of interest to know whether one can replace accretivity in the previous results by

accretivity on W 1,2
0 (Ω). In the light of Theorem 3.1, one would expect to have equivalence

7



of (i) and (ii) in Proposition 3.2 in general. It turns out that this is true if the form a is

symmetric. We do not know whether the same result holds in the case of non-symmetric

forms.

Before stating the results we need some notation and assumptions. Set

V (a) = {u ∈ V : a(u, v) = 0 for all v ∈ ker j}.

In Example 2.1 the space V (a) coincides with the space of A-harmonic functions. We

assume that

V = V (a)⊕ ker j (8)

as vector spaces. In addition, we assume that there exist ω ∈ R and µ > 0 such that

Re a(u, u) + ω ‖j(u)‖2
H ≥ µ ‖u‖2

V (9)

for all u ∈ V (a). (Loosely speaking, the j-ellipticity holds only on V (a).)

Under these two assumptions, one can define as previously the operator A associated

with (a, j) and A is m-sectorial (see [AE1] Corollary 2.2). We denote again by S the

semigroup generated by −A on H. The we have the following version of Proposition 3.2 in

which we relax the accretivity assumption to be valid only on ker j. Note that we always

assume that j:V → H is continuous and has dense range.

Proposition 3.4. Suppose that the form a is symmetric and satisfies (8) and (9). Suppose

in addition that

a(u, u) ≥ 0 for all u ∈ ker j.

Then the following conditions are equivalent.

(i) C is invariant for S.

(ii) For all u ∈ V there exists a w ∈ V such that Pj(u) = j(w) and Re a(w, u− w) ≥ 0.

Remark 3.5. The implication (i)⇒(ii) remains valid without the symmetry assumption

of the form a.

Proof of Proposition 3.4. Define ac: j(V (a))× j(V (a))→ C by

ac(j(u), j(v)) := a(u, v)

for all u, v ∈ V (a). We provide j(V (a)) with the norm carried over from V (a) by j

using (8). It is easy to see that the form ac is well defined, continuous and quasi-coercive.

Its associated operator is again A (see [AE1] Theorem 2.5 and one can easily replace the

j-ellipticity there by (9)). Now we can apply Theorem 3.1 in which the equivalence of the

first two assertions does not use accretivity.

‘(i)⇒(ii)’. By Theorem 3.1 we have P (j(V (a))) ⊂ j(V (a)). Let u ∈ V . By (8)

there exists a u′ ∈ V (a) such that j(u) = j(u′). Hence there is a w ∈ V (a) such that

8



Pj(u′) = j(w). Then Pj(u) = Pj(u′) = j(w). In addition, since u − u′ ∈ ker j and

w ∈ V (a), we have

Re a(w, u− w) = Re a(w, u− u′) + Re a(w, u′ − w)

= Re a(w, u′ − w)

= Re ac(j(w), j(u′ − w))

= Re ac(Pj(u
′), j(u′)− Pj(u′))

≥ 0,

where we use again Theorem 3.1 in the last step. This gives Condition (ii). We observe

that the symmetry assumption is not used here.

‘(ii)⇒(i)’. Let ϕ := j(u) ∈ D(ac), where u ∈ V (a). By (ii) there exists a w ∈ V

such that Pj(u) = j(w) and Re a(w, u − w) ≥ 0. By (8) there is a w′ ∈ V (a) such that

j(w) = j(w′). Then Pϕ = Pj(u) = j(w) = j(w′) ∈ D(ac). Next

Re ac(Pϕ, ϕ− Pϕ) = Re ac(j(w
′), j(u)− j(w′))

= Re a(w′, u− w′)

= Re a(w′ − w, u− w′) + Re a(w, u− w′)

= Re a(w, u− w′).

Here we use

Re a(w′ − w, u− w′) = Re a(u− w′, w′ − w) = 0

by the symmetry of a and the facts that u − w′ ∈ V (a) and w′ − w ∈ ker j. Now, by

Condition (ii) one deduces that

Re a(w, u− w′) = Re a(w, u− w) + Re a(w,w − w′)

≥ Re a(w,w − w′).

On the other hand, Re a(w′, w − w′) = 0 since w′ ∈ V (a) and w − w′ ∈ ker j. Therefore

Re a(w,w − w′) = Re a(w − w′, w − w′) + Re a(w′, w − w′)

= Re a(w − w′, w − w′)

≥ 0,

where we use the accretivity assumption on ker j. Hence we proved that

Re ac(Pϕ, ϕ− Pϕ) ≥ 0.

Using again Theorem 3.1(ii)⇒(i) we conclude that C is invariant for S.

Now we have the following version of Proposition 3.3 with an identical proof, except

that now we apply Proposition 3.4 instead of Proposition 3.2.

9



Corollary 3.6. Assume that the form a is symmetric and satisfies (8) and (9). Suppose

in addition that a(u, u) ≥ 0 for all u ∈ ker j Suppose that the convex set C̃ is invariant for

the semigroup S̃ and that

P ◦ j = j ◦ P̃ .

Then the convex set C is invariant for the semigroup S.

We conclude this section by mentioning that one may consider the Condition (ii) in

Theorem 3.1, Proposition 3.2 and Proposition 3.4 on a dense subset of V as in [Ouh2]

Theorem 2.2.

4 Positivity and L∞-contractivity

The criteria in the previous section turn out to be simple and effective in applications. We

illustrate this by proving positivity and L∞-contractivity of the semigroup generated by

the Dirichlet-to-Neumann operator N described in Example 2.1 of Section 2 under a mild

additional condition. This mild condition is that there is a µ > 0 such that

Re a(u, u) ≥ µ ‖∇u‖2
L2(Ω) (10)

for all u ∈ W 1,2(Ω). This condition is valid if Re a0 is large enough. It is a standard fact

that there is a µ′ > 0 such that∫
Ω

|∇u|2 +

∫
Γ

|Tr (u)|2 ≥ µ′ ‖u‖2
W 1,2(Ω)

for all u ∈ W 1,2(Ω). From this and (10), it follows that a is j-elliptic with j = Tr . Then

we have the following consequence of Proposition 3.3.

Corollary 4.1. Suppose (10) and that the coefficients ckl, bk, ck and a0 are all real-valued

for all k, l ∈ {1, . . . , d}. Then the semigroup S generated by (minus) the Dirichlet-to-

Neumann operator N is positive.

Proof. It follows from [Ouh2], Theorem 4.2, that the semigroup S̃ generated by −A on

L2(Ω) is positive. Therefore S̃ leaves invariant the closed convex set C̃ := {u ∈ L2(Ω) :

u ≥ 0}. The projection onto C̃ is P̃ u = (Reu)+. Now we choose C := {ϕ ∈ L2(Γ) : ϕ ≥ 0}.
Then Pϕ = (Reϕ)+. It is clear that (7) is satisfied and hence C is invariant for S by

Proposition 3.3. This latter property means that S is positive.

Regarding the positivity proved above, a remark is in order. We have assumed (10)

in order to ensure j-ellipticity and define the Dirichlet-to-Neumann operator using (a, j)

technique as explained in Section 2. The condition (10) is however not true for general (too

negative) a0. On the other hand, for general a0 ∈ L∞(Ω) one can still define the Dirichlet-

to-Neumann operator using the form (5) under the sole condition that the elliptic operator

with Dirichlet boundary conditions is invertible on L2(Ω). If a is symmetric, then we

apply Corollary 3.6 instead of Proposition 3.3 and obtain that the Dirichlet-to-Neumann

10



semigroup S is positive if in addition the form a is accretive on W 1,2
0 (Ω). In particular, if

ckl = clk and bk = ck for all k, l ∈ {1, . . . , d}, then S is positive as soon as a0 +λD1 > 0 (that

is a0 + λD1 ≥ 0 and not a0 + λD1 = 0 almost everywhere), where λD1 is the first eigenvalue

of the operator

−
d∑

k,l=1

∂l (ckl ∂k) +
d∑

k=1

bk ∂k − ∂k(ck·)

subject to the Dirichlet boundary conditions. Note that if the condition a0 +λD1 > 0 is not

satisfied, the semigroup S might not be positive. See [Dan].

Concerning the L∞-contractivity of the Dirichlet-to-Neumann semigroup S we have the

following result.

Corollary 4.2. Suppose in addition to (10) that Re a0 ≥ 0. Suppose also that ckl, bk and

ick are real-valued for all k, l ∈ {1, . . . , d}. Then the semigroup S is L∞-contractive.

Proof. Under the assumptions of the corollary, the semigroup S̃ is L∞-contractive by

Theorem 4.6 in [Ouh2]. This means that S̃ leaves invariant the closed convex set given by

C̃ := {u ∈ L2(Ω) : |u| ≤ 1}. The projection onto C̃ is P̃ u = (1 ∧ |u|) signu. We choose

C := {ϕ ∈ L2(Γ) : |ϕ| ≤ 1}. Then Pϕ = (1 ∧ |ϕ|) signϕ. Since Tr ((1 ∧ |u|) signu) =

(1∧ |Tru|) sign(Tru) the condition (7) is satisfied and hence C is invariant for S by Propo-

sition 3.3. This proves that S is L∞-contractive.

A consequence of the previous corollary is that the semigroup S can be extended to a

holomorphic semigroup on Lp(Γ) for all p ∈ (2,∞). For all p ∈ (1, 2) one may argue by

duality by applying the corollary to the adjoint operator.

5 A domination criterion

This section is devoted to a domination criterion for semigroups such as those generated by

Dirichlet-to-Neumann operators. Although one can find in the literature several criteria

for the domination in terms of sesquilinear forms (see [Ouh1] or Chapter 2 in [Ouh2])

their application to Dirichlet-to-Neumann operators is difficult since one has to deal with

harmonic lifting of functions such as ϕ signψ with ϕ, ψ ∈ H1/2(Γ) such that |ϕ| ≤ |ψ| (see

Theorem 5.3 below). In contrast to general criteria in [Ouh1] we shall focus on operators

such as the Dirichlet-to-Neumann operator and make a link between the domination in

L2(Γ) and the domination in L2(Ω). In a sense, we obtain the domination in L2(Γ) for the

semigroup generated by (minus) the Dirichlet-to-Neumann operator from the domination

in L2(Ω) of the corresponding elliptic operator with Neumann boundary conditions.

We start by fixing some notation. Let H̃ := L2(X̃, ν̃) and H = L2(X, ν), where (X̃, ν̃)

and (X, ν) are σ-finite measure spaces. Let U and V be two Hilbert spaces which are

densely and continuously embedded into H̃. We consider two sesquilinear forms

a:U × U → C and b:V × V → C

11



which are continuous, accretive and quasi-coercive. We denote by Ã and B̃ their associated

operators, respectively. Let j1:U → H and j2:V → H be two bounded operators with

dense ranges. We assume that a is j1-elliptic and b is j2-elliptic and denote by A and

B the operators associated with (a, j1) and (b, j2), respectively. Finally, we denote by

S̃ = (S̃(t))t≥0 and T̃ = (T̃ (t))t≥0 the semigroups generated by −Ã and −B̃ on H̃ and S =

(S(t))t≥0 and T = (T (t))t≥0 the semigroups generated by −A and −B on H, respectively.

Then under these assumptions we have transference of domination.

Theorem 5.1. Adopt the above notation and assumptions. Further suppose the following.

(I) S̃ is dominated by T̃ , i.e.,

|S̃(t)f | ≤ T̃ (t)|f |

for all t ≥ 0 and f ∈ H̃.

(II) The maps j1 and j2 satisfy the four properties in Hypothesis 5.4.

Then S is dominated by T , i.e.,

|S(t)ϕ| ≤ T (t)|ϕ|

for all t ≥ 0 and all ϕ ∈ H.

In the light of Proposition 3.4 and Corollary 3.6 the accretivity assumption can be

improved if the forms a and b are symmetric. We leave the details to the interested reader.

For the proof of Theorem 5.1 and also to formulate Hypothesis 5.4 we need some

additional concepts. The following definition was introduced in [Ouh1].

Definition 5.2. We say that U is an ideal of V if

• u ∈ U ⇒ |u| ∈ V and

• if u ∈ U and v ∈ V are such that |v| ≤ |u|, then v signu ∈ U .

We also recall the following criterion for domination (see [Ouh1] or [Ouh2] Theo-

rem 2.21).

Theorem 5.3. Suppose that the semigroup T̃ is positive. The following conditions are

equivalent.

(i) S̃ is dominated by T̃ .

(ii) U is an ideal of V and Re a(u, |v| signu) ≥ b(|u|, |v|) for all (u, v) ∈ U ×V such that

|v| ≤ |u|.

(iii) U is an ideal of V and Re a(u, v) ≥ b(|u|, |v|) for all u, v ∈ U such that u v ≥ 0.

Since we assume in Theorem 5.1 that S̃ is dominated by T̃ , it is then is a consequence

of Theorem 5.3 that U is an ideal of V . In particular, all the quantities appearing in the

following properties are well defined.

12



Hypothesis 5.4. Assume

• j2(Re v) = Re j2(v) for all v ∈ V ,

• j2(v1 ∨ v2) = j2(v1) ∨ j2(v2) for all v1, v2 ∈ V which are real-valued,

• j2(|u|) = |j1(u)| for all u ∈ U , and

• j1(|v| signu) = |j2(v)| sign(j1(u)) for all (u, v) ∈ U × V such that |v| ≤ |u|.

Note that the first two properties use the fact that semigroup T̃ is positive and hence

Reu, (Reu)+ ∈ V for all u ∈ V . This implies that v1∨v2 ∈ V for all real-valued v1, v2 ∈ V .

Obviously, the properties in Hypothesis 5.4 are satisfied if U = V = W 1,2(Ω), H =

L2(Γ) and j1 = j2 = Tr .

Proof of Theorem 5.1. We follow an idea from [Ouh1] and view the domination as the

invariance of a closed convex set by an appropriate semigroup. Define Ĥ := H̃ × H̃ =

L2(X̃, µ)× L2(X̃, µ) and consider the closed convex set

Ĉ := {(u, v) ∈ Ĥ : |u| ≤ v}.

The projection onto Ĉ is given by

P̂ (u, v) =
1

2

(
[|u|+ |u| ∧ Re v]+ signu, [|u| ∨ Re v + Re v]+

)
. (11)

See [Ouh1] or [Ouh2] (2.7). We also define ĵ:U × V → H ×H by

ĵ(u, v) := (j1(u), j2(v)).

Since j1 and j2 are bounded with dense ranges it is clear that ĵ is bounded and has dense

range.

Next define the sesquilinear form c: (U × V )× (U × V )→ C by

c((u0, v0), (u1, v1)) := a(u0, u1) + b(v0, v1).

This form is quasi-coercive, accretive and continuous. Its associated operator is(
Ã 0

0 B̃

)

and the corresponding semigroup on Ĥ is(
S̃ 0

0 T̃

)
=

(
S̃(t) 0

0 T̃ (t)

)
t≥0

.

We next show that c is ĵ-elliptic. Indeed, if (u, v) ∈ U × V , then

Re c((u, v), (u, v)) + ω ‖ĵ(u, v)‖2
H×H = Re a(u, u) + ω ‖j1(u)‖2

H + Re b(v, v) + ω ‖j2(v)‖2
H

≥ µ (‖u‖2
U + ‖v‖2

V ),

13



where we use that a is j1-elliptic and b is j2-elliptic with some constants ω1, ω2 ∈ R and

µ1, µ2 > 0 and then we take ω = max(ω1, ω2) and µ = min(µ1, µ2). Recall that A and B

are the operators associated with (a, j1) and (b, j2), respectively. Denote by C the operator

associated with (c, ĵ).

We shall show that

C =

(
A 0

0 B

)
. (12)

In order to prove this we use the definition of the associated operator. Let (ϕ, ψ) ∈ D(C)

and write (η, χ) = C(ϕ, ψ). This means that there exists (u, v) ∈ U × V such that

ĵ(u, v) = (ϕ, ψ) and (13)

c((u, v), (w, z)) = ((η, χ), ĵ(w, z))H×H for all (w, z) ∈ U × V. (14)

The equality in (14) reads as

a(u,w) + b(v, z) = (η, j1(w))H + (χ, j2(z))H

for all w ∈ U and z ∈ V . Taking z = 0 in the last equality and using (13) yields ϕ = j1(u)

and a(u,w) = (η, j1(w))H for all w ∈ U . This means that ϕ ∈ D(A) and Aϕ = η. Similarly,

ψ ∈ D(B) and Bψ = χ. Hence

(ϕ, ψ) ∈ D(

(
A 0

0 B

)
) and C(ϕ, ψ) =

(
A 0

0 B

)
(ϕ, ψ).

We have proved that

(
A 0

0 B

)
is an extension of C. The converse inclusion is similar

and we obtain (12).

We conclude from the equality (12) that the semigroup generated by −C is given by(
S 0

0 T

)
=

(
S(t) 0

0 T (t)

)
t≥0

.

Now we consider the closed convex subset of H ×H defined by

C := {(ϕ, ψ) ∈ H ×H : |ϕ| ≤ ψ}.

Similarly to (11), the projection onto C is given by

P (ϕ, ψ) =
1

2

(
[|ϕ|+ |ϕ| ∧ Reψ]+ signϕ, [|ϕ| ∨ Reψ + Reψ]+

)
.

It follows easily from Hypothesis 5.4 that P ◦ ĵ = ĵ ◦ P̂ . Since the domination of S̃

by T̃ means that the semigroup

(
S̃ 0

0 T̃

)
leaves invariant the convex Ĉ, we conclude by

Proposition 3.3 that the semigroup

(
S 0

0 T

)
, generated by −C on H×H, leaves invariant

the convex set C. The latter property means again that S is dominated by T . This proves

the theorem.
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6 The diamagnetic inequality

In this section we prove the diamagnetic inequality for the Dirichlet-to-Neumann operator.

This will be obtained by applying Theorem 5.1.

Let Ω be a bounded Lipschitz domain in Rd with boundary Γ. Let ~a = (a1, . . . , ad) be

such that ak ∈ L∞(Ω,R) for all k ∈ {1, . . . , d}. We consider the magnetic Dirichlet-to-

Neumann operator N (~a) on L2(Γ) and the Dirichlet-to-Neumann operator N correspond-

ing to ~a = 0 (see Examples 2.1 and 2.2 in Section 2). We denote by S~a = (S~a(t))t≥0 and

S = (S(t))t≥0 the semigroups generated by −N (~a) and −N on L2(Γ), respectively. We

have the following domination.

Theorem 6.1. Let Ω be a bounded Lipschitz domain in Rd with boundary Γ. Further let

ckl, bk, ck, a0, ak ∈ L∞(R) for all k, l ∈ {1, . . . , d}. Suppose that the ellipticity condition (3)

is valid. Define the form a as in (4). Suppose in addition that the form a in (4) is accretive

and j-elliptic with j = Tr . Then S~a is dominated by S on L2(Γ). That is,

|S~a(t)ϕ| ≤ S(t)|ϕ|

for all t ≥ 0 and ϕ ∈ L2(Γ).

Proof. We apply Theorem 5.1 with H̃ = L2(Ω), U = V = W 1,2(Ω) and H = L2(Γ). Set

j1 = j2 = Tr . It is clear that the four properties in Hypothesis 5.4 are satisfied. Therefore

Theorem 6.1 follows immediately from Theorem 5.1 and the next result, Proposition 6.2,

on the domination in L2(Ω).

Denote by Ã(~a) and Ã = Ã(0) the elliptic operators associated with the forms defined

by (6) and (4) on W 1,2(Ω). We denote by S̃~a and S̃ the semigroups generated by −Ã(~a)

and −Ã on L2(Ω), respectively.

Proposition 6.2. Suppose that ckl, bk, ck, a0 and ak are real-valued for all k, l ∈ {1, . . . , d}.
Then we have the diamagnetic inequality

|S̃~a(t)f | ≤ S̃(t)|f |

for all t ≥ 0 and f ∈ L2(Ω).

The proposition is very well known in the case Ω = Rd, ckl = δkl and bk = ck = 0. For

general domains with Neumann boundary conditions (as we do in the previous proposition)

and ckl = δkl, bk = ck = 0 it was proved in [HS]. Note that in our case we do not assume

any regularity nor symmetry for (ckl). In addition we allow the presence of terms of order 1.

The same domination result is also valid, with the same proof, if the operators Ã(~a) and Ã

are endowed with other boundary conditions such Dirichlet or mixed boundary conditions.

Proof. Note first that since all the coefficients are real-valued, the semigroup S̃ generated

by −Ã is positive (cf. [Ouh2] Corollary 4.3). In particular, W 1,2(Ω) is an ideal of itself (see

[Ouh1] or [Ouh2] Proposition 2.20). It remains to prove that

Re a(~a)(u, v) ≥ a(|u|, |v|) (15)
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for all u, v ∈ W 1,2(Ω) with u v ≥ 0 and then apply Theorem 5.3. Let u, v ∈ W 1,2(Ω) with

u v ≥ 0. Then u v = |u| |v| and (signu) sign v = 1 outside the sets where u = 0 or v = 0.

Hence using [GT] Lemma 7.7 one deduces that

Re a(~a)(u, v) = Re
d∑

k,l=1

∫
Ω

ckl (∂lu) ∂kv +
d∑

k,l=1

∫
Ω

ckl al Im(u ∂kv)−
d∑

k,l=1

∫
Ω

ckl ak Im((∂lu) v)

+
d∑

k,l=1

∫
Ω

ckl al ak |u| |v|+
d∑

k=1

∫
Ω

bk Re((∂ku) v) + ck Re(u ∂kv)

+

∫
Ω

a0 |u| |v|

=
d∑

k,l=1

∫
Ω

ckl Re((∂lu) signu) Re((∂kv) sign v)

+
d∑

k,l=1

∫
Ω

ckl Im((∂lu) signu) Im((∂kv) sign v)

+
d∑

k,l=1

∫
Ω

ckl al Im(u ∂kv)−
d∑

k,l=1

∫
Ω

ckl ak Im((∂lu) v)

+
d∑

k,l=1

∫
Ω

ckl al ak |u| |v|+
d∑

k=1

∫
Ω

bk Re((∂ku) v) + ck Re(u ∂kv)

+

∫
Ω

a0 |u| |v|

=
d∑

k,l=1

∫
Ω

ckl (∂l|u|) ∂l|v|+
d∑

k=1

∫
Ω

bk (∂k|u|) |v|+ ck |u| ∂k|v|+
∫

Ω

a0 |u| |v|

+
d∑

k,l=1

∫
Ω

ckl Im((∂lu) signu) Im((∂kv) sign v)

−
d∑

k,l=1

∫
Ω

ckl ak Im((∂lu) signu) |v| −
d∑

k,l=1

∫
Ω

ckl al Im((∂ku) signu) |v|

+
d∑

k,l=1

∫
Ω

ckl al ak |u| |v|,

where we used the standard fact that

∂k|u| = Re((∂ku) signu).

In addition, since u v ≥ 0 we have Im ∂k(u v) = 0 and hence we used that

Im(u ∂kv) = −|v| Im((∂ku) signu).
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Next −|u| Im((∂kv) sign v) = Im(u ∂kv) and therefore∫
Ω

ckl Im((∂lu) signu) Im((∂kv) sign v) =

∫
Ω

ckl Im((∂lu) signu) Im((∂ku) signu)
|v|
|u|
,

with the convention that Im((∂lu) signu) Im((∂ku) signu) |v||u| = 0 on the set where u = 0.

It follows that

Re a(~a)(u, v) = a(|u|, |v|) +
d∑

k,l=1

∫
Ω

ckl Im((∂lu) signu) Im((∂ku) signu)
|v|
|u|

−
d∑

k,l=1

∫
Ω

(ckl + clk) ak Im((∂lu) signu) |v|+
∑
k,l

∫
Ω

ckl al ak |u| |v|

= a(|u|, |v|) +

∫
Ω

Q
|v|
|u|
,

where

Q =
d∑

k,l=1

ckl Im((∂lu) signu) Im((∂ku) signu)−
d∑

k,l=1

(ckl + clk) ak Im((∂lu) signu) |u|

+
d∑

k,l=1

ckl al ak |u|2.

It remains to prove that Q ≥ 0 to obtain (15).

Set ξk := Im((∂ku) signu) for all k ∈ {1, . . . , d}, ξ = (ξ1, . . . , ξd) and C = (ckl)1≤k,l≤d.

Then

Q = 〈Cξ, ξ〉Rd − 〈(C + C∗)~a, ξ〉Rd |u|+ 〈C~a,~a〉Rd |u|2.

By the Cauchy–Schwarz inequality,

〈(C + C∗)~a, ξ〉Rd |u| ≤ 〈(C + C∗)~a,~a〉1/2
Rd |u| 〈(C + C∗)ξ, ξ〉1/2

Rd

≤ 1

2
〈(C + C∗)~a,~a〉Rd |u|2 +

1

2
〈(C + C∗)ξ, ξ〉Rd

= 〈C~a,~a〉Rd |u|2 + 〈Cξ, ξ〉Rd .

This implies that Q ≥ 0 and finishes the proof of the proposition.

Remark 6.3. We mentioned above that the diamagnetic inequality of Proposition 6.2

is valid with other boundary conditions. Note also that if we add a positive potential

V to a0 in the expression of Ã(~a), then we have the same domination by the semigroup

of Ã (without V ). The same domination holds for the corresponding semigroups of the

Dirichlet-to-Neumann operators. A particular case of this result was proved in [EO1] for

the Dirichlet-to-Neumann operators associated with −∆ + V and −∆ on L2(Γ).
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7 Some consequences

Let Ω be a bounded open Lipschitz subset of Rd with boundary Γ, where d ≥ 2. Let

S~a be the semigroup generated by (minus) the magnetic Dirichlet-to-Neumann operator

N (~a) on L2(Γ). Since the trace operator is compact, it follows that the spectrum of

N (~a) is discrete. If N (~a) is self-adjoint we denote by λ1 ≤ λ2 ≤ . . . the sequence of the

corresponding eigenvalues. The first consequence of Theorem 6.1 is as follows.

Corollary 7.1. Suppose that ckl = clk ∈ L∞(Ω,R), bk = ck = 0 and ak ∈ L∞(Ω,R) for all

k, l ∈ {1, . . . , d}. Suppose also that a0 ≥ 0. Then there exists a constant c > 0, independent

of ~a, such that
∞∑
k=1

e−λkt ≤ c t−(d−1)

for all t ∈ (0, 1].

Proof. Under the assumptions of the corollary, the operator N (~a) is self-adjoint. In

addition, a combination of Theorem 6.1 and Corollary 4.2 shows that S~a is L∞-contractive.

Now, by the classical Sobolev embeddings the semigroup S~a(t) maps L2(Γ) into L 2(d−1)
d−2

(Γ)

if d ≥ 3. This together with the fact that S~a is L∞-contractive implies by extrapolation

the estimate

‖S~a(t)‖L1(Γ)→L∞(Γ) ≤ c t−(d−1) (16)

for all t ∈ (0, 1]. We refer to [EO1] Theorem 2.6 and [EO2] for additional details, which

provide a proof that (16) is also valid if d = 2.

The estimate (16) implies that S~a(t) is given by a kernel K~a(t, ·, ·): Γ × Γ → C in the

sense

(S~a(t)ϕ)(w) =

∫
Γ

K~a(t, z, w)ϕ(z) dσ(z)

with

|K~a(t, z, w)| ≤ c t−(d−1) (17)

for all t ∈ (0, 1]. It is well known that the trace of the operator S~a(t) coincides with∫
Γ
K~a(t, z, z) dσ(z) and the corollary follows from (17).

Note that (17) can also be used to obtain some bounds on the counting function of

N (~a). See [AE2].

The second consequence we mention here is that under additional regularity the esti-

mate (17) on the heat kernel K~a can be improved into an optimal Poisson bound.

Corollary 7.2. Let Ω be a bounded domain of class C1+κ for some κ > 0. Suppose also

that ckl = clk ∈ Cκ(Ω,R), bk = ck = 0 and ak ∈ L∞(Ω,R) for all k, l ∈ {1, . . . , d}. Suppose

in addition that a0 ≥ 0. Then there exists a constant c > 0 such that

|K~a(t, z, w)| ≤ c (t ∧ 1)−(d−1) e−λ1t(
1 +
|z − w|

t

)d
for all z, w ∈ Γ and t > 0, where λ1 is the first eigenvalue of the operator N (~a).
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Proof. The estimate

|K~a(t, z, w)| ≤ c (t ∧ 1)−(d−1)(
1 +
|z − w|

t

)d
for all z, w ∈ Γ and t > 0 follows immediately from Theorem 6.1 and Theorem 1.1 in [EO2].

The improvement upon the factor e−λ1t follows as at the end of the proof of Theorem 1.2

in [EO1] (page 4084).

Corollary 7.3. Adopt the notation and assumptions of Corollary 7.2. In addition suppose

that d ≥ 3. Then for all ε, τ ′ ∈ (0, 1) and τ > 0 there exist c, ν > 0 such that

|K~a(t, z, w)−K~a(t, z
′, w′)|

≤ c (t ∧ 1)−(d−1)
( |z − z′|+ |w − w′|

t+ |z − w|

)ν 1(
1 +
|z − w|

t

)d−ε (1 + t)ν e−λ1t

for all z, w, z′, w′ ∈ Γ and t > 0 with |z − z′|+ |w − w′| ≤ τ t+ τ ′ |z − w|.

Proof. This follows by interpolation from the Poisson bounds of Corollary 7.2 and uniform

Hölder bounds in [EW] Theorem 5.5. The argument is similar to the proof of Theorem 5.11

in [EW].
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