
HAL Id: hal-02547592
https://hal.science/hal-02547592

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalization of Service Creation in Intelligent Network
Marie-Pierre Gervais, Alioune Diagne

To cite this version:
Marie-Pierre Gervais, Alioune Diagne. Formalization of Service Creation in Intelligent Network. [Re-
search Report] lip6.1997.012, LIP6. 1997. �hal-02547592�

https://hal.science/hal-02547592
https://hal.archives-ouvertes.fr

This paper will be appeared in the Proceedings of the International Conference on Intelligence in Networks

(ICINÕ96 - Bordeaux - Novembre 1996)

Formalization of Service Creation

in Intelligent Network

Marie-Pierre GERVAIS(*) and Alioune DIAGNE

 Universit� Ren� Descartes(*) - Universit� Pierre & Marie Curie

Institut Blaise Pascal - Laboratoire MASI (CNRS UA 818)

4, place Jussieu, 75252 PARIS Cedex 05, FRANCE

{Marie-Pierre.Gervais, Alioune.Diagne}@masi.ibp.fr

Abstract

The service creation in Intelligent Network is a software quality

problem that encompasses several activities, namely

specification, design, implementation, deployment and

maintenance. In order to ensure the software quality, validation

and formal verification are required. Validation of a service

consists of verifying the global coherence of its specification

and design, while verification consists of formal proof of

structural and behavioral expected properties.

We propose in this paper a multi-formalism approach, coupling

the use of Object-Oriented (OO) and Petri Nets (PN)

paradigms, which enables a designer to validate and to verify a

service specification. We provide him a proving toolset in order

to achieve these activities. This paper describes this proving

toolset and its experience on an exemple.

1. Introduction

Intelligent Network has been introduced in order to

facilitate the development of new telecommunication

services. It is an architectural concept that separates the

call control from the service processing. It enables to

consider a telecom network as composed of two distinct

parts, one dedicated to the transport function and the

other one responsible for the service realization. With

such an architecture, a predominant role is given to the

services aspects. One major question is to know how to

enlarge this services market by introducing new services.

The difficulty is to specify and to design a service in order

to integrate it into an operational system without altering

the existing services operation. An example of this

difficulty is the well-known problem of the feature

interaction risk, which a classification is given in

[Cameron94] and some resolving approaches are

presented in [Bouma94].

We consider that the service creation is a software quality

problem. A telecommunication service is a distributed

application built as a set of interacting components. Its

creation encompasses several activities, namely

specification, design, implementation, deployment and

maintenance. In order to ensure the software quality,

validation and formal verification are required.

Validation of a service consists of verifying the global

coherence of its specification and design, while

verification consists of formal proof of structural and

behavioral expected properties. Validation and

verification must be applied to each step of the creation

process, given that the later an error is detected, the

harder its correction is. This way of service creation

prevents to pass on errors from phase to phase in the life-

cycle. In order to be rigorous, the service creation needs

to be based on formal methods. A number of formal

methods have been proposed for that purpose, including

finite state-machines, transition systems or variants of

temporal logic.

We propose in this paper a multi-formalism approach,

coupling the use of Object-Oriented (OO) and Petri Nets

(PN) paradigms, which enables a designer to validate and

to verify a service specification. This approach and the

associated proving toolset are presented in Section 2.

Then we develop in Section 3 an illustration of its use by

providing an exemple of a service specification and the

explanation of the specification analysis. Section 4

provides some concluding remarks.

2. The Multi-Formalism Approach

In the service creation, the phases of specification and

design are frequently performed by using Object-

Oriented methods (e.g., OMT and Class/relation).

Advantages of OO methods include :

¥ structuring facilities : an application is a distributed

software built as a set of elementary interacting com-

ponents (objects) according to the client/server para-

digm : a component (a server) offers services, which

can be invoked by the others (the clients),

¥ seamless suitability to the different stages of the

application creation : the application is built by pro-

gressive reÞnement,

¥ encapsulation: an application is characterized by the

interactions it supports rather than by the way it is

designed.

Unfortunately, OO methods do not provide validation

and verification features to evaluate the correctness and

compliance of the model. So we propose to integrate the

Petri Nets proving power in an OO methodology. PNs are

well-suited to reactive and distributed systems such as

telecommunication systems. This formalism is richer

than others generally used in the telecommunication area

(e.g., SDL or Estelle) since its provides verification

2

techniques in addition of simulation. However, Petri nets,

as well as other formal methods, have substantial

practical limitations. People require extensive training to

use them because the tools that support them are often

difficult to incorporate into the standard production

software development environment. Moreover, PN lacks

of structuring facilities. Coupling the use of PNs with the

OO paradigm enables to overcome such limitations. Our

claim is to provide design engineers with a proving

toolset, provided that they structure their models in a

relevant way. The models structure is supplied as design

patterns suggested by the service architecture and the

properties to be verified.

2.1. The Proving Toolset Description

The proving toolset is composed of two models, namely

the OF-Class

1

 model and the OF-CPN

2

 model

[Diagne96a]. The OF-Class model, which is an object-

based model supporting the design and part of the

validation activities, is the entry point of the proving

toolset (Fig. 1). It is formally and automatically

associated with a modular Petri net model called OF-

CPN model, which supports the remainder of the

validation and verification activities. This way of

integration allows to hide the CPN to the design

engineers.

Figure 1: The Two Models of the Proving Toolset

Design patterns, i.e. structural rules, are given in the OO

environment. The OO initial model of the application is

then designed according to an OOA&D

3

 method with

respect to these design patterns. They allow to transform

this initial model into an OF-Class model. This OF-Class

model can be overloaded with observation mechanisms.

It supports the activities of validation and verification,

which provide results that are interpreted back to the

initial model in terms of relevant quality information.

The initial model can then be refined according to the

supplied information. Validation enables to obtain

information related to the global coherence and the

1. OF-Class stands for Object Formalism class

2. OF-CPN stands for Object Formalism Colored Petri Net

3. OOA&D stands for Object-Oriented Analysis and Design

Knowledge Domain
Proving toolset

OO Initial

Model

Progressive

Refinement

OOA&D

Method
OF-CPN ModelOF-Class Model

Quality Information

Observation mechanisms

Structural rules

completeness of the model. It is a first step to evaluate the

correctness of interactions between the application

components. Verification deals with safety and reliability

properties. Safety properties ensure that faults like

deadlocks do not occur in the application. Reliability

properties ensure that functionalities of the application

are correctly fulfiled.

OF-Class Model

The OF-Class model has two description levels, a Micro-

Level and a Macro-Level.

The Micro-Level describes the local resources of a

component and their possible transformations. A

resource is an entity local to a component that can be

accessed only through invocations of services offered by

that component. Transformations of resources are done

by means of elementary actions. These actions are

grouped as sets called operations. An operation is a set of

actions performing a given semantical transformation on

local resources. An operation can issue requests to the

environment. It has input and output parameters, local

variables and a return code. A component may also

trigger some sets of actions when reaching some

meaningful states or when some events occur while

interworking with the environment. These mechanisms

are slightly different from operations because they cannot

be invoked by clients. Such actions are called triggers

and exceptions. Triggers bear eventually preconditions,

i.e. predicates on the resources values or input

parameters specifying the state in which they are

executed. Triggers can undertake interactions with the

environment.

The Macro-Level in OF-Class describes the structural

and dynamic links necessary for interaction of

components in the service. Structural links allow to

compose discrete components in order to build a more

complex one. Dynamic links are:

¥ the offered services exported by a component. An

offered service is a set of operations with contractual

constraints like precedence or access semantic (syn-

chronous, rendez-vous, etc.). It is a coherent partial

view on the behavior provided to the environment for

access to the local resources. The contractual cons-

traints give the usage manual of the service.

¥ the required services from the environment show a

given component the way it must use the services.

They are provided by other components of the appli-

cation.

2.2. The Proving Toolset Use

The OF-Class model is mapped on a modular colored

Petri net model (OF-CPN). So once the application is

described as a set of OF-Classes, we can undertake

transformation into OF-CPN. The transformation is fully

automated and supported by a tool integrated in the AMI

environment, which is a framework dedicated to

3

formalization of software development along the life-

cycle [MARS94]. The OF-CPN model of the application

is used to compute the state/transition graph fully

describing the possible behavior of each component. This

graph is reduced using observation-equivalence called

also CFDD-equivalence in process algebra [Valmari94].

Two components are equivalent with respect to such a

relation if they consume and produce the same events on

their interfaces. The proving procedure consists of

considering for a given component of a system its full

state/transition graph interfaced with the reductions of

the other components that give an exhaustive abstraction

of the environment. We can therefore validate the

behavior of the component given that abstraction.

3. Case Study

One of the beneÞts of formalizing application creation is

the ability to detect errors that can occur during the

application creation. So we illustrate our methodology by

addressing the problem of the introduction of a new

telecommunication service in an operational

telecommunication system. The chosen example is an

Intelligent Network (IN) telecommunication system that

provides the Call Forwarding Unconditional (CFU)

service and in which a new service is added, namely the

Terminating Call Screening (TCS) service. The design is

incremental and is composed of three steps. Firstly we

model a basic telecommunication system that provides

the most elementary service, namely the basic call. Then

we modify this telecommunication system model to

introduce the Intelligent Network (IN) capability, which

is the ability to detect an IN service demand, and we

specify a telecommunication system that provides the IN

Call Forwarding Unconditional (CFU) service. Finally

we make the model richer by introducing the Terminating

Call Screening (TCS) service.

3.1. The Basic Telecommunication System

A telecommunication system operation is based on the

exchange of messages and signals. The specification of

such a system enables to validate these exchanges and to

verify that the system behavior is in conformance with

the requirements. The specification of the basic

telecommunication system we made is based on a

simplified scenario of a communication between two

users. We assume that the network is composed of one

single switch, and two lines. By this way, no routing

function is taken into account by the switch. We also

assume that the switch does not have any dialing errors to

manage. Moreover, we omit the charging aspects.

Finally, we adopt a unified process of the call release

since it does not deal with the dissymetric aspect of the

call release, i.e., the switch processes the release in the

same way whether the caller first hangs up or the callee.

The OF-Class model related to such a telecommunication

system contains two OF-Classes, namely the OF-Class

Terminal

 and the OF-Class

TSwitch

. The user is not

modelled since he does not belong to the system. His

interaction with the system will be taken into account as

an external entity that has not to be validated. The OF-

Classes interact through their interfaces in order to

perform the system function. The set of possible

interactions between a terminal and a switch reflects the

communication progress and is expressed through

interfaces, which constitute the macro-level description

of the OF-Class. Moreover, each of these OF-Classes

owns resources. For example, a switch manages a set of

lines, and a set of connections that result of the ongoing

association of two lines. We have simplified the

description by characterizing a line with an identifier that

corresponds to the terminal number and a state.

3.2. The CFU Telecommmunication System

Based on the specification of a basic telecommunication

system, we model a CFU Telecommunication System,

that is a system that provides the Call Forwarding

Unconditional service. The Functional Entities we

consider are the CCF/SSF, SCF and SDF entities

1

. We

only consider the user procedures of the CFU service,

namely activation, deactivation and use and we study in

depth the processing of a CFU number demand. When a

user dials a CFU subscriber number, the call must be

redirected to the Forwarded-To number provided by the

CFU subscriber if the service has been activated. So no

specific procedure is required from the user calling the

CFU subscriber. Only the system is involved to detect

that such a basic call demand is in fact a CFU processing

demand.

The OF-Class model of such a system contains the same

OF-Class

Terminal

 as the previous model, a new OF-

class

SSF

 corresponding to the modified OF-Class

TSwitch

 enhanced with the ability to detect an IN

demand, and two other new OF-Classes, namely the

SCF

and the

OFCallForwarding

 OF-Classes

2

.

The CCF/SSF detects a CFU demand by the processing

of detection points (DPs). A simplified DPs processing

is considered: only the DP12 is taken into account, that is

the processing associated with the acceptation of a call on

the terminating side. Actually, before delivering the call

to the called terminal, the CCF/SSF determines if it is a

basic call or if it is an IN service demand. For that, we

assume that an armed DP12 and the corresponding

service key, namely the CFU number demand, are

associated with the CFU subscriber number. This is

realized by using a table that associates the armed DPs for

1. We do not consider the SRF entity that could be used for the user

interaction.

2. In order to simplify, we group together the SCF and SDF entities

in a single OF-Class.

4

a service with the user profile identified by his terminal

number. This table

tPointTable

 is defined as an SSF

resource. So any call with call parameters corresponding

to a CFU subscriber number is identified as an IN service

demand and is suspended while a request is addressed to

the SCF for service processing. The CCF/SSF will

continue the basic call processing according to the SCF

order related to the end of the service execution. Three

types of orders are identified :

¥ continue with same data : the CCF/SSF can resume

the basic call processing with the same data, i.e, the

calling line identity (

callingLineID

) and the called

line identity (

calledPartyNumber

),

¥ continue with new data : the service execution provi-

des new data by modifying of the initial ones (e.g.

the Forwarded-To number replaces the called num-

ber). So the CCF/SSF has to resume the basic call

processing by taking into account these new data.

¥ clear the call : following the service execution, the

call must be cleared by the CCF/SSF. This response

is provided for example in case of error occurring

during the service execution. We also use it to termi-

nate a service demand for which no connection

request is required, for example the activation or

deactivation of a service. In such cases, once the ser-

vice is performed, we assume that the call can be

cleared.

So the OF-Class

SSF

 imports from the OF-Class

SCF

 the

service

StartUp

 that is composed of the operation

InitialDP

. The service invocation mode is synchronous.

The OF-Class

SCF

 models the entity that is responsible

for the processing of the SSF requests. When the SSF

invokes the operation

InitialDP

, it provides to the SCF

one parameter

initialDPArg

 that contains the identifier

of the service

serviceKey

, the identity of the calling

terminal

callingLineID

 and the identity of the called

terminal

calledPartyNumber

. The

serviceKey

 is a

discriminator that enables the SCF to determine which

service logic program is concerned by the request. So the

SCF transfers the request to this service logic program.

The macro-level of the OF-Class

SCF

 only contains an

operational interface. The imported service of this OF-

Class is the service

CallForwarding

 composed of three

operations, the

CF_Activation

, the

CF_Deactivation

and the

CF_Processing

 operations. This service is used

by the SCF to invoke the suitable service logic program.

Its invocation mode is synchronous. The OF-Class

SCF

exports the service

StartUp

, which is used by the SSF.

The

InitialDP

 operation is the single operation

composing the service. The service invocation mode is

synchronous. The micro-level description is very simple:

only the operations contents are needed. The SCF

manages no resource because it only works on supplied

data and does not need to have persistent states. It should

be noticed that the model of the SCF entity defined in CS-

1 identifies several modules, especially the service logic

programs. In our model, we have expressed this

characteristic by defining two OF-Classes. One is the

OF-Class

SCF

 that represents the module that receives an

SSF request, analyzes it and invokes the suitable service

logic program. The other is the OF-Class

OFCallForwarding

 and it represents the service logic

itself. As a service logic program is a part of the SCF, the

OF-Class

SCF

 includes the OF-Class

OFCallForwarding

.

The OF-Class

OFCallForwarding

 represents the service

logic of the CFU service. Its macro-level description

contains the exported service

CallForwarding

 with its

three operations

CF_Activation

,

CF_Deactivation

 and

CF_Processing

, corresponding to the user procedures.

The usage manual expresses the dependency relation

between the

CF_Activation

 and the

CF_Deactivation

operations, as the

CF_Activation

 operation must always

preceed the

CF_Deactivation

operation. On the other

hand, the

CF_Processing

 operation can be invoked

independently from the two others. It should be noticed

that we have introduced the assumption that SCF and

SDF are grouped together. As the OF-Class

SCF

 models

the SDF too, we define one resource at the micro-level.

This is the list of the subscribers who have activated the

CFU service,

CF_activeList

. Only the

CF_Processing

operation is specified into details, which performs a CFU

number demand processing.

3.3. The IN Telecommunication System

Based on the CFU system, we now model an IN

Telecommunication System, that is the CFU system in

which the Terminating Call Screening service (TCS) is

introduced. The TCS service enables a user to forbid

some calls to be delivered on his terminal. This means

that the subscriber has to provide the calling numbers he

wants to forbid, and when an incoming call is presented

to the switch from one of these numbers, the switch stops

this call. As we did for the CFU service, we focus on the

user procedures of the TCS service, especially the

processing of a TCS number demand. The TCS Number

Demand Processing is very close to the CFU processing,

since it is also based on the call presentation to the called

terminal. So the CCF/SSF detects the TCS demand

through the DP12 processing and invokes the SCF by

providing it with the service key. Based on it, the SCF

invokes the TCS service logic program that determines if

the call must be filtered or not. Regarding the response,

the SCF will deliver to the CCF/SSF the order to resume

or to clear the call

1

.

For introducing this new service, the CFU

Telecommunication System requires some

1. Once again, we simplify the procedure by omitting the announce-

ment to the caller that he is not authorized to place his call

5

modifications. The OF-Class

SSF

 has to be modified to be

able to detect a TCS service demand and to initiate a

corresponding request to the SCF. Obviously the DP12

has to be armed. As in the previous model, we use the

SSF resource

tPointTable

 to associate an armed DP for

a service with the user profile identified by his terminal

number. So this table has to be modified by adding the

association corresponding to the TCS service. This table

represents the list of services for which the DP12 is

armed and for which the CCF/SSF has to request to the

SCF the execution of the corresponding service logic

programs during a given call. If several services have to

be invoked in the same call, the table is also used to

determine the invocation priority and then the sequence

of the requests sent to the SCF.

The OF-Class

SCF

 has to take into account the new

service because we consider that the same SCF performs

the two services. Actually, having one single SCF

performing the two services, or two SCFs, each of them

dedicated to the execution of one service, has no impact

on the activities of validation and verification of the

system realized by the formalism. The proving process

enables to validate the correctness of the specification in

terms of expected functionalities and to verifiy its

structural and behavioral properties. So it is independent

of the assumptions made in the specification itself. Its

role is precisely to evaluate that with these assumptions,

the specification is correct. So OF-Class

SCF

 will include

not only the OF-Class

OFCallForwarding

, but also the

OF-Class

OFTerminatingCallScreening

, which

models the TCS service logic. In the operational interface

of the OF-Class

SCF

 is added the imported service

T

erminatingCallScreening

, composed of the five

operations corresponding to the user procedures,

TCS_Activation

,

TCS_Deactivation

,

TCS_AddNumber

,

TCS_RemoveNumber

 and

TCS_Processing

. The usage

manual expresses the dependency relation between the

TCS_Activation and the TCS_Deactivation

operations, as the TCS_Activation operation must

always preceed the TCS_Deactivation operation. The

same precedence relation exists between the

TCS_AddNumber and the TCS_RemoveNumber operations.

On the other hand, the TCS_Processing operation can be

invoked independently from the others. This service is

synchronously invoked. At the micro-level, the service

keys concerning the TCS service and enabling the SCF to

determine which service logic program is concerned by

the SSF request are added. The OF-Class

OFTerminatingCallScreening represents the service

logic program of the TCS service. Its macro-level

description contains the exported service

OFTerminatingCallScreening with its five operations.

Resources are the list of the subscribers who have

activated their TCS service, TCS_activeList, and for

each subscriber, the list of his denied numbers,

TCS_deniedList. Only the operation TCS_Processing

is specified into details.

3.4. The Analysis of the IN Telecommunication

System SpeciÞcation

The analysis of the obtained OF-Class model can be

realized from different viewpoints, and provides different

types of results. We first present the validation and

verification realized with the other model of the proving

toolset, namely the OF-CPN model. Then we consider

other remarks that can be obtained directly from the OF-

Class specification.

The Validation and Verification Using the Proving

Toolset

The analysis realized with the proving toolset enables the

designer to establish that the specification of the system

is correct. Once we have a syntactically correct OF-Class

model, it is automatically transformed into OF-CPNs.

Each OF-CPN is extended by including the usage

manuals of its offered services. We determine the initial

configuration of the system as follows. Three users A, B

and C are considered. A has subscribed to the CFU and

TCS services and has activated them. A forwards his

calls to the B's terminal and denies calls from C. B is idle

and C initiates a call to A.

We compute the state/transition graph for each OF-CPN

according to the inital configuration and an exhaustive

abstraction of the environment. This contains the

expected results of interactions with the other OF-CPNs

as well as a representation of the part of the system that is

not explicitely modelled (e.g., the userÕs behavior). This

abstraction enables an OF-CPN to guarantee a correct

operation on condition that the environment correctly

operates. Then the OF-CPN modelling the SSF is

combined with the reductions of the other components

together in one net called the extended SSF.

Computing the state/transition graph of the extended SSF

shows that a communication can be established between

A and C, violating thereby the TCS functionality (Fig. 2).

In fact, the precedence relationship between the

invocation of the CFU and TCS services in the same call

established by the way we manage the table is not correct.

In a correct operation, when a call is addressed to a

subscriber that has subscribed to the CFU and the TCS

services, if the services are activated and if the caller

belongs to the deniedList of the subscriber, then the call

has not to be forwarded. So the first service to be invoked

must be the TCS service, then the CFU service. The

invocation priority is determined by the table

tPointTable and then is depending on the management

policy of this resource. This policy is the combination of

an updating policy and a consulting policy, both must be

consistent with each other to guarantee that no

interactions between services will occur. So introducing

a service needs to modify the resourcetPointTable and

6

to build a new one, according to the management policy.

Once the table is built, our formalism enables to

determine the correctness of the building, by verifying

the precedence relationship between the invocations.

We had chosen a very simple resource management

policy that is the FIFO management. So the oldest

service created in the system, namely the CFU service, is

invoked first. The verification of the table building has

shown that the management policy is not correct.

Figure 2: The State/Transition of the Extended SSF

Parallel Invocation of Services: an Alternative

Approach

We have applied the IN-CS1 principles, namely single-

ended and single point of control services. The services

invocations of SSF are sequential and blocking, that is the

basic call process is suspended. This is expressed in the

specification by the synchronous invocation mode of the

service StartUp. The OF-Class formalism enables the

non-blocking and parallel invocations of services

imported from different OF-Classes. So a scenario in

which several points of control are involved can be

described with the OF-Class formalism, i.e., an OF-Class

SSF can invoke several OF-Classes SCF in a parallel and

non-blocking way. In that case, several services can be

invoked at the same time. If a precedence relationship

must be respected between services, it is no longer

expressed as an invocation priority, but as a priority of

result collecting and processing. As for priority between

invocations, the specification must state a priority policy

for results collecting and processing. The proving tool is

signal(C,OffHook,Sw1)

signal(Sw1,DialTone,C)

ConnectionReq(C,A)

resInit = InitialDP(initialDPArg)

resSLP = CFUProcessing(C,A)

resSLP = (connect,B)

resInit = connect(C,B)
send(B,Ring)

signal(C,RingingBackTone,Sw1)

receive(Ring,ringResp)

ringResp =absent

ringResp = present

signal(C,OnHook,Sw1)

signal(C,OnHook,Sw1) signal(B,OnHook,Sw1)

signal(Sw1,routingTone,C)

InitialDPArg = (CFU,C,A)

B.BreakLine() C.BreakLine()

then able to validate that the policy does not exhibit

interaction between services.

Code Generation

The OF-Class formalism is linked with another one

called H-COSTAM which is mostly dedicated to code

generation with optimization features. The translation

from one to the other formalism is described in

[Diagne96b]. The implementation of a tool for this

translation is ongoing. So it will be possible to undertake

code generation from an OF-Class specification. The

couple of formalisms allows one to trace properties

proved on the specification to the final implementation.

The OF-Class formalism provides a very detailed

specification level from which final code could be easily

derived in an automated way. But we want to trace and

verify properties via the H-COSTAM model.

4. Conclusion

This paper describes a proving toolset based on the

coupling of the OO and PN paradigms and enabling a

service designer to validate and verify a service

specification. The proposed method can be incorporated

in a standard software production environment without

too much burden. The use of PN is implicit, that is the

design engineer who models the new application does not

need to know about PN theory and practise. It enables the

formal verification of the applications in the earliest stage

of their life-cycle. The shift from the OO initial model to

the OF-Class model is easied by the design patterns. The

transformation from OF-Class to OF-CPN is fully

automated and supported by a tool integrated in an

environment dedicated to formalization of software

development along the life-cycle.

5. References

[Bouma94] L.G. Bouma & H. Velthuijsen, editors, ÇFea-
ture Interactions in Telecommunications Sys-
temsÈ, IOS Press, Amsterdam, 1994.

[Cameron94] E. J. Cameron et al, ÇA Feature Interaction
Benchmark in IN and BeyondÈ, In Feature In-
teractions in Telecommunications Systems,
IOS Press, Amsterdam, 1994, PP1-23.

[Diagne96a] A. Diagne & P. Estraillier, ÇFormal Specifica-
tion and Design of Distributed SystemsÈ, In
Proc. 1st IFIP Int. Workshop FMOODS'96,
Paris, France, March 1996.

[Diagne96b] A. Diagne & F. Kordon, ÇA Multi-Formalisms
Prototyping Approach from Conceptual Des-
cription to Implementation of Distributed Sys-
temsÈ, In Proc. 7th IEEE Int. Workshop on
Rapid System Prototyping, Thessaloniki,
Greece, June 1996.

[Valmari94] A. Valmari, ÇCompositional Analysis of Pla-
ce-bordered SubnetsÈ, LNCS, vol. 815, PP531
-547.

[MARS94] MARS Team ÇThe CPN-AMI Environment
version 1.3È, Laboratoire MASI, Institut Blai-
se Pascal, Universit� Pierre & Marie Curie

