
HAL Id: hal-02547591
https://hal.science/hal-02547591

Submitted on 20 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Checking and Parameterized Distributed Systems
Isabelle Vernier

To cite this version:
Isabelle Vernier. Model Checking and Parameterized Distributed Systems. [Research Report]
lip6.1997.011, LIP6. 1997. �hal-02547591�

https://hal.science/hal-02547591
https://hal.archives-ouvertes.fr

1

Model Checking and Parameterized Distributed Systems

Isabelle Vernier
LIP6, Université Paris 6

4 place Jussieu, 75252 Paris - Cedex 05, France
email : Isabelle.Vernier@lip6.fr

tel : (33 1) 44 27 71 04, fax : (33 1) 44 27 62 86

Abstract: We propose a solution to solve part of the verification problem for a set of parallel
programs that are the instantiations of a same algorithm. The instantiated parameter is the
number of processes. All the possible programs are supposed to satisfy the same properties.
Petri nets with guarded transitions model the programs. The originality of our method is to
build a symbolic graph that allows us to verify temporal properties that concern the behavior of
the whole program as well as properties that concern the behavior of a single process. The
nodes of the symbolic graph are predicates that represent sets of states.

Key Words: Verification, validation, temporal logic, parameterized systems, Petri nets

I. Introduction
Many distributed systems are designed with a finite but unknown number of processes.

They are required to have similar behaviors whatever the number of processes is. A
straightforward way to verify their properties is to instantiate the program with the desired
number of processes. The verification has to be performed again if the number is changed. A
solution is to develop verification methods that are independent of the value of the parameter. In
[1] and [16], the authors prove the undecidability of the whole problem. Several solutions have
been proposed that solve parts of it. They consider systems with one parameter, the number of
identical processes sharing a finite and defined number of resources managed by a control
process.

The methods that are proposed in [5, 6, 9, 14, 20], have strong restrictions on the properties
that can be verified, are not automatic or are automatic but not complete. All these methods need
to represent the set of reachable states of a particular system. Unfortunately, although a state
graph is built, no representation of the reachable states of the instantiated systems is given. The
solution we propose in [18] avoids this drawback. It is an automatic but not complete method.
We build a finite symbolic graph that represents all the reachable states and executions of all the
instantiated systems. The nodes of the graph are predicates that represent sets of states.
Properties verification is performed on this graph. To obtain this result we do not identify the
processes.

We present two extensions of our method. The first one is the extension of the class of
distributed systems we can study. We allow the evolution of a process to be dependent on the
states where the other processes are. The second extension overcomes drawback of our
method. As we do not identify the processes, we cannot verify properties that concern the
behavior of a single process. If we consider a mutual exclusion protocol, we can prove that
once a process asks for the critical section, a process, not necessarily the same, will enter it. We
cannot prove starvation-free properties. We present here the way to extend our method to verify
such properties. As all the processes have the same behavior, it is sufficient to prove the
property for a single one whose identity is not important.

2

To build the reachability graph of a system we need to have a formal representation of it. The
systems we consider are modeled by means of Petri nets with guarded transitions. The guards
represent conditions on the number of tokens in some places. They allow us to realize our first
extension. For the second extension, we use the idea of the colored Petri nets. To follow the
execution of a process we have to particularize the token we associate with it. Therefore, we
only modify the representation of states. The execution of an action is independent of the kind
of the tokens. It depends only on the states where the tokens are.

In Section 2 we introduce the model we use to represent the systems. The predicates are
presented in Section 3. In Section 4 we show how the symbolic graph is built. Section 5
concerns the verification of properties. We conclude in Section 6 and present further works.

II. Formal Model
We represent parallel systems by means of Petri nets with guarded transitions because of

their well-known expressive power [13]. Guards allow us to test the value of the number of
tokens among several places.

II.1. Petri nets and basic notations

We use Petri nets that are extended with guarded transitions.

Definition 1 Guarded Petri nets
A guarded Petri net is a 5-tuple, PN = <P, T, Guard, Pre, Post> where:

- P is a set of places, T is a set of transitions, P ∩ T = Ø and P ∪ T ≠ Ø,

- ∀t ∈ T, Guard(t) is a function from NP to {true, false}. Guard(t)p denotes the value to
which place p is compared. If it equals -1 it means that the guard defines no condition on
place p.

- Guard(t) = [Pt ≤ n] or Guard(t) = [Pt ≥ n], n ∈ N and Pt ⊆ P

∀p ∈ Pt, Guard(t)p = n else Guard(t)p = -1
or Guard(t) = true (default value).

∀p ∈ P, Guard(t)p = -1

- Pre, Post are functions from P × T to N.

Notation
We extend the functions Pre and Post to sequences of transitions. Let p be a place,
s = t1,…, tm be a sequence of transitions

Pre(p,s) = ∑
i=1

m

 Pre(p,ti) and Post(p,s) = ∑
i=1

m

 Post(p,ti).

Definition 2 Guarded State machine
A guarded state machine is a guarded Petri net <P, T, Guard, Pre, Post> with:
∀t ∈ T, ∃p1 ∈ P, Pre(p1,t) = 1 and ∃p2 ∈ P, Post(p2,t) = 1,

∀p ≠ p1, Pre(p,t) = 0 and ∀p ≠ p2, Post(p,t) = 0.

Definition 3 Markings
A marking m is a function from P to N that defines a state of the Petri net. It associates with
each place the number of tokens it contains. The initial marking represents the initial state of
the Petri net.

Definition 4 Value of a guard
A guard is evaluated regarding a transition t and a marking m:

3

• Guard(t) = [Pt ≤ n], Guard(t)(m) = true iff ∑
p ∈ Pt

 m(p) ≤ n

• Guard(t) = [Pt ≥ n], Guard(t)(m) = true iff ∑
p ∈ Pt

 m(p) ≥ n

• Guard(t) = true then Guard(t)(m) = true.

Definition 5 Enabled transition
A transition t is enabled for a marking m, m[t>, iff:
∀p ∈ P, m(p) ≥ Pre(p,t) and Guard(t)(m) = true.

Definition 6 Firing rule
A marking m' reached from m after the firing of a transition t, m[t>m', is computed as
follows: ∀p ∈ P, m'(p) = m(p) - Pre(p,t) + Post(p,t).

II.2. Distributed systems with parameter

We consider distributed systems with one parameter, the number of processes. As in [2, 5,
9, 11, 14, 15, 20] all the processes are identical, i.e., they have similar behaviors independent
of their identity. They communicate by shared resources. A control process manages the
accesses to the resources.

The behavior of the identical processes is represented by a guarded state machine. The
control process and the resources are represented by a Petri net.

Definition 7 Distributed system
A system with n identical processes and a control process is represented by a guarded Petri
net <P, T, Guard, Pre, Post> where:

• P = Pp ∪ Pc,

Pp ∩ Pc = Ø
Pp represents the states of the identical processes, Pc represents the states of the control
process and the resources.

• T = Tp ∪ Tc,
Tp represents the actions of the identical processes, Tc represents the actions of the
control process.
Τhe transitions t of Tp ∩ Tc represent the accesses to resources.

• ∀t ∉ Tp, Guard(t) = true.
The guards concern only the actions of the identical processes.

• <Pp, Tp, Guardp, Prep, Postp> is a guarded state machine where
Guardp, Prep, Postp are the restrictions of Guard, Pre, Post to the transitions of Tp and
places of Pp.

We illustrate this paper with a mutual exclusion algorithm defined by Morris [12]. It presents
a starvation-free mutual exclusion algorithm with a finite number of semaphores. A process
"takes" a semaphore with a P action and "releases" it with a V action. The algorithm needs three
semaphores a, b and m. The semaphore a protects the accesses to the variable nm and the
semaphore b protects the accesses to the variable na. They are used to ensure the starvation-free
property of the algorithm. We can see that it is not necessary to explicitly represent these two
variables. Each of them counts the number of processes that are in some states. We replace
these variables by guards but we have to keep the semaphores to respect the semantic of the
algorithm. The semaphore m protects the accesses to the critical section. Figure 1 gives the
algorithm and the model with a Petri net. We have put together actions whose execution in an
atomic way does not modify the properties of the algorithm (if the first action of the sequence is

4

executable, so is the sequel of the sequence). This allows us to reduce the number of
intermediate states.

Initialization:
na =0, nm = 0,
a and b are released
m is taken

{Idle}
P(b); na <— na+1; V(b);

{Asking-for-CS }
P(a); nm <— nm+1;

{Waiting1}
P(b); na <— na-1;

{Waiting2}
if na = 0 then V(b); V(m)
 else V(b); V(a)
endif;

{Waiting3}
P(m); nm <— nm-1;

<critical section>;

if nm = 0 then V(a)
 else V(m)
endif;
{Idle}

Idle
n

Asking-for-CS

Waiting1

Waiting2

waiting3

Critical Section

P(b),V(b)

P(a)

P(b)

V(a)
[{Waiting1,Waiting2,Waiting3} ≤ 0]

V(m)
[{Waiting1,Waiting2,Waiting3} ≥ 1]

m

b

a

V(b), V(m)

[{Asking-for-SC,Waiting1} ≤ 0]

V(b),V(a)

[{Asking-for-SC,Waiting1} ≥ 1]

P(m), nm <- nm-1

na represents the number of processes in places Asking-for-CS and Waiting1
nm represents the number of processes in places Waiting1, Waiting2, Waiting3

Figure 1 : Morris Algorithm

III. Sets of markings
The algorithms to build state graphs of Petri nets, as coverability graph [8], symbolic graph

of colored Petri nets [3], reduced graphs [17], suppose that the initial markings of the net is
completely defined, i.e., the value of the parameter is fixed. To build a graph independently of
this value, we define elementary predicates that characterize sets of markings. They are
equivalence classes that bring together markings regarding the marked places, the enabled
transitions and the way they are reached. The nodes of the symbolic graph are elementary
predicates.

The initial elementary predicate determines the initial configurations of the Petri net that are
studied. Part of the gathering of markings is performed while computing the symbolic graph.

III.1. Predicates

The initial elementary predicate characterizes the initial states of the instantiated systems we
want to study. The number of tokens in each resource or control place is known. For the
guarded state machine we know that the number of tokens is finite and the places where tokens
are. We do not know the exact number of tokens in each place.

The introduction of two kinds of predicates has been motivated by the firing rule. The
application of the firing rule on an elementary predicate leads to a predicate. A predicate can be
split into elementary predicates.

A predicate expresses conditions on the number of tokens in each place of a net. The
predicates we consider allow us to express the minimum or the exact number of tokens in a

5

place. In addition, we use a variable to distinguish a process among the identical ones. This
distinction allows us to follow the execution of a process. As its distinction does not give it a
particular behavior, the properties verified by this distinguished process are verified by all the
identical processes.

First we define predicates since they are more intuitive than elementary predicates and
independent of the structure of the Petri net. A part of the information given by the predicates
concerns the processes apart from the distinguished one, the other part concerns the
distinguished one. A variable X represents the distinguished process. We explicitly give the
place where it is.

Definition 8 Predicate
- Let P = {p1, …, pn} be a set of places, a predicate pred is defined as:

pred = {p1 op1 x1 ∧ … ∧ pn opn xn; X in pk} where opi ∈ {=, ≥}, x i ∈ N and pk ∈ P.
- A marking m belongs to the equivalence class defined by pred iff:

∀i ≠ k, m(pi) opi xi and m(pk) opk xk+1.
The set of markings defined by the equivalence class pred is noted set[pred].

The set of markings represented by a predicate allows us to define an inclusion relation
between predicates. This relation may not respect the place where the distinguished process is.
Therefore we can have redundant predicates regarding the set of markings they define but
different regarding the place where the distinguished process is. To overcome this problem, we
define an inclusion relation taking into account this aspect of the predicates.

Example 1 Redundant predicates
Consider the two following predicates: pred = {Idle ≥ 1, Asking-for-CS = 1, a = 1,
b = 1; X in Idle} and pred' = {Idle ≥ 1, a = 1, b = 1; X in Asking-for-CS}. We can
see that set[pred] ⊆ set[pred'] but the distinguished process is not in the same place in the
two cases.

Definition 9 Predicate inclusion
A predicate pred = {p1 op1 x1 ∧ … ∧ pn opn xn; X in pk} is included in a predicate pred' =

{p1 op'1 x'1 ∧ … ∧ pn op'n x'n; X in pj} if and only if:

pj = pk and set[pred] ⊆ set[pred'].

 To verify the inclusion between two predicates, we only have to compare the integer and
operator associated with each place. We now define the minimal marking represented by a
predicate. The comparison between markings is performed on the vectors composed of the
number of tokens in a place. The places are ordered.

Definition 10 Minimal marking
Let pred = {p1 op1 x1 ∧ … ∧ pn opn xn; X in pk} be a predicate, the minimal marking
represented by pred, noted mpred is such that:
∀i ≠ k, m(pi) = xi and m(pk) = xk+1.

∀m ∈ set[pred], m ≥ mpred.

The operator "≥" may be compared with the ω defined by Karp and Miller [10] to consider
unbounded Petri nets. Our notation is more precise since it defines a lower bound. The
introduction of ω is motivated by the unboundedness of the Petri net while the "≥" is due to a
change of initial marking. For each marking characterized by a predicate, the exact number of
tokens in a place with a "≥" is finite and depends on the value of the parameter. This is because
the Petri net that represents the behavior of identical processes is conservative. The number of
processes in the whole Petri net is constant whatever the execution is.

6

A predicate may characterize markings of an instantiated system only if the value of the
parameter is big enough to respect the conditions that are expressed. With each predicate we
associate a bound that represents the minimal possible value of the parameter. This bound
determines the instantiated systems that are concerned by a predicate.

Definition 11 Bounds of the parameter
Let pred = {p1 op1 x1, …, pn opn xn; X in pk} be a predicate, the lower bound associated

with the parameter is B(pred) = ∑
i=1

n
 xi + 1.

Now we define the condition that the parameter of an instantiated program must satisfy to
define instances that have markings that can be characterized by a given predicate.

Definition 12 Predicate and instantiated systems
Let pred = {p1 op1 x1, …, pn opn xn; X in pk} be a predicate then pred characterizes
markings of systems instantiated

• with at least B(pred) processes if ∃i with opi = "≥",

• with exactly B(pred) processes if ∀i, opi = "=".

III.2 Elementary predicates

An elementary predicate is a restriction of the predicates that ensures that:
(1) all the markings characterized by an elementary predicate have tokens in the same
places,
(2) the same transitions are enabled from the markings characterized by the elementary
predicate.

To ensure (2), we first need to define a function Limit that associates with each place the
maximum value to which its marking is compared to determine the enabled transitions. If there
are, in a place, fewer tokens than the Limit value, it is necessary to know the exact number of
tokens in the place. This function allows us to consider the guarded Petri nets. As the Limit of a
place is greater or equal to one, we can ensure that if no tokens are in a place, the associated
operator is "=". Otherwise the place and its associated arcs can be removed from the net. This
ensures (1).

Definition 13 Limit function
Let <P, T, Guard, Pre, Post> be a guarded Petri net, Limit is a function from P to N such
that:

∀p ∈ P, Limit(p) = M
 t ∈ T

ax (Guard(t)p, Pre(p,t))

Definition 14 Elementary predicate
P = {p1, …, pn} be the set of places of a Petri net, pred = {p1 op1 x1, …, pn opn xn; X
in pk} is an elementary predicate iff:

- if opi = "≥" then xi ≥ Limit(pi). (it ensures (2) and (1))

To test the transitions enabled for the markings characterized by an elementary predicate the
same procedure as for a marking is applied. We say that an elementary predicate enables the
transitions. We differentiate two cases of enablement: the one that concerns the distinguished
process and the others. If a transition is enabled by the distinguished process, we say it is X-
enabled.

7

Definition 15 Enabled transitions
Let pred = {p1 op1 x1, …, pn opn xn; X in pk} be an elementary predicate, a transition t is
(X-)enabled for pred, pred[t>, iff:

-∀i≠k, xi ≥ Pre(pi,t) and Guard(t)(mpred) = true,
- xk ≥ Pre(pk,t) (then t is enabled),
- Pre(pk,t) = 1 (then t is X-enabled).

The restriction "if opi = "≥" then xi ≥ Limit(pi)" of the elementary predicate definition
ensures that a transition is (X-)enabled for an elementary predicate if and only if it is enabled for
all the markings it characterizes.

Property 1 Let pred be an elementary predicate and t a transition. Transition t is enabled for pred
if and only if t is enabled for all the markings characterized by pred.

Proof Sketch We use the following facts:
- if opi = "≥" then xi ≥ Limit(pi),
- ∀pi, ∀t, Limit(pi) ≥ Pre(pi,t) and Limit(pi) ≥ Guard(t)pi.

III.3 Splitting of predicates into elementary predicates

 The splitting of a predicate appears in the symbolic firing rule. In a predicate, the operator
"≥" may be associated with a place even if the minimal number of tokens is less than the Limit
value. The splitting procedure allows us to characterize the same set of markings with a finite
number of elementary predicates.

Definition 16 Principles of the splitting of a predicate
Let pred = {p1 op1 x1, …, pn opn xn; X in pk}
For each place pi such that xi < Limit(pi) and opi = "≥" we compute m (= Limit(pi)-xi+1)
new predicates predk that differ from the split one only on the attributes associated with place
pi:

∀k, 0 ≤ k < m, opki = "=" and xki = xi + k,
opmi = "≥" and xmi = Limit(pi).

At each step the splitting procedure is applied on all the new predicates computed at this
time.

A predicate is split into a finite number of elementary predicates. A marking may be
characterized by only one of the reached elementary predicates.

Property 2 Let pred be a predicate and pred0, …,predn the splitting of pred into elementary
predicates
a) ∀i, j, i≠j, set[predi] ∩ set[predj] = Ø,

b) ∪
 i = 0

n
 set[predi] = set[pred].

Proof Sketch We use the following facts verified after a step of the splitting
a) the conditions on the number of tokens in the place responsible of the splitting, in the
predi, are disjoint.
b) the union of the conditions on the number of tokens in the place responsible of the
splitting in predi is equal to the condition in pred. The conditions on the other places are the
same in pred and in each predi.

8

Example 2 Splitting of a predicate
Let pred = {p ≥ 1, q ≥ 0, r = 2; X in r} be a predicate and suppose that Limit(p) = 2 and
Limit(q) = 1, then pred is not an elementary predicate. First we split pred regarding p. We
obtain the two following predicates:

pred0 = {p = 1, q ≥ 0, r = 2; X in r}, pred1 = {p ≥ 2, q ≥ 0, r = 2; X in r}.
We now split each predi regarding q. We obtain the four following elementary predicates:

pred00 = {p = 1, q = 0, r = 2; X in r}, pred01 = {p = 1, q ≥ 1, r = 2; X in r},
pred10 = {p ≥ 2, q = 0, r = 2; X in r}, pred11 = {p ≥ 2, q ≥ 1, r = 2; X in r}.

As we have obtained elementary predicates, we stop here the splitting.

IV. Symbolic graph
The building of a symbolic graph by using the symbolic firing rule may lead to infinite

graphs even if the graphs of the instantiated systems are finite. We add rules to avoid the
building of infinite branches.

IV.1. Symbolic firing rule

The symbolic firing rule defines the elementary predicates that characterize the markings
reached from an elementary predicate after the firing of a transition. It is composed of two steps:
the firing rule and the splitting of the predicate (if needed). As for the enabling we consider the
firing and the X-firing, depending on the process that executes the action.

Definition 17 Symbolic firing rule
Let pred = {p1 op1 x1, …, pn opn xn; X in pk} be an elementary predicate,

t a transition that is enabled for pred:
- the predicate pred' = {p1 op'1 x'1, …, pn op'n x'n; X in pk} reached from pred after the
firing of a transition t, pred[t>pred', is computed as follows:

∀pi ∈ P, x'i = xi - Pre(pi,t) + Post(pi,t), op'i = opi,
- if pred' is not an elementary predicate, it is split.

t is X-enabled for pred:
- let pj be the place of Pp (set of places that represent states of identical processes) such that
Post(pj,t) = 1 (the process that executes the actions moves from place pk to pj)
- the predicate pred' = {p1 op'1 x'1, …, pn op'n x'n; X in pj} reached from pred after the
X-firing of a transition t, pred[X-t>pred', is computed as follows:

∀i ≠ k,j x'i = xi - Pre(pi,t) + Post(pi,t), op'i = opi,
x'k = xk and x'j = xj;

- if pred' is not an elementary predicate, it is split.

With the symbolic firing rule only and exactly all the reachable markings are computed. Let
pred be an elementary predicate that enables a transition t, the symbolic firing rule computes
only and exactly all the markings from those represented by pred after the firing of t. If the
reached predicate is split, conditions on the number of tokens in the places responsible of the
splitting allow us the characterize for each reached elementary predicate the set of their
predecessors represented by pred. These conditions are computed, from the reached elementary
predicates, by reversing the firing rule.

Property 3 Let pred be an elementary predicate, t a transition and pred0, … predn the elementary
predicates reachable from pred after the firing of t.

- ∀m characterized by pred, m[t>m', there is exactly one predi that characterizes m',

- ∀m' characterized by one predi, ∃m characterized by pred such that m[t>m'.

Proof Sketch The proof follows from the firing rule of a Petri net and properties 1 and 2.

9

The following property is a consequence of both the property 3 and the inclusion relation.

Property 4 Let pred and pred' be two elementary predicates, pred ⊆ pred'. Each execution
possible from pred is also possible from pred'. As the inclusion relation takes into account
the place where the distinguished process is, the execution we consider can concern the
distinguished process.

Proof Sketch The proof follows from the definition of the inclusion relation and property 3.

Example 3 Symbolic firing rule
To simplify the notations, in the examples, we do not represent in a predicate the places that
contain zero process.
The conditions on the arcs represent the constraints that must verify a marking of the source
predicate to have its successor in the target predicate.
Let {idle ≥ 1, a = 1, b = 1; X in Idle} be an elementary predicate. The transition
"P(b),V(b)" is enabled and X-enabled. In the second case, it leads to the predicate
{idle ≥ 1, a = 1, b = 1; X in Asking-for-CS} that is an elementary predicate. In the first
case, it leads to the predicate {idle ≥ 0, Asking-for-CS = 1, a = 1, b = 1; X in Idle}
that is not an elementary predicate since Limit(Idle) = 1.
The splitting and the conditions to determine which elementary predicate characterizes the
reached markings are shown on Figure 2.

{Idle ≥ 1, Asking-for-CS = 1,
a = 1, b = 1;

X in Idle}

{Asking-for-CS = 1,
a = 1, b = 1;

X in Idle}

{Idle ≥ 1,
a = 1, b = 1;

X in Asking-for-CS}

{Idle ≥ 1, a = 1, b = 1; X in Idle}

X-P(b),V(b) P(b),V(b) [Idle = 1] P(b),V(b) [Idle > 1]

Figure 2: (X-)firing of transition P(b),V(b)

The elementary predicate {Asking-for-CS = 1, a = 1, b = 1; X in Idle} characterizes
markings of systems with exactly two identical processes (one in state Asking-for-CS and
the other in state Idle). The elementary predicate {Idle ≥ 1, Asking-for-CS = 1, a = 1,
b = 1; X in Idle} characterizes markings of systems with at least three identical processes
(one in state Asking-for-CS and the others, at least two, in state Idle).

The use of the symbolic firing rule to build a symbolic graph may lead to infinite branches
that do not represent infinite branches in the reachability graphs of the instantiated systems.
These infinite sequences are iterations of a same sequence of transitions. The number of
possible iterations depends on the value of the parameters. All the possible iterations are
represented in the symbolic graph. As they are in infinite number, i.e., the parameters have no
maximal value, they compose an infinite branch. If all the elementary predicates that compose
the infinite sequence may be represented by a single one, we can avoid the infinite branch. This
possibility depends on properties of the iterated sequence. We have identified a class of
sequences for which the reached elementary predicates, after iterations, may be brought
together. To respect the definition of elementary predicates, we can bring together only
elementary predicates that enable the same transitions. We have to consider the limit values
associated with each place. First, we illustrate our solution with the following example.

10

Example 4 Infinite sequence
Let us consider the following sequence of elementary predicates:
{Idle ≥ 1, a = 1, b = 1; X in Idle} [P(b),V(b) (Idle > 1)>
{Idle ≥ 1, Asking-for-CS = 1, a = 1, b = 1; X in Idle} [P(b),V(b) (Idle > 1)>
{Idle ≥ 1, Asking-for-CS = 2, a = 1, b = 1; X in Idle} [P(b),V(b) (Idle > 1)> …

The firing of transition "P(b),V(b)", when at least one process is in place Idle, leads from an
elementary predicate to the successor in the above list. The iteration of the firing of the
transition in the same conditions leads to an infinite sequence. The possibility to iterate the
sequence depends on the number of processes that remain in place Idle. It depends on the
value of the parameter. Each reached elementary predicate characterizes markings of a
system with one more identical process. As Limit(Idle) = 1 and we consider markings with
at least one process in place Idle, all the markings characterized by the infinity of elementary
predicates can be characterized by a single one:

{Idle ≥ 1, Asking-for-CS ≥ 1, a = 1, b = 1; X in Idle}.

This is due to properties of the sequence composed of the transition "P(b),V(b)". After its
execution there is one process less in place Idle, one process more in place Asking-for-CS
and all the other processes and resources are in the same place as before the execution.

IV.2. Infinite sequences

A simple comparison between elementary predicates allows us to detect the first elementary
predicates of an infinite sequence. The possibility to avoid the infinite construction depends on
properties of the sequence of transitions that leads from an elementary predicate to a greater one.
We present here a class of sequences that allows us to avoid infinite sequences of elementary
predicates.

We define a partial order relation between elementary predicates that allows us to decide if an
elementary predicate is greater than another.

Definition 18 Superiority relation
Let pred = {p1 op'1 x'1, …, pn op'n x'n; X in pk} and pred' = {p1 op'1 x'1, …,
pn op'n x'n; X in pj} be two elementary predicates. pred is greater than pred', pred ≥ pred',
iff:

- pj = pk,
- ∀m ∈ set[pred], ∃m' ∈ set[pred'], m ≥ m',

- ∀m' ∈ set[pred'], ∃m ∈ set[pred], m ≥ m'.
An elementary predicate pred is strictly greater than an elementary predicate pred' iff:

- pred ≥ pred' and pred ≠ pred' (pred > pred').

As for the inclusion relation, to verify the superiority of a predicate over another one, we
only have to compare the integer and operator associated with each place.

The following theorem ensures that the superiority relation allows us to detect all the
possible infinite sequences.

Theorem 1
If there is an infinite succession of elementary predicates generated by an infinite sequence of
transitions, there are two elementary predicates, pred and pred', and a sub-sequence seq
such that pred[seq>pred' and pred' ≥ pred.

Proof Sketch The number of elementary predicates less than or incomparable to another one
is in finite number. Two predicates are comparable only if the distinguished process is in the
same place. We associate with each predicate {p1 op1 x1, …, pn opn xn; X in pk} a vector

11

{x 1, …, xn, b1, …, bn} with bi = 0 if opi = "=" else bi = 1. We have a partial order among
predicates.

We now give a condition that ensures that a sequence of transitions can be iterated only a
finite number of times whatever the values of the parameters are. This condition depends on the
existence of guarded transitions in the sequence.

Property 5 Let the sequence seq = t1, …, tn, if ∃p and ti, Post(p,seq)-Pre(p,seq) ≥ 1,

Guard(ti)=[Pt ≤ n] and p ∈ Pt, the transition seq cannot be iterated an infinite number of
times.

Proof Each time the sequence is iterated the number of tokens in place p increases. After a
finite number of iterations, the number of tokens in p, before the firing of ti, will be greater
than or equal to n.

IV.3. Algorithm

We now define a class of sequences whose iteration leads to an infinite number of
elementary predicates that may be characterized by a single one. This is possible since the
reached elementary predicates differ by the number of processes in a single place. All the
elementary predicates characterize all the possible numbers of tokens greater than a given
integer. Therefore, the elementary predicates can be characterized by a single one that
characterizes all the possible number of tokens in the place. This is performed by the
transformation of an operator "=" into an operator "≥". We name such a sequence: a "state
change for one process" sequence. After its execution there is exactly one place with one
process less and exactly one place with one process more. The other processes and the
resources are in the same place as before the execution. Once the sequence has been executed, if
it does not verify property 5, it can be executed again as long as there are at least Limit(state)
tokens in the place that loses tokens.

Definition 19 "State change for one process" sequence
Let s = t1 … tm be a sequence of transitions, s is a "state change for one process sequence"
iff:

∃p-, Post(p-,s) - Pre(p-,s) = -1,

∃p+, Post(p+,s) - Pre(p+,s) = 1,

∀p ≠ p-,p+, Post(p,s) - Pre(p,s) = 0,

∀i ≤ m, ∀p ∈ P, ∑
j=1

i

 Post(p,tj) - ∑
j=1

i

 Pre(p,tj) ≥ -1.

The last condition ensures that, once the sequence has been executed, it is sufficient to verify
that enough processes are in place p+ to decide if it is executable again.

We can now define the rules for the building of the symbolic graph. First we build a
symbolic tree. We start from the initial elementary predicate. We compute its reachable
elementary predicates. To obtain the graph we identify all the elementary predicates, that are
included in another one, with it. This does not modify the set of possible paths and markings
(Property 4).

The following rules are applied in the order they are described. We begin to compute the
successors of the initial elementary predicate. We continue as long as new elementary predicates
are computed. Rules 3 concern the possible infinite sequences. We apply them if an elementary
predicate, pred, strictly greater than one of its ancestors, pred', is detected. Rule 3.d is applied
when we do not know how to avoid the building of an infinite sequence. We store those
markings in a set "Set". Rule 4, applied when no new predicate has to be studied, is a test to

12

verify that all the predicates of Set are included in other ones that do not belong to Set. In this
case, all the possible executions from predicates of Set are represented in a finite way from
other predicates. Rules 3.a and 3.b reduce the number of failure cases. Rule 3.a is applied when
pred has more operators "≥" than pred'. As the number of places if finite, the number of
operators "≥", in a predicate, cannot increase infinitely. We cannot have an infinite sequence of
elementary predicates with increasing number of operators "≥". If we continue from pred, we
will have to use another rule in a finite time. Rule 3.b is the application of property 5. Rule 3.c
concerns "the state change for one process" sequences and detects the failure cases. If a "state
change for one process" sequence leads from pred' to pred, we modify pred to represent the set
of all the states reachable by executing again the sequence as long as at least Limit(p-) processes
remain in place p-. If the number of processes in place p+ is greater or equal to Limit(p+), we
change the operator associated with p+ to "≥". Else, we do not modify pred. As some
comparisons between tests of 3.b and 3.c are similar we verify property 5 during the test of the
"state change for one process" sequence.

Rule 1: We use the symbolic firing rule to compute the elementary predicates successor of a
given one.
Rule 2: If we compute an elementary predicate included in one of its ancestors we stop the
building of the branch. The reachable elementary predicates are already computed for this
branch.

Rule 3: If we compute an elementary predicate, pred, that is strictly greater than one of its
ancestors, pred', we examine the sequence s that links the two elementary predicates (we
consider the first ancestor that is less than pred):

a) if pred contains more operators "≥" than pred', we continue the building from pred.
b) if s verifies property 5, we pursue the building from pred,
c) else if s is a "state change for one process" sequence we know how to avoid the building
of the infinite branch. We continue the building from the modified elementary predicate.
d) else (s is not a "state change for one process" sequence) Set = Set ∪ {s}. Set is initialized
to the empty set.

Rule 4: if each predicate of Set is included in a predicate of the graph (not in Set) we identify
the two predicates else we are in a failure case.

The following property ensures that our building algorithm either leads to a finite graph or
fails.

Property 6 The algorithm either builds a finite symbolic graph or fails.

Proof Sketch We use theorem 1 and property 5 to prove that
- if the graph is infinite, there is an infinite strictly increasing sequence of elementary
predicates (Theorem 1),
- we cannot have an infinite strictly increasing sequence of elementary predicates. Rule 3.a
and 3.c ensure this fact. As the number of places is finite, the number of operator "≥" in
elementary predicates can not increase infinitely,
- the cases 3.d and 4 ensure that if no decision to ensure the building of a finite graph is
possible, the algorithm fails.

The symbolic graph can be instantiated if we fix the value of the parameters. For each
elementary predicate and for each arc, we can deduce markings and arcs of the reachable graph
of the instantiated systems. If in the instantiated system we do not distinguish a process, it is
important to see that some elementary predicates are redundant with others. During the
instantiation, we have to be careful to not represent twice the same marking or transition.

13

Definition 20 Instantiated symbolic graph
Let G be a symbolic graph of a Petri net with a parameter, G[n] is the instantiated graph of
the Petri net with the parameter equals to n. G[n] is computed as follows:
- for each elementary predicate, pred, of G, we create a node for each marking of the system
instantiated by m1, …, ml that is characterized by pred. They are nodes of the instantiated
symbolic graph,
- we identify the markings that are the same,
- for each arc, labeled by t, that links two elementary predicates, pred and pred', we create
an arc from each marking m characterized by pred, that verifies the condition on the arc, to
the marking m' characterized by pred', such that m[t>m'.

Property 7
For all values of the parameter equal to or greater than the lower bound associated with the
initial predicate, we can instantiate the symbolic graph.

Proof If the number of processes is greater or equal to the bound associated with the initial
predicate, this last one represents the initial state of the instantiated program. Property 3
ensures that markings of the instantiated system are represented in the symbolic graph and
the instantiation of the arcs is always possible.

The following theorem ensures that the symbolic graph represents exactly the set of the
reachability graphs of all the instantiated systems.

Theorem 2
If the building algorithm does not fail:
- An instantiated symbolic graph is the reachability graph of the system instantiated with the
same value,
- The reachability graph of an instantiated system is the symbolic graph instantiated with the
same value.

Proof We use properties 1, 3, 7 and that the rule 3 computes all and only reachable states.

Example 5 Figure 3 shows first steps of the computation of the symbolic graph.

{Idle ≥ 1, Asking-for-CS ≥ 1,
a = 1, b = 1; X in Asking-for-CS ≥ 1}

{Idle ≥ 1, Waiting1 = 1,
b = 1; X in Idle}

{Idle ≥ 1, Asking-for-CS ≥ 1,
Waiting1 = 1, b = 1; X in Idle}

{ Asking-for-CS ≥ 2, a = 1, b = 1; X in Idle}

{Idle ≥ 1, Asking-for-CS ≥ 2,
a = 1, b = 1;
X in Idle}

{Idle ≥ 1, a = 1, b = 1; X in Idle}

{Idle ≥ 1, a = 1, b = 1;
X in Asking-for-CS}

{Asking-for-CS = 1,
a = 1, b = 1; X in Idle}

{Idle ≥ 1, Asking-for-CS ≥ 1,
a = 1, b = 1; X in Idle}

X-P(b),V(b) P(b),V(b) [Idle = 1]

P(b),V(b) [Idle > 1]

X-P(b),V(b)

P(b),V(b) [Idle > 1]

P(b),V(b) [Idle = 1]
P(a) [Asking-for-CS > 1]

P(a) [Asking-for-CS = 1]

12 3

45

6

7
8

9

Figure 3: Part of the symbolic graph

The elementary predicate 1 represents the set of initial states of all the programs we consider.
As the bound associated with this predicate is 2, we study programs with at least two
identical processes. The elementary predicate 2 is reached by an action executed by the
distinguished process. Elementary predicates 3 and 4 are the result of the splitting of a
predicate reached after the execution of action "P(b),V(b)" by a non distinguished process.

14

Elementary predicate 4 is modified as explain in example 4. From this predicate, the
distinguished process can execute action "P(b),V(b)", the reached predicate is the number 7.
The other processes can execute actions "P(b),V(b)" or P(a). In these two cases two
elementary predicates are reached, 5 and 6 for the first case and 8 and 9 for the second. We
see that elementary predicate 5 is included in 4. Therefore, we do not continue the
computation of the tree from it. This will be a circuit on the symbolic graph that represents
the iteration of the "state change for one process" sequence "P(b),V(b)". A process moves
from place Idle to place Asking-for-CS. As long as there is at least one process in place Idle,
the reached markings are all represented by elementary predicate 4.

When the building algorithm is finished, we obtain a symbolic graph with 158 nodes and
324 arcs. We can extract from this graph properties of the program whatever the number of
processes is (strictly greater than one). It represents the reachability graph of the program
instantiated with 8 processes (181 states and 293 arcs) as well as the reachability graph of
the program instantiated with 30 processes (2326 states and 4066 arcs). These reachability
graphs give information only on the instantiated program. We have no simple way to deduce
from the graph for 30 processes the properties of the program with 31 processes. We have
to compute a new graph. Our symbolic graph allows us to verify properties of this
instantiated program without computing all these states and arcs. The verification is
independent of the value of the parameter.

IV.4. Complexity

The complexity of the algorithm to compute a symbolic graph is similar to the one of the
algorithm to compute a reachability graph. Let B be the greatest lower bound associated with a
predicate of the graph. If a program is instantiated with a number of processes less that B, some
of its markings may be explicitly represented by a predicate with no "≥" operator. Therefore,
the time used to compute the symbolic graph is equivalent of the sum of the times needed to
compute the reachability graphs of the programs instantiated with at most B processes.

V. Verification of properties
In [19] we have presented the algorithms to verify properties on the symbolic graph. The

properties are expressed with CTL-X formulas. The graph must sometimes be unfolded during
the verification. The unfolding is performed on the elementary predicates. That is because some
basic properties may be verified only by some markings represented by elementary predicates.
This does not appear when we consider properties that concern only the distinguished process.

We can consider the X operator of CTL, but as we consider properties of the distinguished
process, the next state we consider is the next state reached after an action executed by the
distinguished process or the control process. We omit the states that represent evolution of an
"identical" process. We want to verify properties from the initial state of the program. Because
place constraints, we present here only the modifications we have to apply to the CTL model
checking algorithm. The model checking algorithm for CTL formulas can be found in [4].

V.1. CTL

Syntax
- {X in p}, where p is a place of the model, is a CTL formula
- If f and g are CTL formulas, then so are ¬f, f ∧ g, f ∨ g, AXf, EXf, A[f U g] and
E[f U g].

The notation m |= f indicates that marking m satisfies formula f. The relation |= is defined
inductively. We do not present here the rules for the classical logical operators.

15

Semantics
- m |= {X in p} iff m(p) ≥ 1.
- m |= AXf iff for all markings m' such that ∃t ∈ T, m[t>m', m' |= f

- m |= EXf iff for some marking m' such that ∃t ∈ T, m[t>m', m' |= f
- m |= A[f U g] iff for all paths (m0 (=m), m1, …),

∃i, i ≥ 0 such that (mi |= g and ∀ j, 0 ≤ j < i (mj |= f))
- m |= E[f U g] iff for some path (m0 (=m), m1, …),

∃i, i ≥ 0 such that (mi |= g and ∀ j, 0 ≤ j < i (mj |= f))

V.2. Model checking algorithm principles

We want to verify if properties are satisfied by the initial state of the program whatever the
number of processes is. The symbolic graph represents all the executions and reachable states
of all the instantiated programs. Therefore, it holds all the information needed to verify that a
formula is satisfied. Whatever, we have to differentiate two kinds of properties. A formula
A[f U g] has to be satisfied by all the executions represented by the symbolic graph. A formula
E[f U g] has to be satisfied be at least one execution of each instantiated program. Therefore,
when we identify a sequence that satisfies the formula we have to compute the parameter values
for which this sequence is executable. The same differentiation has to be considered when we
consider "successor state" properties.

The computation of conditions on the parameter values is performed by the computation of
the lower bound associated with each predicate of the sequence. To execute the sequence, the
number of processes in the program must be greater than or equal to the greatest lower bound if
the operator "≥" is associated with at least one place in each predicate. Otherwise, one predicate
represents a marking of an instantiated program and the sequence is executable only for this
instantiation. The value of the parameter must be equal to the bound associated with the
predicate with no "≥" operator. The integers that do not belong to the union of the conditions
define the instantiated programs that have reachable states that do not satisfy the expected
property.

Another feature due to the symbolic graph is that circuits of the graph are not circuits of the
instantiated graphs. They do not represent sequences of transition whose execution does not
modify the state of the program. We say they are "false" circuits. The detection of the circuits is
essential for the verification of A[f U g] formulas to ensure that it is not possible to have a loop
of states that verify f and not g. In our algorithm, when we detect a loop we have to test the
sequence of transitions that is associated with it. If it is a real circuit, we have identify markings
that do not satisfy the property. Else, we have to follow the verification with the successor
states.

Example 6 We present two essential properties of the Morris algorithm: several processes can
not be simultaneously in critical section, the algorithm is starvation free. The first property
is not a temporal property but it is important. We only have to verify that each predicate
satisfies "Critical-Section ≤ 1". The second property can be expressed with a CTL formula
that concerns the distinguished process. If each time it wants to access critical section it will
access it in a finite time, we can say that the algorithm is starvation free. We have to verify
the formula ({X in Asking-for-CS} ⇒ A[true U {X in Critical Section}). The properties
verified by the distinguished process are verified by all the identical processes.

By inspection of the symbolic graph, we have verified these two properties. Therefore we
can ensure that at each time at most one process is in critical section and Morris algorithm is
starvation free. This is true for all instantiated program.

16

VI. Conclusion
We have presented an algorithm to build a symbolic graph that represents the reachable states

of instantiated systems whatever the value of the parameter is. Furthermore we can distinguish a
process to follow its behavior to verify properties such as starvation free. A theorem proves that
this graph represents exactly all the reachable states of all the instantiated systems and their
executions. We have explained how we have to modify the CTL model checker algorithm to
verify CTL formulas on the symbolic graph. The CTL formulas we consider concern only the
distinguished process. The algorithms to build the symbolic graph and to verify properties are
implemented in C language and integrated in the AMI framework [7].

The elementary predicates we consider have the advantage to be easily manipulated. The
symbolic firing rule, the splitting operation as well as the verification of superiority or inclusion
relations are easy to implement. To extend the set of parallel systems we can study, we may
define elementary predicates with a greatest expressive power. We will have to make a choice
between the expressive power of elementary predicates and the complexity of the operations on
these predicates.

With more expressive elementary predicates, it will be possible to define new sequences of
transitions whose iteration leads to elementary predicates that can be characterized by a finite
number of elementary predicates.

Another possible extension is to consider distributed systems with several parameters. It is
easy to do if we consider programs with several parameterized classes of processes, with
constraints on the communication between the processes of several classes to avoid the
dependencies between the values of the parameters. A more difficult extension is to
parameterized the number of processes as well as the number of resources. The executions of
such systems are dependent on relations between these two values.

VII. references
1 Apt K.R., Kozen D.C., "Limits for automatic verification of finite-state concurrent systems",

Information Processing Letters, vol. 22:6, pp 307-309, 1986.
2 Balarin F., Sangiovanni-Vincentelli A.L., "On the Automatic Computation of Network

Invariants" , Proceedings of Computer Aided Verification: 6th International Conference,
CAV'94, Stanford, CA, David L. Dill (Eds.), LNCS 818, Springer-Verlag, pp 234-246, 1994.

3 Chiola G., Dutheillet C., Franceschinis G., Haddad S., "Stochastic Well-Formed Colored Nets
and Symmetric Modeling Applications", IEEE Transactions on Computers, vol. 42, n° 11, pp
1343-1360, 1993.

4 Clarke E.M., Emerson E.A., Sistla J., "Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specification", , ACM Transactions on Programming languages and
systems, vol. 8, n°2, pp 244-263, 1986.

5 Clarke E.M., Grumberg O., "Avoiding The State Explosion Problem in Temporal Logic Model
Checking Algorithms", Proceedings of the 6th ACM Symposium on Principles of Distributed,
Vancouver, British Columbia, pp 244-303, 1987.

6 Clarke E.M., Grumberg O., Jha S., "Verifying Paramererized Networks using Abstraction and
Regular Languages", Proceedings of the Concur'95, Philadelphia, PA, USA, pp 365-407, 1995.

7 CPN-AMI, "Reference manual, 1.2 version"1994.
8 Finkel A., "A minimal Coverability Graph for Petri Nets", Proceedings of the 11th International

Conference on Application and Theory of Petri Nets, Paris, France, pp 233-245, 1990.
9 German S., Sistla A.P., "Reasoning about Systems with Many Processes", JACM, vol. 39, pp 675-

735, 1992.
10 Karp R.M., Miller R.E., "Parallel Program Schemata", , Journal of Computer science, vol. 3,

n°2, May, 1969.
11 Kurshan R.P., McMillan K., "A Structural Induction Theorem for Processes", Proceedings of the

Eighth Annual ACM Symposium on Principles of Distributed Computing, Alberta, Canada, pp
239-247, 1989.

17

12 Morris J.M., "A starvation-free Solution to the Mutual Exclusion Problem", Information
Processing Letter, vol. 8, n°2, pp 76-80, February, 1979.

13 Reisig W., "EATCS Monographs on Theoretical Computer", Ed. Science, Springer Publ.
Company, 1985.

14 Rho J.K., Somenzi F., "Automatic generation of networks invariants for the verification of
iterative sequential systems", Proceedings of the 5th International Conference, CAV'93, LNCS
697, Elounda, Greece, pp 123-137, 1993.

15 Shtadler Z., Grumberg O., "Network Grammars, Communication Behaviors and Automatic
Verification", Proceedings of the International Workshop on Automatic Verification Methods
for Finite State Systems, LNCS 407, Grenoble, France, pp 152-165, 1989.

16 Suzuki I., "Proving properties of a ring of finite-state machines", Information Processing
Letters, vol. 28, n°4, pp 213-214, 1988.

17 Valmari A., "Stubborn Sets for Reduced State Space Generation" , Advances in Petri Nets,
LNCS 483, Springer Verlag, pp 491-515, 1991.

18 Vernier I., "Parameterized Evaluation of CTL-X Formulae", ICTLWorkshop, Bonn, Germany,
Max-Planck-Institut für Informatik report, MPI-I-94-230, pp 22-31, 1994.

19 Vernier I., "Symbolic Verification of Parallel Programs", rapport de IBP - MASI, n° 95/03,
1995.

20 Wolper P., Lovinfosse V., "Verifying Properties of Large Sets of Processes with Network
Invariants", Proceedings of the Proc.International Workshop on Automatic Verification
Methods for Finite State Systems, LNCS 407, Grenoble, France, pp 68-80, 1989.

