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Abstract

Finding optimal traffic light timings at road intersections is a mandatory step for urban

planners wishing to achieve a sustainable mobility in modern cities. Increasing con-

gestion situations constantly require urbanists to enhance traffic fluidity, while limiting

pollutant emissions and vehicle consumption to improve inhabitants’ welfare. Vari-

ous mono or multi-objective optimization methods, such as evolutionary algorithms,

fuzzy logic algorithms or even particle swarm optimizations, help to reach optimal traf-

fic signal settings. However, those methods are usually designed to tackle very specific

transportation configurations.

Here, we introduce an extended version of the sialac benchmark, bringing together

several real-world-like study cases with various features related to population, working

activities, or traffic light devices. We drive a fitness landscape analysis on these various

benchmark instances, which helps to improve the design of optimization algorithms

for this class of real-world mobility problems. Thereby, we propose a new adaptive

optimization algorithm to tackle each scenario of the benchmark.
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1. Introduction

According to the United Nations, people living in urban areas will represent sixty

percent of the world’s population by next decade [1]. This relentlessly growing rate

involves increasing mobility challenges in modern cities, such as planning efficient

transportation systems or designing reliable road infrastructure. Those challenges aim

to avoid critical traffic jam situations and to deliver a satisfactory level of service in

the city. However, the redesign or the extent of existing road networks implies strong

constraints, such as considerable costs, lack of available space, or even environmental

issues. Hence, cities target the improvement of their travelers’ mobility by making a

better use of their existing road infrastructure. This can be achieved, in a way, by an ac-

curate setting of traffic light systems. Searching the proper timings for each signal helps

not only to streamline urban traffic flows, but also to reduce the traveler’s individual

carbon footprint and pollutant emissions. Furthermore, a better tuning in signal settings

might induce traffic patterns to control speed in sensitive areas, resulting in improved

pedestrian security.

The pursuit of effective signal controls has motivated the development of a large

amount of research which can be classified into two fields. On the one hand, offline

methods consider pre-timed traffic light controls, where a fixed cycle is determined for

traffic lights, according to historical traffic demand. On the other hand, online methods

consider vehicle-actuated traffic light controls, where the real-time traffic information is

used. Although these last methods have shown to be effective on a small scale, they are

generally hard to apply for an entire city [2, 3, 4]. Besides, the vast majority of traffic

signals are still regulated by fixed controls (see section 2.1). This article essentially

focuses on the offline methods, as we aim to determine efficient pre-timed traffic light

controls, according to various known traffic demand scenarios on a city-wide scale.

Local search techniques or evolutionary algorithms provide means to tackle such

offline optimization challenges. However, depending on the configuration of the con-
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sidered infrastructure and on the objectives of a planner, various optimization algorithms

can be employed to reach satisfying settings. From a planner expert point of view, that

is not specialist in optimization techniques, selecting a relevant optimization algorithm

according to a specific urban mobility scenario might represent a difficult task. Indeed,

obtained results may differ depending on the considered problem instance or the chosen

algorithm. In practice, the main difficulty in conceiving robust optimization algorithms

mostly relies in their tunings, whose automation is a hot topic [5, 6]. Besides, these

tunings are often guided by experts knowledge, which is usually dedicated to long term

perspectives and to precise situations. Therefore, even for an expert in optimization, per-

formances of algorithms may appear difficult to compare as they are applied to hetero-

geneous case studies. In other words, it is not straightforward that a good tuning applied

to one specific problem remains good on another, in particular for mobility challenges

that constantly respond to evolving cities. Though, it appears unlikely to continuously

introduce experts in changing scenarios or to keep using old tunings. Moreover, sim-

ulations of synthetic mobility plans in an agent-based model constitute a very costly

and computationally expensive task, which often contradicts the limited optimization

budget. This is typically the case with evolutionary related techniques, which require

all the more budget as there are individuals to evolve. Therefore, urban planners are

usually restricted to optimize small and specific parts of the urban area, sometimes with

a restrained number of objectives.

Here, we propose an approach to automate experts knowledge so as to tackle this

class of real-world, continuously changing and time-expensive problems on a city-wide

scale. We identify numerous challenges, both on the side of urban planners (e.g. under-

stand the city and anticipate its future changes) and on the side of optimization experts

(e.g. comprehend variable interactions and discern how to design efficient algorithms).

This work introduces an extended version of the Scenario Investigations of Agents Lo-

calizations for Algorithm Conception (sialac) Benchmark, partially presented in [7].
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This broader and more complete benchmark brings together a set of synthetic mobil-

ity scenarios, from the simplest to the most sophisticated one. It provides a model to

tune the population size, spatial clustering of this population and its working activities,

as well as the number of traffic lights involved in the simulations. We aim to show

the range of properties for the sialac benchmark scenarios. Thus, for algorithm design

purposes, this work targets two objectives:

• An analysis of fitness landscapes to understand the search space and to improve

the design of optimization algorithms,

• A new adaptive algorithm for offline traffic signal setting optimization which in-

corporates a reinforcement learning approach as well as the knowledge provided

by the fitness landscape analysis. The reinforcement learning method is used in

order to improve the search ability of the algorithm during the optimization pro-

cess. The learning approach should provide means to calibrate the inner tunings

of the algorithm automatically according to the problem instance. Further, the al-

gorithm should learn where to focus optimization efforts, in order to save valuable

computation time.

The rest of this article is organized as follows. In section 2, we relate existing works

about mobility, optimization algorithms applied to this field and fitness landscapes anal-

yses. Section 3 gives a formulation of the underlying optimization problem and presents

basic optimization algorithms. The proposed methodology is explained in section 4.

The section 5 is devoted to experiments and result analysis. After discussing these re-

sults in section 6, section 7 gives concluding remarks and future works.

2. Related Works

We relate relevant background concerning mobility case studies and optimization

algorithms applied to them. We also give a brief introduction about fitness landscapes
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which will be employed further in this article.

2.1. Mobility and Optimization Problems

Understanding city mobility represents a vast field of research. To carry out con-

vincing studies, the majority of these works relies on traffic flow simulation systems.

Modeling urban flows is not an easy task and could be approached in several ways ac-

cording to the required level of detail. We discern two types of simulation models in the

domain: macroscopic or microscopic ones. The macroscopic models are designed to

simulate traffic flows as a whole comparable to fluid streams. On the other hand, micro-

scopic models simulate the behavior of each individual entity in the traffic flow. Such

models offer very detailed and more realistic simulation of synthetic flows, although

they might suffer from high computation times.

Achieving a sustainable mobility has been studied according to various criteria in

the literature. Trips duration of city travelers represents one recurrent objective to opti-

mize that is most of the time dealt with finding proper settings for traffic signal systems.

This goal is often associated with environmental perspectives, as fluidizing urban flows

and avoiding congestion situations tends to reduce individual travelers’ car consump-

tion and pollutant emissions. This was shown in Garcia-Nieto et al. works, where

the environmental impact of 250 and 500 vehicles was analyzed in Seville and Malaga

city centers using the SUMO simulator [8]. Studying the level of service for public

and private transportation also helps to further city mobility by designing more efficient

public transports. That was pointed in the Quito city case study [9] with the MATSim

simulator.

Various optimization schemes can be applied to solve these different mobility ob-

jectives. We especially focus here on optimizing traffic light problems. Because of the

computationally expensive aspect of microscopic models, solving such difficult com-

binatorial questions requires to explore a complex search space in a few number of

evaluations. Several algorithms designed to overcome these limitations are listed below
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with their respective case studies.

Genetic algorithms (GAs) provide adequate means to tackle this kind of optimiza-

tion problem, as they evolve a population of candidate solutions that quickly covers a

wide area in the search space. GAs generally help to reach more robust signal settings

than those established by experts or simulators default procedures. This was established

in Chester city case study, where a flow representing about 22,000-passenger car units

per hour was simulated with SATURN. This was likewise shown[10] in Medina et al.

works, where signals optimization was performed considering a typical traffic behavior

of a Saragossa district made of seven intersections [11].

Fuzzy logic controllers (FLC) have also been widely investigated to regulate traffic

signal systems. FLC are essentially decisions-rule systems, whose definitions are gen-

erally based on verbally formulated instructions, which might overlap each other. This

way, signal system parameters evolve dynamically using only instantaneous local infor-

mation and knowledge about traffic flow or traffic density. A network made of six roads

is used in the simulation and each road is assigned a random vehicle arrival rate [12].

More recently, Odeh et al. have coupled these latter principles to recommend a

hybrid fuzzy genetic algorithm [13]. In this work, GAs were employed to select the best

set of decision rules along the optimization process. One rule represents an individual,

thus the algorithm evolves a population of fuzzy logic rules, resulting in flexible and

intelligent signal systems. Presented results were carried out using the simulation of

random vehicle flows on a model of four intersecting streets.

Genetic programming has also been investigated to regulate automated traffic sig-

nals. A recent work inspired by epigenetic modifications shows satisfactory considering

dynamic traffic environments simulated with a Poisson distribution results. Signal sys-

tems programming is thus able to redesign themselves for vehicle flows on a network of

nine intersections [14].

Multi-objective optimization methods can also be found in the literature. Such al-
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gorithms deal with several mobility constraints and provide generally a set of optimal

solutions that needs to be validated against an expert decision. These methods help to

clarify the nature of the conflicts between several mobility objectives. This was estab-

lished in the Quito City real-world case study, using the simulation of 20,000 agents on

a 40 km2 transport network area including 70 traffic lights [15].

Recently, artificial bee colony algorithms showed convincing studies to find efficient

traffic light settings. The latter are based on the collective behavior of self-organized

systems. These works were carried on a synthetic network made of nine intersections,

undergoing 16 different signals configurations [16].

Overall, this brief outline of previous research shows that each of these works is

carried out on specific problem instances, where a specific optimization algorithm is

applied. Most of the time, performances of proposed algorithms are validated against

expert settings and are often compared to the algorithm itself with various parameter

tunings. However, this brief survey points out the lack of comparison to existing algo-

rithms in the literature. Thus, it seems very complicated to test a new algorithm and

to tell how well it performs to solve such real-world optimization problems, regard-

less of the study case. In the following subsection, we present a method to understand

the spatial features of specific study cases in order to design appropriate optimization

algorithms.

2.2. Fitness Landscape

In optimization field, fitness landscape (FL) is a useful tool to describe and to ana-

lyze the geometry of the search space from the point of view of local search algorithms,

such as evolutionary algorithms (EAs) or single solution based local search algorithms

(simulated annealing, tabu search, etc.). FL provides a metaphorical picture of the

search space (peaks, valley, plateaus, etc.) which helps to design optimization algo-

rithms. It brings as well a portrait of the problem structure with a set of metric features,
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in order to quantify and compare the search difficulty of different possible representa-

tions, local search operators, or objective functions.

Following the work in combinatorial optimization [17], a FL is formally defined

by a triplet (X,N , f ) where X is the set of potential solutions, f : X → IR is the

objective function of the optimization problem, also called fitness function in EAs and

N : X → 2X is the neighborhood relation between solutions. The neighborhood relation

gives the set of neighboring solutions to each solution. To be relevant, the neighborhood

relation must be related to the local search operator used in the class of the studied

optimization algorithms.

A large amount of research exists on the FL analysis from the early days of EAs to

recent developments. In the late eighties, the goal of researchers was to understand and

characterize a problem difficulty (mainly combinatorial optimization problems) with

a single metric, such as the well-known Fitness Distance Correlation [18]. More re-

cently, with the progress of machine learning techniques, the fitness analysis is used

to bring a set of numerical features in order to predict the running time of search al-

gorithms [19, 20]. Mainly, FL analysis has been performed on artificial combinatorial

benchmarks such as Traveling Salesperson Problem, Quadratic Assignment Problem,

NK-landscapes [21], or more recently on artificial numerical problems [22]. Whereas

FL is well suited for black-box optimizations where an analytic definition of the fitness

function is not required, only few works [23] have used it on real-world problems.

In optimization, we discern two recurring shapes in fitness landscape. Flat geome-

tries, dominated by plateaus and hilly ones, dominated by local optima. The first ge-

ometries require random walks to compute features related to the neutral networks, as

graphs induced by the neighborhood relation. In the case of multimodal geometries,

basins of attraction can be detected and other metrics can be defined, although they

could be expensive to estimate as they are often computed by multiple hill-climbing

walks [24]. Another set of features for multimodality is based on the ruggedness. The
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autocorrelation of fitness introduced by Weinberger [25] defines the correlation of fit-

ness values during a random walk. The correlation value and the autocorrelation length

give a measure of the ruggedness of the landscape [26]. Besides, the accuracy of the

autocorrelation coefficients is defined by 1
2
√
`
, where ` is the length of the random walk

[27].

Another way to quantify the ruggedness is offered by the entropy approach [28]. In

this approach, the sequence of fitness values collected during a random walk is con-

verted in a sequence of −1, 0 and 1: 0 when the difference of two consecutive fitness

values is below a threshold ε, 1 when the difference is positive and greater than ε and

−1 otherwise. Then, the metric is defined by the entropy of the set composed by the

possible subsequences of size 2 in the sequence:

H(ε) = −
∑
p,q

P[pq] log6 P[pq], (1)

where pq are the possible subsequences from the set {−1, 0, 1} and P is their respective

frequencies in the original sequence.

This metric allows estimating the ruggedness of a landscape with respect to the

landscape neutrality, according to a threshold ε. For a broader overview, see the review

of Malan [29] on the existing fitness landscape analyzing methods.

3. Traffic Light Optimization Problem

Regarding the context of low-budget and time-expensive optimizations, we mainly

target algorithms that converge quickly towards good solutions – the lower simulation

need, the better. In last section, we noted that the sophistication of the majority of

algorithms in the literature might not suit these needs. Among others, evolutionary

algorithms, particle swarm optimization or even genetic programming are robust, but

require to evolve a set of solutions that necessarily induces higher simulation need,

thus higher budget consumption. Further, the combinatorial aspect and the extensive
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neighborhood of this class of problems do not fit well with known techniques, such as

differential evolution or tabu search.

In the rest of this article, we consider the context of Armas et al. works [15] in order

to formally define the traffic lights optimization problem. We introduce the foundements

of basic optimization algorithms and identify features that would lead to the design of

fast-convergence algorithms.

3.1. Problem Definition

From the point of view of city mobility experts, travel duration is one of the first

concrete information to interpret. During a day, the average trip duration is one of the

main measures of congestion in the city, which is strongly linked to pollution issues.

Most of the time, experts aim to reduce this duration by finding proper traffic lights

settings.

In a traffic light optimization context, a signal system is modeled according to three

properties: cycle, offset and phases. Phases represent the set of movements that can

take place simultaneously in a signal system and are set independently for each road

axis of the intersection (typically North-South and West-East). They basically define

how long signals show green and inter-green lights along their respective axes. The

sum of green and inter-green times among all phases defines the cycle time. Finally,

the offset time specifies the time to wait before traffic lights start their cycle. The latter

might be useful to synchronize neighboring traffic lights. Finally, a signal system S is

encoded as follows:

S h = (Ch,Θh,Φh,1, . . . ,Φh,r), (2)

with h the system number, Ch the cycle time, Θh the offset time and Φh,1, . . . ,Φh,r the

green times for the r road axes of the intersection (see Figure 1). These components are

constrained by several bounds and equations [15].
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Figure 1: Representation of a signal h with two phases (two road axes).

Hence the mean trip duration of city travelers is defined as the fitness function f to

minimize (see section 4.2.2). A candidate solution (i.e. a potential configuration for all

signal systems of the city) is encoded as a vector of settings (from Equation 2):

x = (S 1, S 2, . . . , S n), (3)

with n the number of signal systems in the road network. Thus, experts must search for

the optimal settings x∗ that result in the lowest average trip duration:

x∗ = argmin f . (4)

3.2. Mutation Operators

Mutation operators are defined in order to explore the search space of all feasible

solutions X. They create neighboring solutions from a candidate solution by altering its

inner properties. For example, the neighbors of a solution in a bit string search space

could be the set of solutions at Hamming distance 1, which is clearly related to the one

bit flip mutation operator. In the case of traffic light optimization, three operators are

identified: cycle time, offset time and green times mutators – each adds or withdraws a

fixed number of seconds to these respective timings. Thus, mutating a solution x con-

sists in altering one of these three properties (i.e. cycle, offset, or green times) of one

signal system S in the solution. The choice of the used mutation operator depends on
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specific mutation rates following Armas et al. works [30]. The rates are defined as

Pcycle, Pgreen and Poffset for cycle time, green times and offset time mutators, respectively.

Generally speaking, finding good solutions in a black-box optimization context depends

on the ability of the employed algorithm to explore and to exploit the search space effi-

ciently. Exploration favors the search in the whole search space, while exploitation fo-

cuses the search around a given solution. The following subsections describe algorithm

categories which emphasize exploration (random walks), exploitation (hill-climbers) or

both (bandits).

3.3. Random walks

Random walks are typically maximum exploration algorithms. Therefore, these

algorithms should not be considered on their own to find a problem’s optima. Neverthe-

less, they provide an informative outlook on the problem’s search space. A first solution

is randomly generated as the starting point of the walk. At each step, i.e. at each itera-

tion of the algorithm, a neighboring solution x is randomly sampled and its fitness value

f (x) is evaluated (see Algorithm 1). Then, this neighboring solution is selected as the

new starting point for the next step.

Algorithm 1: Random Walk

1 x←− initialize random solution

2 while stopping criterion not met do

3 compute f (x)

4 x←− mutate x (see section 3.2)

5 end

3.4. Stochastic Hill-Climbing Algorithms

Hill-climbing algorithms are typically known as maximum exploitation algorithms.

In the case of stochastic hill-climbing, neighboring solutions x′ are randomly sampled
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and evaluated from the set of all possible neighbors, until one of them improves the

currently best known solution. Then this solution is selected as the new starting point

for the next iteration (see Algorithm 2). Such algorithms may get stuck in local optima,

nevertheless the stochastic mutation operator processed in line 3 is likely to escape

them. From an evolution strategy perspective, this algorithm is related to the (1 + 1)-ES

[31, 32].

Algorithm 2: Stochastic Hill Climber

1 x←− initialize random solution

2 while stopping criterion not met do

3 x′ ←− mutate x

4 if f (x′) < f (x) then

5 x←− x′

6 end

7 end

3.5. Bandit Algorithms

Balancing the trade-off between exploration and exploitation is not an obvious task.

Therefore, optimization algorithms are sometimes coupled with an online learning pro-

cess which helps to decide whether the algorithm has to explore or to exploit the search

space, depending on its previous actions.

One historic paradigm for online learning is defined as the multi-armed bandit prob-

lem [33] that involves k bandit arms with unknown reward probabilities. At each step, a

player or a program selects an arm and receives a new reward. The goal is to maximize

the cumulated reward gathered over all time steps N. This is equivalent to minimize

the regret, defined as the loss incurred compared to the best arm. One recent way for

dealing with this problem is the Upper Confidence Bound (ucb) algorithm [34]. At each

step, the algorithm selects an arm i which maximizes the quantity:
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r̂i + R ·

√
2 ln N

ni
, (5)

where r̂i is the average reward of the arm i and ni is the number of times the arm i

has been selected amongst N steps. This formula is based on the trade-off between

exploitation and exploration, which is balanced by the R constant. Exploitation tends to

select the arm with the optimal average reward, whereas exploration tends to select the

arm which has been selected the most rarely.

Using such an algorithm is a well-known practice in optimization fields, especially

when the optimization process can be performed thanks to various operators with un-

known interest, in terms of fitness improvements. Thus we let the algorithm learn itself

the operator to use amongst the portfolio and expect it will tend to select the most re-

warding one along the optimization [35, 36]. Recently, Liu et al. use ucb algorithms

to optimize a solution part by part [37]. Each part is considered as an arm of a multi-

armed bandit. At each iteration of the optimization process, i.e. at each time a part of

the solution is mutated, the incurred difference of fitness is computed as follows:

r = f (x) − f (x′), (6)

where f is the fitness function, x the actual solution and x′ the mutated solution. The

empirical mean of these fitness differences represents the exploitation term for each arm

in the ucb formula. Thereby, the algorithm tends to focus the search on the part of the

solution that offers the best expected fitness improvement.

4. Bandit Descent on SIALAC Benchmark

We describe a method to efficiently optimize traffic light settings. Figure 2 illustrates

the main ideas of the approach with a flowchart. We introduce the sialac benchmark and

we design the Bandit Descent algorithm.
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Figure 2: Methodology flowchart.

4.1. Overview of the methodology

We use an extension of the sialac benchmark for any given city whose road network

is known (step 1 in Figure 2). This benchmark provides a set of scenarios that mimics

plausible traffic schemes in the city (working days, weekends, attractive poles, etc.). In

other words, the benchmark grants a portfolio of scenarios which can be used as inputs

in a traffic simulator. The simulator and the design of these scenarios are presented in

section 4.2. Consequently, we expect to overcome the problematics established in sec-

tions 1 and 2.1 (i.e. understand the properties of real-world mobility problems and com-

pare performances of diverse optimization algorithms applied to various study cases).

We analyze fitness landscapes of these scenarios (step 2) or run optimization algo-

rithms to find adequate signal system settings (step 3) so as to tackle the diverse traffic

schemes. Notice that the study of fitness landscapes is not mandatory in an optimization

context. One should obviously skip this step if just on-the-go optimization is needed on

a specific scenario. However, we will show in the following of this article how to use

such a knowledge, which can replace an urban expert knowledge, to design an efficient

optimization algorithm. This is presented in section 4.3.

4.2. SIALAC Benchmark

Without a loss of generality, the following considers the road network in the city of

Calais, France [38]. We briefly introduce the employed traffic simulator, we present the
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design process of the proposed benchmark, and we list the various case studies involved

in this work.

4.2.1. Simulator and equilibrium state

The simulation system considered in this work is the Multi-agent Transport Simula-

tion, MATSim [39] (see Appendix E for a visual example). MATSim requires as inputs

a road network model and the initial mobility plans for a set of agents (i.e. a set of

travelers’ time schedules). Thus traffic flows are microscopically simulated according

to agents’ initial plans. These agents individually try various routes to accomplish their

schedule at each iteration of the simulation, until the simulator reaches the Wardrop

equilibrium state. Equilibrium state is defined as a stable condition when no traveler

can improve his travel time by unilaterally changing routes. This state requires high

computational needs to be achieved and often takes a duration of about an hour to be

reached. As a consequence, optimization experts generally pre-calculate this equilib-

rium state in order to use it as a starting point for optimization purposes and thus avoid

overly expensive computation times [9, 30, 40, 41].

4.2.2. Road network and trip duration

Road network is the infrastructure on which agents can move around. In MATSim,

the network representation consists of nodes and links. In graph theory, such represen-

tation is a static, connected and directed graph consisting of vertices and edges. Nodes

can be interpreted as decision points in space and are generally located at link junctions.

Links depict road segments and handle such features as length, flow capacity, number

of lanes or maximum permitted speed.

In this work, we consider a mobility plan as a round trip between home and an

activity (work, study, leisure). Therefore, the average trip duration f introduced in

section 3.1 is defined as:
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f (x) =
1
]A

∑
a∈A

(
t[M(x), a, home→ activity]

+ t[M(x), a, activity→ home]
)
, (7)

where x is a configuration for all signal systems of the city, (i.e. a solution, see Equation

2), A is the set of simulated agents, M(x) is the mobility simulation of all agents using

the configuration x, and t is the time duration in seconds for the agent a in the simulation

M(x) to accomplish a given trip. These time durations are computed from MATSim

inner simulations M(x) and are mainly estimated according to the aforementionned link

features. One should note agents travel at maximum permitted speed respectively to

the link they drive, as long as they are not slowed by other agents or stopped by traffic

signals.

4.2.3. Mobility plans definition

We define home and activity clusters within the road network. Mobility plans are

then synthesized according to these clusters whether we define agents’ home or activity

locations. A more detailed list of these plans is given in the section 4.2.4.

To populate such clusters, we first collect every node of the road network model.

We assume these nodes represent our synthetic population’s departure or arrival points.

First, we split the network into rectangular grid cells; the finer the grid, the more precise

the repartition of agents. Then we can choose a grid cell as a cluster center. Thereby,

to each neighboring cell is assigned a probability to receive an agent, which decreases

according to the distance from the center cell in an exponential way, according to normal

distribution from the center distance. The variance of the normal distribution is the

parameter that tunes the spatial spreading of the cluster on the city map. The global

probability density matrix is next built considering every cluster center of the plan.

Consequently, agents are assigned to a cell, and more particularly to a network node

17



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

10

20

30

40

50

60

70

Figure 3: Four home clusters inside Calais road network. Colors indicate the number of agents departing

from a node. Colors should be used in print.

contained in the cell, depending on the likelihood of the cell to receive an agent. To

complete the mobility plan definition, agents are finally assigned a random departure

time inside a time slot, as well as an activity duration. Departure times are randomly

set between 7 AM and 9 AM, corresponding to typical morning rush hours. Activity

duration is set to four hours. An example of four home clusters is given in Figure 3.

Each cluster is centered on the main residential districts and the variance parameter is

set according to the area sizes, following the expertise of the urban planners.

4.2.4. Scenarios

We investigate census data provided by city hall experts of Calais [42] in order to

integrate mobility plans [43, 44]. These data include such information as living quarters,

main entries and exit points of the city, attractive activity sectors and exact locations of

traffic light devices. Thus, we apply the agents’ generation process described in the
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section 4.2.3 to synthesize plausible mobility schedules and we increasingly activate

signal systems involved in the simulations. These diverse case studies constitute the

sialac benchmark scenarios involved in this work. They are tuned with four parameters,

listed hereafter.

The number of agents synthesizes the scale of the scenarios. This parameter is criti-

cal in congestion problems and will be varied between 5000 and 20 000 agents to detect

the threshold from the congestion apparition. These numbers represent respectively

6% and 24% of Calais’s population, being close to the Calais population real mobility,

respectively weekends and working days.

Home locations are distributed following two ways: inside specific clusters, or uni-

formly in the city. Clusters choice allows to simulate different setups, such as mono-

centric or polycentric cities. Uniform distribution will be the basic reference when no

or few data are known about population distribution.

Activity locations are only distributed inside clusters and follow home locations

scheme. The case of uniform distribution for activities in the whole city space is not

relevant, as the attractive locations are usually located in specific spots.

Signal systems can be activated or deactivated during the simulations. The ratio

of activated systems will be varied between 100%, 75% and 50% of the real count of

systems in the road network. When this ratio is decreased, the most peripheral systems

are deactivated, leaving only those in the very center of the city when only 50% traffic

lights are involved.

Finally, 72 scenarios are created from the combination of these four parameters,

summarized in Table 1.

4.3. Algorithm Design

We design the Bandit Descent optimization algorithm using a preliminary study of

the fitness landscapes induced by the benchmark scenarios.
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Table 1: Parameters involved in sialac scenarios.

Number of agents {5, 10, 15, 20} × 103

Home {1 cluster, 4 clusters, uniform}

Activity {1 cluster, 4 clusters}

Signal systems {50%, 75%, 100%}

4.3.1. Importance of a Variable

Intuitively, the importance of a variable quantifies its ability to modify the fitness

value of a solution. In the case of a multi-linear regression with a normalized predictor,

such importance can be defined by the coefficient value of the regression. For random

forest classifiers, the importance of variables is defined by the mean decrease impurity

[45]. In the context of expensive black-box optimization problems, we assume a variable

is important when its mutation implies a large modification in the fitness value of the

solution.

More formally, let opi(x) be the local search operator that modifies the variable i of

a solution x. At a given threshold τ > 0, the variable is important when:

| f (opi(x)) − f (x)| > τ. (8)

Importance of the variables can be estimated during a random walk that modifies one

variable each step. In that case, a random walk is a sequence of solutions (x1, x2, . . . , x`)

where for all t ∈ [1, `− 1], it exists i such as xt+1 = opi(xt). The importance of a variable

i is defined by the number of times that the difference of fitness between two successive

solutions in the walk is important:

Iτ(i) = ]{xt : t ∈ [1, ` − 1] and | f (opi(xt)) − f (xt)| > τ}. (9)

In order to measure the importance of variables across the walks, we normalize the fit-

ness value for each random walk so as to have similar means and variances, approaching
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0 and 1, respectively. For each random walk, the normalized fitness function is defined

by:

f̂ (x) =
f (x) − E[ f (xt)]√

Var[ f (xt)]
, (10)

where E[ f (xt)] and Var[ f (xt)] are mean and variance of the fitness values along the

walk.

4.3.2. Bandit Descent

Some traffic signals may have more impact on the urban traffic time than other ones.

As a consequence, tuning the mutation operator which modifies the appropriate systems

(variables) according to the importance of a signal represents a difficult task. Conse-

quently, we propose an adaptive approach in Algorithm 3 that automatically selects the

most promising signal systems to be mutated. Once they are selected, mutation opera-

tors are applied according to fixed mutation rates (see 3.2). This algorithm is inspired

by Liu’s works which were discussed in section 3.5.

When using a bandit strategy, two main issues have to be defined: the number of

arms and the reward function. The convergence of the bandit strategy slows down with

the number of arms. Then, in order to reduce the number of arms (that potentially equals

the number of signal systems in the context of Liu’s method), we first split all systems of

the network into several groups. For example, these groups could be defined regarding

the geographical positions of the systems (urban expert point of view) or regarding the

importance of those systems (optimization expert perspective, see 4.3.1). Then, each

of these traffic light groups is seen as an arm. Therefore, at each step of the algorithm,

we use the bandit selection strategy to select a group. Finally, we mutate the settings

of a number of signal systems belonging to the selected group in line 4 of Algorithm

3. The mutation operator used is stochastic, as explained in section 3.4. Unlike Liu’s

works, we make the hypothesis that the mutation of a group is relevant when the group
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of traffic lights has a high impact on the fitness function. As a consequence, the reward

of a group is defined by the absolute fitness difference incurred after each mutation:

r = | f (x) − f (x′)|, (11)

where f is the fitness function, x the actual solution and x′ the solution after the mutation

of a group. The empirical mean of this quantity defines the exploitation part for each

group in the ucb formula. This way, the algorithm is encouraged to mutate the group

of signals that disturbs the most the fitness function, for good or for bad. We suppose

a group that alters mean trip duration the most must be critical for optimization. Thus

we tend to focus mutations on this group and expect to quickly converge to a satisfying

global signal system settings.

Algorithm 3: Bandit Descent
Input: G (systems groups)

1 x←− initialize random solution

2 while stopping criterion not met do

3 g←− select best group in G

4 x′ ←− mutate g

5 if f (x′) < f (x) then

6 x←− x′

7 end

8 update rewards

9 end

5. Experiments

We present the experimental protocol we employ. We investigate the fitness land-

scape structures in various ways and finally study performances of the previously intro-
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duced optimization methods.

5.1. Experimental Setup

We run whole 72 sialac scenarios on the Calais city road network model, made

of 2720 nodes and 6049 links, resulting in a simulated area of 35 km2. The Wardrop

equilibrium state is reached for each scenario without prior consideration of traffic lights

(see section 4.2.1). Then we specify the positions of 33 intersections with traffic lights

(see Appendix D) and the pre-calculated equilibrium states are used as starting points

for further simulations. Mutation rates are fixed to 50%, 30% and 20% for Pcycle, Pgreen

and Poffset, respectively.

5.2. Trip Duration

In order to study fitness landscape structures, we run 20 random walks (see Algo-

rithm 1) of 50 steps each on every case study of the benchmark, so as to achieve an

accuracy of 10 percent for the calculation of statistical metrics in the following section.

At each step of these walks, we randomly mutate a unique signal system and observe

the evolution of the global fitness along the walk. Figure 4 shows median travel dura-

tions computed from the sample of solutions provided by the random walks, for each

benchmark scenario.

Let us explain these charts. As expected, travel times thus congestion phenomena

increase with the number of agents and the number of activated signal systems. Nev-

ertheless, there is no significant difference between median travel times when 50% or

75% traffic lights are activated, which suggests signal systems in the center of the city

have a strong hold on trip durations.

Furthermore, population spreading as well as activity locations have an obvious im-

pact on the journey time. To ease the interpretation of these charts, we can divide the

six scenarios of each agent number values into two groups: one called G1 containing

observations for one activity area and one or four home clusters and the other one called
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G2 containing the four other scenarios. Whatever the number of agents is, the lowest

travel time is observed for G1 scenarios. This may be explained since these correspond-

ing situations are less conducive to crossovers, as each agent heads towards the same

direction.

The greater the number of agents, the more we note important differences among

G2 scenarios. The highest median travel time generally happens when all agents are as-

signed to one home cluster and head towards four activity zones; this could be explained

by a potentially increased congestion for this specific configuration. On the other hand,

uniformly distributed homes and one activity cluster appear to generate more traffic jam

when few signal systems are involved, even though this configuration generally shows

the lowest median times in G2 observations. Overall we note that four activity areas

mostly increase the travel duration, while four home clusters against uniform distribu-

tion tend to decrease it.

These observations can lead city experts to various interpretations. Obviously, the

number of travelers in the city impacts the average trip duration. Yet, some congestion

phenomena do not appear when the number of travelers is small (e.g. with 5000 agents,

the most conducive scenario to congestion is unclear). Then, more activity clusters

seem to increase the average journey time, as more congestion situations might occur in

different parts of the city. Finally, home clusters have less impact on trip duration than

activity ones, but spreading the population into a few clusters (but not only one) might

reduce travel time.

Thus, from an urban planner point of view, these results seem different in terms of

trip duration from one scenario to another and give useful information for future possible

plan of the city. However, these different trip durations (i.e. different responses of the

fitness function) on the various scenarios may not imply different difficulties in solving

the underlying optimization problems. That will be discussed in the next section.
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Figure 4: Median travel duration (in seconds) for sialac benchmark scenarios computed on the sample

of solutions given by the random walks (h: home clusters, a: activity clusters). Colors should be used in print.

Otherwise, bars are ordered as the legend.
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5.3. Ruggedness

From the random walks computed on the different scenarios, ruggedness of land-

scapes can be estimated using the autocorrelation of fitness (ACF), or by evaluating the

maximum entropy of Vassilev’s sequences (Hmax) according to several ε values, sampled

in [0, 10] (see section 2.2). Results of these metrics are reported in Table 2.

Surprisingly, mean autocorrelation lengths and maximum entropies are very similar:

for the 72 scenarios, the lengths vary between 7 and 10 and there is no significant dif-

ference according to a Mann-Whitney test at level 5%. Although the lengths are short

and indicate a rugged landscape, the difficulty of underlying optimization problems is

analogous according to ruggedness. This means that favoring a class of optimization

algorithms over another to tackle such a problem is not an obvious task. This observa-

tion is reinforced by the maximum entropy measures that are capped to 0.84 for each

scenario.

Indeed, Figure 5 (left) shows examples of random walks on two different scenarios.

The walks look similar for every scenario. The fitness displays sudden rapid jumps

upwards or downwards. This suggests some variables seem more important than others,

as their mutations lead to abrupt changes in the fitness function. Then, we analyze the

importance of variables across the scenarios.

5.4. Importance of Variables

Figure 5 (right) shows the absolute value of the difference δt = f̂ (xt+1)− f̂ (xt) across

all walks over all scenarios. In logarithmic scale, the distribution is unimodal. All the

differences δ are similar across the scenarios, but the tail of the distribution for high

value of |δt| is large. This allows us to define a meaningful threshold to detect the

importance across the scenarios. The threshold τ is defined so that 10% of the |δt| are

considered to be a significant difference.

Table 3 shows the average and the standard deviation of importance for each vari-

able, i.e. for each road intersections, across all scenarios. We deduce signal systems
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Table 2: Mean autocorrelation lengths (ACF) and maximum entropies of Vassilev’s sequences (Hmax) for

each SIALAC benchmark scenarios, computed on the sample of solutions given by the random walks,

with 100% signal systems activated (h: home clusters, a: activity clusters).

Agents h a ACF Hmax Agents h a ACF Hmax

5000

1
1 8.4 0.81

15 000

1
1 8.7 0.84

4 7.3 0.82 4 8.8 0.81

4
1 7.4 0.81

4
1 8.4 0.83

4 7.2 0.82 4 7.9 0.81

uniform
1 8.9 0.82

uniform
1 7.7 0.83

4 8.1 0.79 4 8.3 0.82

10 000

1
1 8.2 0.83

20 000

1
1 7.3 0.84

4 8.0 0.82 4 8.1 0.85

4
1 9.2 0.82

4
1 8.8 0.83

4 8.5 0.82 4 7.9 0.82

uniform
1 9.2 0.84

uniform
1 8.6 0.84

4 8.5 0.84 4 7.6 0.83
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Figure 5: Examples of random walks for 20.000 agents and two study cases (left). Distribution of |δt |

where δt = f̂ (xt+1) − f̂ (xt) is the difference of normalized travel duration (right). Notice x-log scale.
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have high importance when the average is greater than 2 (signal systems with id. 2,

8, 11, 13 and 29 among others), or little importance regardless the scenario when it is

lower than 1 (signal systems 15, 16, 30, 31 and so on). However, the standard devia-

tion values are high and often larger than the average values, which suggests that the

important signal systems are not the same regarding the scenarios.

Besides, we stated in section 5.2 there is no noticeable difference in median travel

durations between scenarios involving 50% and 75% of traffic lights in the city. Actu-

ally, this observation can be explained by the addition of low importance traffic lights

to move from 50% to 75% scenarios. On the other hand, moving to scenarios involving

100% of traffic lights in the city requires to add peripheral signal systems with high

importance (such as those with id. 22, 29), thus implying a noticeable increase in travel

durations.

Figure 6 shows the mean importance according to the main parameters of the bench-

mark. For example, on top, the mean importance is computed for all scenarios from

5, 000 to 20, 000 agents. Without going into the many details, importance of an in-

tersection can change from one scenario to another one. For example, importance of

intersection with id. 10 is almost 4 for 5, 000 agents and less than 2 for 15, 000 agents.

The benchmark parameter which impacts the most the importance of signals is the num-

ber of activity clusters. For example, for the intersection with id. 29, importance drops

from 6.2 with four clusters of activity, to nearly 0 with one cluster. The ruggedness and

the difficulty tend to be similar across the benchmark scenarios, but the variables (signal

systems) that impact the most the fitness function change according to the benchmark

parameters. Nevertheless, signal systems with high average importance across all sce-

narios (deduced from Table 3) are clearly noticeable on these charts (i.e. similar peaks

for signals with id. 11, 13, 14, or 29).
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Figure 6: Mean signal system importance according to the benchmark parameters, with 100% signal

systems activated. Colors should be used in print. Otherwise, bars are ordered as the legend.
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Table 3: Average (µ) and standard deviation (σ) of traffic signal importance over all benchmark scenarios

with 100% signal systems activated.

id. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

µ 0.67 1.96 3.04 2.62 1.75 1.58 1.62 2.67 3.83 2.12 2.46 4.92 1.67 4.38 3.62 0.67 0.79

σ 0.75 1.31 1.84 1.65 1.33 1.04 1.15 1.7 1.4 1.72 1.53 2.77 0.9 2.43 2.53 0.99 0.96

id. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

µ 0.83 1.21 0.75 1.21 1.75 2.42 0.75 0.58 0.58 1.88 0.71 0.46 3.58 0.46 0.33 0.38

σ 1.07 0.96 0.83 1. 1.56 1.41 0.83 0.91 0.64 2.15 0.84 0.76 3.3 0.64 0.75 0.56

5.5. Performances of Optimization Algorithms

We now search for high-quality traffic light settings. In the context of time-consuming

simulations, the less the simulator is requested, the better the optimization algorithm. In

this regard, an efficient optimization algorithm must converge to satisfying signal set-

tings in a minimum of optimization budget. Therefore, we assume the settings found

will be local most of the time. However, in a black-box and computationally expensive

context, we are not primarily seeking the globally optimum settings; at least we target

to reach optima in the dedicated optimization budget.

Therefore, we compare the performances of five optimization algorithms: a stochas-

tic hill-climbing algorithm (see Algorithm 2), a simple elitist evolutionary algorithm

from [30] and three bandit-based algorithms which differ on the way their arms and

rewards are defined (from equation 5). The first bandit algorithm considers the con-

text of Liu’s works, which has been outlined in section 3.5; in that respect, there are as

many bandit arms as there are signal systems in the road network. However, we aim to

reduce this potentially high number of arms in a low-budget and fast-convergence per-

spective. Moreover, some signal systems appear to be more critical than others in terms

of optimization according to the previous analyses. Thus we rely on this information to

design signal system groupings (i.e. bandit arms) for the proposed Bandit Descent (see

Algorithm 3). Two ways to establish these groups are envisaged. As a planner would

probably do, the first way considers three geographically-based groups which gather
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neighboring signal systems in the city space (e.g. signal systems belonging to the same

road axis). The second way collects signals in three groups according to their impor-

tance, deduced from the previous analyses: critical (importance larger than 2), moderate

(between 1 and 2) and quasi-neutral signal systems (below 1).

Each of these five optimization algorithms are run 40 times on every benchmark

scenarios involving 5000 agents. One single run considers a budget of 2000 simulator

evaluations and requires about 15 hours of computation on a single-threaded machine

(see Appendix C). We select four random signal systems for the mutation phases, fol-

lowing Armas et al. works [15, 30] in a way to ease comparisons and discussion in

section 6. For bandit algorithms, the selection strategy determines a group to be mu-

tated, then four signal systems belonging to the latter are mutated. The exploration

parameter R is arbitrarily set to 2 (see Equation 5).

Figure 7 presents the obtained mean fitness evolution for each of the scenarios ac-

cording to the evaluation budget. Notice that in this case, one evaluation corresponds to

one request to the simulator. Results reported for the evolutionary algorithm consider

the best-of-generation’s fitness. At a first look, every optimization algorithm basically

converges towards the same setting quality (respectively to the scenario they are applied

on, see Appendix B), though with different speed. In a low-budget context, the evolu-

tionary algorithm appears as the less competitive one: such algorithm requires to evolve

a set of solutions, therefore it uses even more simulator calls before reaching satisfy-

ing settings as there are more individuals in the population. A stochastic hill-climbing

performs generally well, but our results show that grouping signal systems according

to their importance, in terms of fitness importance, mostly leads to superior quality set-

tings since the very first evaluations. On the other hand, geographical groupings are

surprisingly often as effective as a stochastic hill-climbing, or even worse regarding the

uh-1a scenario. Defining an arm for each signal system slows down the convergence

speed, as illustrated by bd-full in the charts. This is because the algorithm requires to
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explore too many groups before it can determine where to exploit efficiently.

The fast convergence of the Bandit Descent based on the importance of variables is

highlighted in Table 4. Here, we assume that the simulator response is accurate to 10

percent. Then, we compute the average evaluations needed for the algorithms to con-

verge to 10 percent of the best settings found all runs combined (accordingly to each

scenario). The gain of the adaptive algorithm over a stochastic hill-climbing or an eli-

tist evolutionary algorithm is confirmed by Kruskal-Wallis tests, showing the statistical

difference of the settings found in the early evaluations. One should note that the al-

gorithms work in an equivalent computation time, which is about 10 000 times smaller

than the time allocated to simulation (see Appendix C). This reinforces our arguments

for developing efficient low-evaluation-consumption algorithms in this low-budget con-

text. Nevertheless, the efficiency of the Bandit Descent is noticeable to a certain extent,

depending on the case study. For example, the gain in using the proposed method on

the 4h-1a scenario is less significant. Another example can be noted on the uh-1a sce-

nario, where the gain of the online-learning method is clearly noticeable during the very

first evaluations. These observations may be explained by the choice of the exploration

parameter R. This will be discussed in the next section.

6. Discussion

The pertinence of the presented benchmark and algorithms is discussed. We return

to the parameterization of the Bandit Descent and to the choice of traffic light groupings.

We deepen the analysis of the traffic light settings found in the previous section. Finally,

we conduct the whole methodology of this article on a different real-world mobility case

study.

6.1. Selection Strategy and Traffic Light Groupings

As stated in the last section, some performances may appear similar given a mobility

scenario and an algorithm setting. This similarity can be explained by the choice of the
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Figure 7: Minimization of mean trip duration for 5000 agents and 100% signal systems activated (h:

home clusters, a: activity clusters, u: uniform repartition). Five optimization algorithms are compared :

stochastic hill-climbing (hc), best-of-generation of an evolutionary algorithm (ea) and Bandit Descents

(bd) with geographical (geo.), importance-based (imp.) or full groupings. The exploration parameter is

set to R = 2 for ucb algorithms. Notice x-log scale.

Table 4: Average evaluations (simulator calls) to reach good quality settings at precision 10%, for stochas-

tic hill-climbing (hc), elitist evolutionary algorithm (ea) and importance-based Bandit Descent (bd) algo-

rithms. Values in bold are statistically different according to Kruskal-Wallis H-test at level 5%.

Scenario
Evaluations

hc ea bd

1h-1a 246 1400 165

1h-4a 362 1680 236

4h-1a 400 2000 315

4h-4a 372 1600 218

uh-1a 146 280 63

uh-4a 308 1240 196
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exploration parameter R in the ucb strategies, which is probably maladjusted compared

to some scenarios. In Figure 8, we study further the uh-1a scenario to show that the

R value can be refined so as to drive to different algorithm behaviors. A small value

certainly leads to a fast minimization during the very first iterations, but risks to get

stuck in local optima (i.e. too much exploitation). However, the higher the R value,

the greater the similarity with a stochastic hill-climbing (i.e. too much exploration).

Thus, the benefit of the proposed adaptive algorithm becomes more noticeable when

it is adequately set up. Moreover, we use a very basic ucb strategy without windows

management nor restart strategy, which might improve the efficiency for long running

times.

Furthermore, at equivalent settings for the selection strategies, we show that ge-

ographical groupings lead most of the time to poorer performances than importance-

based groupings and sometimes than a stochastic hill-climbing. Although it may seem

unnatural to a planner prima facie, our methodology to detect and to cluster critical traf-

fic lights in the city seems to be more effective to reach good quality settings. Actually,

it is not so much the selection strategy that leads to good performances, but rather the

way in which groups are constituted in advance.

6.2. Relevance of Settings

Due to the expensive simulation times, the high number of settings to be evalu-

ated for each optimization algorithm and the numerous mobility scenarios to study, one

might wisely think to take advantage of the various benchmark scenarios to speed up

the optimization algorithms. Assuming that some scenarios share the same features (e.g.

number of home or activity clusters), solutions found on a specific benchmark scenario

might be envisaged to tackle similar scenarios. In other words, we should not start the

optimization algorithm from totally random settings, but rather from superior solutions

discovered in similar benchmark scenarios.

Table 5 lists the average number of iterations needed to reach a good quality solution
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Table 5: Mean iterations needed to reach good solutions when the search is initialized with the best

settings from another scenario. The ∞ symbol stands when the search could not reach a good quality

solution.

From \To 1h-1a 1h-4a 4h-1a 4h-4a uh-1a uh-4a

1h-1a − 386.4 ± 32.5 355.1 ± 44.8 349.8 ± 35.3 45.3 ± 14.1 379.3 ± 26.1

1h-4a ∞ − ∞ 0 ± 0 ∞ 0 ± 0

4h-1a 25.3 ± 8.0 ∞ − ∞ 161.1 ± 51.1 ∞

4h-4a 157.7 ± 24.8 40.0 ± 16.9 209.3 ± 28.3 − 292.0 ± 69.4 0 ± 0

uh-1a 268.5 ± 76.0 400.6 ± 20.3 404.6 ± 52.6 325.4 ± 19.7 − 338.7 ± 27.9

uh-4a 323.8 ± 66.5 44.3 ± 19.7 326.2 ± 62.9 0 ± 0 401.0 ± 50.0 −

over 40 runs of a stochastic hill-climbing optimization (see Figure 7 and Appendix B),

when the algorithm is initialized with the best solution found from another scenario. As

a reminder, it takes about a thousand evaluations to reach such a good solution when the

algorithm starts from random settings in section 5.5. Instead, one should clearly benefit

from superior settings found in prior optimizations to tackle other scenarios, especially

if these last share same features. Figure 9 illustrates an example of this behavior: ini-

tializing the search from optimized settings mostly leads to a good fitness value from

the very first iterations. Further, it often takes some iterations more to converge towards

a high quality solution set. Yet, some settings might mislead the optimization algorithm

for long runnnig times and slow down its convergence, especially when benchmark sce-

narios are dissimilar.

To deepen the discussion, we inject the best signal settings found from scenarios

involving 5000 agents into the same scenarios with the number of agents increased

to 20 000 – that take more than twice as long to simulate. As stated in Table 6, we

show once again that it is worthwhile in most cases to start the minimization from the

best solutions found when a lower number of agents is involved. These solutions still

perform well when more agents are simulated, thus saving precious computation time
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Figure 9: Minimization of mean trip duration for the uh-1a scenario and 5000 agents. Stochastic hill-

climbers (hc) are initialized randomly or from best known settings.
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Table 6: Mean iterations needed to reach a good solution for scenarios involving 20 000 agents. The

search is initialized with the best settings found from the same scenario and 5000 agents.

1h-1a 1h-4a 4h-1a 4h-4a uh-1a uh-4a

407.2 ± 110.8 ∞ 332.1 ± 83.9 287.7 ± 54.3 291.4 ± 51.5 303.1 ± 51.2

in reaching superior settings.

As concluding remarks, this brief study shows that the best signal system settings

found from our experiments in section 5.5 appear to be relevant when they are con-

fronted with the various sialac scenarios. Therefore, one should benefit from his prior

optimizations when looking for good quality traffic light settings in new – albeit similar

– mobility scenarios. Moreover, this might suggest to consider multi-objective heuris-

tics to tackle several benchmark scenarios in the same optimization process, so as to

reach very robust settings.

Finally, we would like to point out that the quality of optimized settings found in this

work – regarding real ones actually applied in Calais city – is not so obvious to estimate,

and is left for future works. Actually, the proposed methodology does not stand for this

purpose, but instead provides planners an unusual outlook on their city. We aim to open

reflexion thanks to both optimization experts and urban experts’ points of view, so as to

research for the most efficient traffic light settings.

6.3. Validation of the Benchmark

This first research step opens many perspectives from real-world mobility applica-

tions to robust optimization techniques. The sialac benchmark is an open benchmark

that can be extended with various city maps, or more precise travel plans, among others.

It can be reused by a larger research community to draw a more consistent comparison

between several optimization algorithms and potentially improve them.

As a starting point for future works, we experience our methodology on Quito city,

Ecuador, from [30]. Utilizing the various benchmark scenarios and their analyses (see

38



Appendix A), the importance-based Bandit Descent manages once again to find high-

quality traffic light settings (see Figure 10). These brief results, computed according

to the same conditions as in section 5.5, are only taken from two specific benchmark

scenarios, but show encouraging results in generalizing our method to various cities

around the world.

Ideally, given a city, a planner can simulate various mobility scenarios using the

sialac benchmark, then analyze these last to extract critical crossroads, so as to ease the

search for good quality traffic light settings. If, at some future, traffic conditions are to

change (e.g. opening of new commercial areas, relocation of companies, etc.), then city

experts should reiterate the proposed methodology to understand the new trafic dynam-

ics and hence recalibrate the traffic light controls accordingly. The offline optimization

process appears to be a relevant choice when it is necessary to improve traffic conditions

with existing road infrastructures, awaiting the transition to more state-of-the-art tech-

nologies, such as intelligent and traffic-actuated traffic lights. Moreover, the proposed

optimization methodology could be used with online intelligent system for which some

meta-parameters need to be set. Indeed, the meta-parameters could be tuned at the city

scale with the same methodology by replacing the direct parameters of the traffic lights

by the potential meta-parameters of the controller (thresholds, states representation, re-

ward functions, etc.).

7. Conclusion

In this work, we present an extension to the sialac benchmark for real-world mo-

bility problems; 72 scenarios regrouping various mobility features are proposed and

studied for Calais city, France. With a fitness landscape analysis, we show that the

global structure of the search space is similar and rugged for all scenarios. We pro-

pose a methodology based on random walks to detect the important variables in the

optimization problems.
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Figure 10: Minimization of mean trip duration for 20 000 agents and two benchmark scenarios on Quito

city. Stochastic hill-climbing (hc) and importance-based Bandit Descent (bd) are compared. Exploration

parameter is set to R = 1.

This information helps us to design an adaptive optimization algorithm based on an

reinforcement learning strategy, the Bandit Descent, in order to tackle scenarios with

various features. Our experiments indicate that reinforcement learning coupled with the

detection of important variables seems to potentially reach faster high quality solutions

across a number of scenarios, and require less urban expert knowledge.

Beside the analysis of fitness landscapes, the adaptive algorithm based on ucb selec-

tion strategy can be improved with existing restart strategies, time windows and a more

robust scaling of the exploration constant. Moreover, highlighting the importance of

variables during a random walk opens a path to incorporate an adaptive detection of im-

portant variables within the search process. The new Bandit Descent pushes to design an

efficient mimetic algorithm that combines the proposed local search with a smart cross-

over, that could also be based on the variable importance, in parallel environment of

computation. Further, a complexity analysis of the Bandit Descent is envisaged on sim-

plified problem instances in order to show the theoritical improvement of the technique.
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Finally, developing a surrogate model to speed up traffic flow simulations is intended

thanks to the plenty of data induced by the diversity of the benchmark scenarios.
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References

[1] The world’s cities in 2016, United Nations, Department of Economic and Social

Affairs (2016).

[2] H. Wei, G. Zheng, H. Yao, Z. Li, Intellilight: A reinforcement learning approach

for intelligent traffic light control, in: Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, ACM, 2018,

pp. 2496–2505.

[3] S. S. Mousavi, M. Schukat, E. Howley, Traffic light control using deep policy-

gradient and value-function-based reinforcement learning, IET Intelligent Trans-

port Systems 11 (7) (2017) 417–423.

[4] J. Gao, Y. Shen, J. Liu, M. Ito, N. Shiratori, Adaptive traffic signal control: Deep

reinforcement learning algorithm with experience replay and target network, arXiv

preprint arXiv:1705.02755 (2017).

[5] H. H. Hoos, Automated Algorithm Configuration and Parameter Tuning, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 37–71.

41
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[42] C. Vilet, L. Pezin, Schéma de développement urbain, Tech. rep., Ville de Calais

(July 2010).

[43] K. Müller, K. W. Axhausen, Population Synthesis for Microsimulation: State of
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Appendix A. Experiments on Quito, Ecuador

Results presented in section 6.3 rely on the real-world mobility case study of Quito

city, Ecuador [9, 15, 30]. The transport network covers a 40 km2 area and includes 8192

links and 70 signal systems.

24 real-world-like scenarios are generated with SIALAC benchmark, involving the

same parameters as those presented in Table 1. The ratio of activated signal systems is

fixed to 100%. Home and activity clusters are defined according to census data and at-

tractive destinations in the city (university campuses, working districts, shopping malls,

...).

The same experimental protocol as described in section 5 is conducted on these

new case studies. Fitness landscapes and their ruggedness are computed from a set of

20 random walks on each benchmark instance. Importance of variables are estimated

with equation 9. As for the Calais city study case, some signal systems appear to be

more or less important according to the studied instance (see Figure A.11 and Table

A.7). Critical traffic lights are deduced when their average importance is greater than 3,

otherwise they are not important when it is lower than 2. Once again, we observe high

standard-deviation values, often close to average values, suggesting important signal

systems are not the same according to the considered instances. Signal system groupings

for the online-learning algorithm are based on top of this analysis.

Original works simulate the movement of 20 000 vehicles in the transport network.

Therefore, the performances depicted in Figure 10 are computed from two benchmark

instances involving 20 000 agents.

Appendix B. Convergence of Algorithms

We extend the optimization runs for one sialac scenario involving 5000 agents. The

experimental setups follow the specifications of sections 5.1 and 5.5, except the opti-

mization budgets are doubled to 4000 simulator evaluations in a way to observe the
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Figure A.11: Mean signal system importance according to the benchmark parameters, with 100% signal

systems activated on Quito scenario. Colors should be used in print. Otherwise, bars are ordered as the legend.
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Table A.7: Average (µ) and standard deviation (σ) of traffic signal importance over all benchmark in-

stances with 100% signal systems activated on Quito scenario.

id. 0 1 2 3 4 5 6 7 8 9 10 11 12 13

µ 3.29 3.71 2.17 2.92 3.08 4.92 2.25 1.21 1.79 2. 4.17 3.88 2.54 3.42

σ 2.34 2.39 1.97 2.48 2.5 2.52 1.88 1.15 1.53 0.82 2.15 2.24 1.76 2.16

id. 14 15 16 17 18 19 20 21 22 23 24 25 26 27

µ 2.96 2.5 1.5 2.92 3.79 1.33 0.88 1.67 2.67 1.79 2.58 3.54 4.04 1.58

σ 2.05 1.78 1.55 1.58 2.5 1.37 1.17 1.49 1.37 1.32 2.58 2.36 2.23 1.29

id. 28 29 30 31 32 33 34 35 36 37 38 39 40 41

µ 2.25 1.08 0.79 3.25 3.54 4.17 2.83 3.62 4.5 3.58 2.46 1.33 1.38 1.42

σ 1.53 1.26 1.15 2.18 2. 2.09 1.7 2.63 1.94 2.33 1.53 1.46 1.52 1.47

id. 42 43 44 45 46 47 48 49 50 51 52 53 54 55

µ 1.67 1.46 1.96 1.88 2.17 4.04 3.46 3. 3.96 3.29 2.62 2.79 2.29 1.79

σ 1.43 1.38 1.49 1.36 1.21 2.42 2.08 2.52 2.35 1.84 1.63 1.98 1.54 1.61

id. 56 57 58 59 60 61 62 63 64 65 66 67 68 69

µ 1.42 1.46 0.75 1.04 0.58 0.25 1.08 1.21 3.38 1.92 1.67 1.25 1.04 0.92

σ 1.41 1.71 1.23 0.98 1. 0.6 1.29 0.91 1.98 1.8 1.95 1.23 1.02 1.08
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Figure B.12: Minimization of mean trip duration for 5000 agents and 100% signal systems activated (h:

home clusters, a: activity clusters. Five optimization algorithms are compared : stochastic hill-climbing

(hc), an evolutionary algorithm (ea) and Bandit Descents with geographical (geo.), importance-based

(imp.) or full groupings. The exploration parameter is set to R = 2 for ucb algorithms. Studied scenario

is the same for the two plots. Notice the linear (left) and logarithmic (right) scales.

convergence of the compared algorithms. These experiments represent a computational

effort of about 30 hours for one single run on a single-threaded machine. Figure B.12

shows the minimization of the mean trip duration according to the number of evaluations

(i.e. simulator calls), which is displayed on two scales to ease observations.

The linear scale clearly shows that each algorithm converges to an equivalent set

of optimal traffic light settings at the end of the 4000 evaluations. This statement is

confirmed by Kruskal-Wallis statistical tests at level 5%. Nevertheless, the logarithmic

scale highlights the performance of importance-based Bandit Descent, which finds the

best quality traffic light settings when considering a few evaluations (this was discussed

in section 5.5).

Appendix C. Running Times of Algorithms

In short, one iteration consists of two main phases: first, the optimization algorithm

evolves one or a set of solutions (e.g. crossover and mutation); then the fitness function
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of the latter is evaluated in the simulator. Table C.8 and Table C.9 list the average

running times for one iteration on all benchmark scenarios. Stochastic hill-climbing,

elitist evolutionary algorithm and the proposed importance-based Bandit Descent are

compared. Overall, most if not all of the consumed time for one iteration is spent in

simulation, while the execution time of the evolution phase is negligible (in the order of

milliseconds). As a consequence, the evolutionary algorithm definitely requires much

more time to complete an iteration, as it requests even more simulator calls as there are

more individuals to evaluate in the population. Indeed, the elitist evolutionary algorithm

follows Armas et al. setup [30]: population size, offspring size and the number of elite

individuals are set to 20, 20 and 10, respectively. As a result, one iteration of the elitist

evolutionary algorithm represents 20×2 simulator evaluations, whereas one iteration of

stochastic hill-climbing or Bandit Descent requires only one simulator evaluation. This

explains the highly contrasting computation time per iteration in Table C.8. However,

notice that all algorithms are compared with the same number of evaluations using the

simulator (e.g. same running time budget) in section 5.5.

Finally, every algorithm reaches a quality-equivalent set of solutions when the op-

timization budget is extended (see Appendix B). These observations reinforce the ar-

guments of developing algorithms able to converge towards acceptable solutions in a

minimum of simulation requests.

Appendix D. Location of Traffic Light Systems

Figure D.13 depicts a map of the Calais city road network, and locates the 33 traffic

lights.

Appendix E. Simulation Visualization

Figure E.14 visualizes a simulation of traffic flows in the Calais city road network,

utilizing MATSim.
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Table C.8: Average running times on Calais, France scenarios.

Agents h a Simulation (in s)
Iteration (cumulated time in s)

hc ea bd

5000

1
1 31.0 31.0 1243.0 31.0

4 31.7 31.7 1271.2 31.7

4
1 32.0 32.0 1283.2 32.0

4 30.9 30.9 1239.1 30.9

uniform
1 33.6 33.6 1347.4 33.6

4 34.0 34.0 1363.4 34.0

10000

1
1 42.4 42.4 1700.2 42.4

4 46.8 46.8 1876.7 46.8

4
1 42.5 42.5 1704.6 42.5

4 45.6 45.6 1828.6 45.6

uniform
1 44.7 44.7 1792.5 44.7

4 48.9 48.9 1960.9 48.9

15000

1
1 50.6 50.6 2029.0 50.6

4 55.7 55.7 2233.6 55.7

4
1 50.6 50.6 2029.1 50.6

4 56.9 56.9 2281.7 56.9

uniform
1 50.3 50.3 2017.0 50.3

4 52.3 52.3 2097.2 52.3

20000

1
1 58.0 58.0 2325.8 58.0

4 63.8 63.8 2558.4 63.8

4
1 59.7 59.7 2394.0 59.7

4 63.0 63.0 2526.3 63.0

uniform
1 62.0 62.0 2486.2 62.0

4 67.8 67.8 2718.8 67.8
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Table C.9: Average running times on Quito, Ecuador scenarios.

Agents h a Simulation (in s)
Iteration (cumulated time in s)

hc ea bd

5000

1
1 28.0 28.0 1122.8 28.0

4 29.7 29.7 1191.0 29.7

4
1 30.1 30.1 1207.0 30.1

4 28.9 28.9 1158.9 28.9

uniform
1 29.6 29.6 1187.0 29.6

4 29.8 29.8 1195.0 29.8

10000

1
1 33.5 33.5 1343.4 33.5

4 33.8 33.8 1355.4 33.8

4
1 34.6 34.6 1387.5 34.6

4 36.0 36.0 1443.6 36.0

uniform
1 34.5 34.5 1383.5 34.5

4 34.0 34.0 1363.4 34.0

15000

1
1 39.0 39.0 1563.9 39.0

4 38.6 38.6 1547.9 38.6

4
1 40.5 40.5 1624.0 40.5

4 46.1 46.1 1848.6 46.1

uniform
1 42.5 42.5 1704.3 42.5

4 46.2 46.2 1852.6 46.2

20000

1
1 46.6 46.6 1868.7 46.6

4 48.4 48.4 1940.8 48.4

4
1 51.4 51.4 2061.1 51.4

4 50.4 50.4 2021.0 50.4

uniform
1 48.4 48.4 1940.8 48.4

4 49.5 49.5 1985.0 49.5
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Figure D.13: Location of the 33 systems of traffic lights involved in Calais city road network.

Figure E.14: Simulation of traffic flows in the Calais city road network.
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