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Departamento de F́ısica Teórica de la Materia Condensada,

Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain

M.D.Mart́ın and L. Viña
Departamento de F́ısica de Materiales C-IV, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain

R.André
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We report on time-resolved photoluminescence from semiconductor microcavities showing that
an optically controllable mechanism exists to turn on and off memory effects in a polariton system.
By increasing the laser pumping pulse intensity we observe revivals of the decaying time-resolved
photoluminescence signal, a manifestly non-Markovian behavior of the optically active polaritons.
Based on an open quantum system approach we perform a comprehensive analytical and numerical
study of the coupling of optically active polaritons to a structured reservoir to confirm the origin
of the observed features. Our findings show that negative detunings and strong excitation should
occur simultaneously for memory effects to take place.

I. INTRODUCTION

Semiconductor microcavities (SM) have attracted a
great deal of attention in recent years due to the op-
portunity they bring to create and manipulate, in a
controlled way, many-bosons systems in a solid-state-
environment1,2. Bose-Einstein condensation signatures
of radiation-matter quasiparticles (polaritons) have been
recently identified in such systems3,4,5,6. On the other
hand, due to the rich possibilities of tailoring the matter-
radiation interaction in SM, optically controlled dynam-
ics of elementary electronic excitations is within reach.
In particular, the understanding of the ultrafast dynam-
ics of polaritons becomes crucial for interpreting impor-
tant quantum control experiments in SM as it has been
demonstrated recently7. A convenient and versatile way
of monitoring the ultrafast dynamics of polaritons is pro-
vided by time-resolved photoluminescence (tr-PL) exper-
iments.

Here we focus our attention on II-VI SM where a strong
exciton-LO-phonon coupling produces a rapid relaxation
for non-resonantly created polaritons, with large excess
energies8. It has been reported that, under certain con-
ditions, tr-PL following a non-resonant pulsed excitation
of a CdTe-based microcavity shows an oscillatory emis-
sion dynamics strongly depending on the detuning and
the initial excitation density. Furthermore, spin-related
effects have been observed when the tr-PL is analyzed
into its co- and cross-polarized components after exci-
tation with circularly polarized pulses9,10,11. The non-
linear coupling of optically active and dark states has
been invoked as a possible mechanism to explain exist-

ing experimental results12. However, these unusual ex-
perimental features seem still to challenge conventional
theoretical approaches.
Most theoretical models rely on the Born-Markov ap-

proximation to describe the polariton dynamics13,14,15.
The main feature of these approaches is to neglect mem-
ory effects, that is, the behavior of the polariton system
at some time t is only determined by its configuration
precisely at the same time. The validity of this assump-
tion requires the environment characteristic correlation
time to be small as compared with the relaxation time
of the system. The fingerprint of a Markov process is
an exponential decay, while deviations from a Markovian
behavior cause a non-exponential time evolution, with
eventually superimposed oscillations implying some de-
gree of correlation between the quantum system and its
environment.
The main purpose of the present paper is to describe

an optically controllable mechanism of memory effects in
SM and to report on tr-PL results which provide its quan-
titative verification. Several parameters may be used to
control the presence or absence of memory effects in the
dynamics of a polariton system. Some of them are of a
static nature, such as the detuning between the cavity
optical mode and the bare exciton resonance, whereas
others are of a dynamic nature, such as the intensity of
the optical pumping. Here we emphasize on the impor-
tance of the latter ones.
The analysis is carried out within the framework of the

theory of open quantum systems. In the usual scenario
for studying open quantum systems, a central system of
interest is directly coupled to a large system usually la-
beled as the bath. In contrast, here we consider instead a
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three systems framework: the quantum system of inter-
est (the emitting polaritons), a high-energy (exciton-like)
polariton bath and an intermediate system (at the ”bot-
tleneck” region). The last system provides control over
the indirect coupling between optically active polaritons
and the bath of high energy polaritons. We show that,
initial excitation intensity behaves as a controllable mem-
ory mechanism for producing a rich variety of features in
tr-PL signals. Spin effects are not included in the present
study.
The paper is organized as follows: in Section II we

present our three coupled systems model. We start by
briefly discussing some aspects of a master-like equation
approach with memory effects that may provide insights
on the proper dynamics of the emitting polariton system.
However, polariton-polariton interactions together with
polariton-loss effects are hard to include and thus make
this simple approach unpractical to provide an appropri-
ate description of the problem. In order to obtain a good
quantitative agreement with experimental data a micro-
scopic Heisenberg-Langevin approach, including memory
effects, has been adopted16. In Section III we present and
discuss the experimental data, which corroborate our the-
oretical predictions. A summary is presented in Section
IV.

II. THEORETICAL BACKGROUND

A. The model

After their creation in the upper polariton (UP) branch
by a pulsed laser, polaritons rapidly relax to the lower po-
lariton (LP) branch states. Once in the LP branch, one
of the main mechanisms for polariton scattering in SM is
the extremely efficient parametric-down-conversion. By
this process two polaritons are simultaneously scattered:

one of them goes to a
−→
k ∼ 0 or ”signal” particle state

while the other one (conserving energy and linear mo-

mentum) goes to a high | −→k | exciton-like state, the so-
called ”idler” particle state. Thus, we start by identify-
ing three regions of interest in the LP branch, as sketched
in Figure 1: (i) The bottom of the trap (signal states),−→
k ∼ 0, with energy dispersion E(~k), described by oper-
ators a~k; (ii) the intermediate or ”bottleneck” polariton
region, described by operators c~k and energy dispersion

ǫ(~k), where polaritons accumulate after a rapid relax-
ation from the UP branch, and finally (iii) the exciton-
like bath (idler states) described by operators b~k and en-

ergy dispersion ω(~k). The Hamiltonian is then given by
(h̄ = 1)14

H =
∑

~k

E(~k)a†~ka~k +
∑

~k

ω(~k)b†~k+¯

∑

~k

ǫ(~k)c†~kc~k

+ HXP +HSI (1)

In the present model polaritons are to be described by bo-
son operators linearly interacting with a large boson bath

(excitons). The polariton-polariton interaction term is
given by

HXP =
∑

~k,~k′,~k1,~k2

Ṽ (~k,~k′, ~k1, ~k2)a
†
~k
b†~k′

c~k1
c~k2

+H.C. (2)

where Ṽ (~k,~k′, ~k1, ~k2) accounts for the polariton-polariton
coupling and H.C. means hermitic conjugate. Since a
large population of polaritons can condense at the bot-

tom of the trap in the LP branch,
−→
k ∼ 0, a self-

interaction term has to be included as given by

HSI = V0a
†
0a

†
0a0a0 (3)

FIG. 1: Schematic representation of different polariton sub-
systems. Inset: two systems, signal and idler, indirectly cou-
pled by an intensity dependent strength.

Intermediate quasiparticles (”bottleneck” polaritons),
can reach a high population due to rapid relaxation pro-
cesses from high energy states. Thus, the effective inter-
action between optically active polaritons and exciton-
like polaritons in the bath can be assumed to be mod-
ulated by the presence of those ”bottleneck” quasiparti-
cles. It is well known that for composite environments,
where extra degrees of freedom modulate the interaction
between a quantum system of interest and a large reser-
voir, an effective non-Markovian behaviour on the quan-
tum system dynamics arises even when the reservoir it-
self can be described in the Markovian approximation17.
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Following this line of thought, we shall consider that po-
laritons optically pumped at the UP branch rapidly ac-
cumulate into an intermediate or ”bottleneck” region of
quasiparticles18.
The exact quantum evolution of the fast relaxing po-

lariton system is far from describable in simple terms and
a detailed theory of its evolution is not yet available. We
can, however, fill this gap with the reasonable hypothe-
sis that, under high intensity pumping, the intermediate
polaritons can be described by a parametric approxima-
tion by using classical fields instead of full quantum field
operators. This approximation ignores quantum fluc-
tuations in the intermediate polariton fields. Thus, in
HXP , the c~k1

c~k2
operator is replaced by the c-number

< c~k1
c~k2

>∼ h~k1
(t)δ~k1,~k2

with h~k(t) acting as an ef-

fective pump on the intermediate polaritons, depending
on the actual pumping pulse at the UP branch. In this
context, an effective classical intensity sets the system-
reservoir coupling strength. Consequently, the polariton-
polariton interaction term adopts the time-dependent ef-
fective form

HXP (t) =
∑

~k,~k′

V (~k,~k′, t)a†~k
b†~k′

+
∑

~k,~k′

V ∗(~k,~k′, t)a~kb~k′
(4)

where

V (~k,~k′, t) =
∑

~k1,~k2

Ṽ (~k,~k′, ~k1, ~k2)h~k1
(t)δ~k1,~k2

(5)

Pump depletion is well accounted for with a simple-
minded pulse shape as determined by the shape/length
of the excitation laser pulse as well as by proper polari-
ton relaxation mechanisms in a microcavity. We shall
return to this point later. The effective Hamiltonian de-
scribing the coupling of trapped polaritons (a~k modes)
with the high energy polariton bath (b~k modes), Eq.(4),

corresponds to a coupling strength V (~k,~k′, t), which is
now adjustable experimentally by varying the excitation
pulse parameters such as their width and intensity. Thus,
it is already clear from the present discussion how an op-
tically controlled mechanism may exist to turn on and
off memory effects in a polariton system.
Additionally, the above description explains why a

Born-Markov based theoretical approach should be in-
valid in the present context: (i) even if the optically ac-
tive polariton system is weakly coupled to the high energy
polariton reservoir, a time-dependent coupling strength
yields to a non-exponential decay; (ii) by continuously
increasing the pump pulse intensity a strongly coupled
system-reservoir situation should be reached beyond a
certain threshold, hence a theory based on a lowest-order
perturbation in the coupling strength breaks down; (iii)
the idler-polariton bath, as being formed by higher en-
ergy polaritons (massive exciton-like particles) with a
quadratic dependence of ω(k) on k, constitutes a highly
structured continuum, for which a single characteristic
correlation time cannot be identified.

It is worth noting that the Hamiltonian in Eq.(1), with
HXP as given by Eq.(4), corresponds to a non-degenerate
parametric amplifier for massive particles, where the
parametric gain implies that the LP population, as well
as the polariton bath population, are amplified at the ex-
penses of intermediate polariton depletion. We empha-
size that we are considering a pulsed excitation, thus no
indefinite gain will arise and the validity of the paramet-
ric approximation is still guaranteed. Furthermore, for
a time-independent system-reservoir coupling, our prob-
lem can be solved exactly. We use this as a check on our
numerical results later.
Before we address the full numerical solution of the

proposed model, an analytically tractable method is to be
discussed first. This discussion is presented here because
it complements the results of the microscopic treatment
to be detailed below and it will also serve as a reference
point.

B. Time-convolutionless non-Markovian master
equation

The first type of approximation we consider is based
in a semi-analytical approach by using a Lindblad-like
master equation with time-dependent rates allowing non-
Markovian effects to be included. We start by considering
a bipartite system conformed on one hand by the opti-

cally active polaritons
−→
k ∼ 0 and on the other hand by

a high energy polariton bath. The underlying physics is
analogous to the parametric-down conversion processes
in non-linear optics, hence consequently with an anti-

rotating-wave-like coupling between those sub-systems.
For an initially empty polariton bath, the master-like
equation for the reduced density operator of optically
active (signal) polaritons, without any other decay mech-
anism, is

∂ρS(t)
∂t = − i

2
S(t)[a†0a0, ρS(t)] +

1
2γ(t)

(

−a0a
†
0ρS(t)− ρS(t)a0a

†
0 + 2a†0ρS(t)a0

)

(6)

Time-convolutionless master equations of the latter form
have been largely documented19. The time-dependent
parameters S(t) and γ(t) depend on the reservoir spectral
density20. Eq.(6) is local in time but contains all the
information about memory effects in the time dependent
parameter γ(t).
From this master equation is immediate to obtain the

equation of motion for n(t) = TrS{ρS(t)a†0a0}, the pop-
ulation of optically active polaritons

dn(t)

dt
= γ(t)(n(t) + 1) (7)

Given that initially the ~k = 0 mode is empty, n(0) = 0,
we found that the number of optically active polaritons
grows up as

n(t) = e

∫

t

0
γ(t′)dt′ − 1 (8)
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In the Markov regime for which γ(t) = γM =constant,
the polariton population grows exponentially. How-
ever, non-Markovian effects are evident when the re-
laxation rates in the master equation are time depen-
dent. Up to now, no dissipation effects have been in-
cluded in our discussion. Thus, the polariton population
in the optically active mode does not cease to steadily
increase. Polariton-polariton interactions, creating scat-

tered quasiparticles out of the
−→
k ∼ 0 zone, cavity losses

and recalling that the system-bath coupling is pulsed for
a finite period of time (no continuous pumping mech-
anism replenishing the intermediate polariton zone is
present), produce finally that n(t) temporally saturates
and then goes to 0. Nevertheless, any oscillation associ-
ated with the time-dependent rate γ(t) should manifest
itself not only in the rise- but also in the decay-evolution
of the optically active polariton density.
One noteworthy feature of this treatment is the possi-

bility of clarifying the growth of n(t) at early times. In
the Markov approximation, n(t) = eγM t−1, thus at short
times the polariton population starts growing with a lin-
ear slope. Since a signature of non-Markovian behavior
is a time dependent relaxation rate, which starts growing
as γ(t) ∼ gt, the polariton population should behave at

short times as n(t) ∼ egt
2/2 − 1 ∼ gt2/2, in qualitative

agreement with the experimental results referring to the
curvature of the initial time evolution (see below).
Despite the exact solvability of this model a systematic

approach for dealing with mechanisms of polariton inter-
actions and losses are not easily implementable, which
makes the present formalism inadequate to describe the
non-monotonic dependence of tr-PL signals. We con-
sider, therefore, an analytical solution of the microscopic
Heisenberg dynamics to investigate in a more detailed
way memory effects in polariton systems.

C. Heisenberg-Langevin dynamics

From the previous analysis, it is apparent that there is
a large amount of theoretical insight to be gained from
a more exhaustive examination of the proposed model.
Now, a thorough formal analysis of the proposed polari-
ton dynamics is performed. We solve directly the Heisen-
berg equation of motion for a given operator A. In par-

ticular, for a~k and b†~k
we obtain

iȧ~k = E(~k)a~k +
∑

~k′

V (~k,~k′, t)b†~k′
+ 2Voa

†
0a0a0δ~k,0(9)

iḃ†~k = −ω(~k)b†~k −
∑

~k′

V ∗(~k,~k′, t)a~k′
(10)

In order to solve numerically the coupled equations of

motion, Eqs.(9) and (10), we formally integrate b†~k
(t) in

Eq.(10), then inserted in Eq.(9), to get

ȧ~k (t) = −iE(~k)a~k − i
∑

~k′

V (~k,~k′, t)b~k′
(0)eiω(~k′)t

+

∫ t

0

∑

~k′,~k′′

V (~k,~k′, t)V ∗(~k′, ~k′′, t− τ)a~k′′
(t− τ)eiω(~k′)τdτ

− 2iV0a
†
0a0a0δ~k,0 (11)

For the sake of simplicity we take ~k′′ = ~k and as-
sume that the effective interaction V can be separated as

V (~k,~k′, t) = g(~k,~k′)h(t), where g(~k,~k′) accounts for both
the Coulomb and Pauli effects in the polariton-polariton
scattering while h(t), a dimensionless function of time,
represents an effective pump-polariton pulse. As a con-
sequence, Eq. ( 11) can be rewritten as

ȧ~k(t) = −i
(

E(~k)− iΓ0 + 2V0a
†
0a0δ~k,0

)

a~k − iη~k(t)

+

∫ t

0

h(t)h(t− τ)a~k(t− τ)K~k(τ)dτ (12)

in terms of the kernel function

K~k(τ) =
∑

~k′

g(~k,~k′)g(~k′, ~k)eiω(~k′)τ (13)

and a polariton-bath noise function

η~k(τ) =
∑

~k′

g(~k,~k′)b~k′
(0)eiω(~k′)τh(τ) (14)

Since the memory time of the radiation field outside the
microcavity is extremely short, on the order of 1/E(0) ∼
1 fs for typical II-VI gap energies E(0) ∼ 2 − 3 eV, we
are justified to treat radiation losses from the microcavity
within the Markov approximation with the simple inclu-
sion of a phenomenological damping term Γ0 in Eq.(12).
However, of primary interest here are the non-Markovian
effects coming from the strong coupling between signal
and idler-bath polaritons. Eq.(12) embodies the memory
effects on the dynamics of the emitting polaritons. The

term g(~k,~k′) describes the strength and spectral form of
the signal-idler coupling.
We emphasize that, in our model, the bath is formed by

high energy polaritons (exciton-like quaiparticles), hence
the idler-bath we are considering consists of massive par-
ticles. In this sense, the present signal-idler polariton
coupled system is very similar to atom-laser systems with
a continuous output coupler20,21. However, the main dif-
ference with atom-lasers is that in our case the signal-
idler outcoupling is of an anti-rotating-wave kind (see
Eq.(4)) instead of the standard rotating-wave approxi-
mation usually employed in atomic systems. In order to
proceed, we assume a quadratic energy dispersion rela-
tion for the idler particles, ω(k) = k2/2MX with MX the
bare exciton effective mass, and a Gaussian-like profile
for the trapped ground-state polariton in k-space. Con-

sequently, the signal-idler coupling g(~k,~k′) can be writ-
ten (in the continuum approximation for idler particles)
as20,21

g(~k,~k′) =
iΓ1/2

(2πσ2
k)

1/4
e
−

(~k−~k
′)2

4σ2
k (15)
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where Γ1/2 and σk settle the strength and width of the
system-reservoir coupling, respectively. The kernel term,
for the optically active mode k ∼ 0, becomes

K0(τ) =
Γ√

1− iατ
(16)

where α =
σ2
0

Mx
. Note that in our model, the bath is

assumed to be formed by bosons with a dispersion re-
lation ω(k) = k2/2MX . This fact gives rise to distinct
features in the spectral bath response and consequently
in the reduced system dynamics, as compared with that
found for non-massive and structureless baths, such as
those corresponding to photons or phonons.
The noise term is the responsible for initiating the po-

lariton relaxation towards the bottom LP states. Thus,
we adopt for this term the role of a classical seed and
have checked numerically that a very small value for it
does not affect the results.
At this point we have completed the presentation of

our theoretical framework and the underlying approxi-
mations, thus we can now proceed to evaluate the time
evolution of the mean number of emitting polaritons at
the bottom of the lower polariton branch to compare it
with tr-PL experimental data.

III. RESULTS

A. Experiments

The sample under study is a Cd0.4Mg0.6Te λ-cavity,
with top (bottom) distributed Bragg reflectors (DBRs)
built with 17.5 (23) pairs of alternating λ/4 thick layers of
Cd0.4Mg0.6Te and Cd0.75Mn0.25Te. In each of the antin-
odes of the electromagnetic field confined in-between the
DBRs there are two CdTe quantum wells (QWs) of 90Å
thickness. The strong coupling between the excitons con-
fined in the QWs and the photons confined in the cavity
yields to a Rabi splitting of ∼10 meV at low tempera-
ture. One important parameter to be considered is the
detuning δ = E(0) − ω(0). The cavity thickness varies
across the wafer, allowing to tune the photon in and out
of resonance with the excitons, thus varying the detun-
ing.
The sample is kept inside a cold-finger cryostat at a

temperature of 8 K and is resonantly excited with 2
ps-long pulses arriving at the sample at ∼ 3o, their en-
ergy tuned to the UP branch. The time evolution of
the PL is obtained by means of a spectrograph coupled
to a streak camera (time resolution ∼10 ps). We have
selected the emission originating from k ∼ 0 lower po-
lariton states by means of a small pinhole (angular reso-
lution ∼ 1o). For polarization-resolved measurements we
have used two λ/4-plates to excite and analyze the PL
into its co/cross-circularly polarized components, after
excitation with σ+-polarized pulses.
Figure 2 shows typical experimental co-circularly po-

larized tr-PL data for different laser intensities of I =

1, 40, 70 and 110 mW but the same detuning δ = −10
meV. The maximum of the PL signal increases in a non-
linear manner with the pulse laser intensity (note that
for the weakest intensity I = 1 mW, the curve has been
amplified by a factor of 225), while the temporal widths
reduce slightly. New features developing on the decay
side of the PL are clearly observed, with a temporal be-
havior dependent on the pump laser intensity. In par-
ticular, the emergence of a revival of the decaying PL
signal is markedly evident for high laser intensities. This
new peak becomes clearer for high intensity pumping.
For positive detunings the extra peak on the decay side
of the tr-PL is not present (results not shown). These
observed intensity-dependent features can be fitted with
good quantitative agreement using our theoretical model
with memory effects controlled by the pulsed pump in-
tensity.
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FIG. 2: Experimental co-circularly polarized tr-PL signals for
a detuning δ = −10 meV and different pulse laser intensities:
I=110 mW (blue circles), I=70 mW (green squares), I=40
mW (red diamonds) and I=1 (mW) (black triangles).

B. Discussion

From the theoretical side our aim is to calculate the
time evolution of the mean number of polaritons in the

optically active
−→
k = 0 state, i.e. < a†0a0 > (t), by

numerically solving Eq.(12). The parameters used cor-
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respond to CdTe microcavities with an exciton mass
MX = me+mh = (0.51+0.9)m0 = 1.41m0. We consider
only heavy-hole excitons coupled to the cavity mode.

The relaxation of UP-resonantly created polaritons can
be qualitatively described as follows. The direct relax-
ation to the LP states is strongly inhibited and the ma-
jority of polaritons scatter to large-k LP states. The sit-
uation is equivalent to that obtained after non-resonant
excitation, i.e. there is a large polariton population at
the LP bottleneck; from there polaritons relax to k ∼ 0
states via polariton-polariton parametric scattering. We
assume that the accumulation of intermediate or ”bottle-
neck” polaritons, following the actual laser pulse, takes
place for a longer period of time (tens of picoseconds)
than the exciting pulse width (∼ 2 ps), corresponding to
an asymmetrical shape. Thus, it is to be modeled by an
effective pump-polariton field of the form h(t) = At3e−βt,
where β can be associated with the accumulation rate
of intermediate polaritons. This assumption is justified
since time-resolved PL in such CdTe microcavities, under
pulsed excitation, has a clear asymmetric shape with typ-
ical decay times on the order of 101−102 ps. We will call
as the effective intensity, the square of the time integral of
the polariton-pump pulse, Ipp ∼ |Aβ−4|2, where dimen-
sionless Ipp is assumed to be directly linked to the inten-
sity of the laser pulse, I, and will enable us to connect
the real excitation pump intensity with the intermediate-
polariton-pump classical field. In all cases reported be-
low, we focus on the analysis of co-polarized signals, i.e.
the excitation is σ+-polarized and the emission is ana-
lyzed into its σ+-polarized component.

By energy conservation requirements, the parametric-
like interaction (see Eq.(4)), giving rise to the simulta-

neous creation of a
−→
k = 0 polariton and a bath polari-

ton, makes only sense for negative values of δ. Besides
that, tr-PL experimental results show unconventional os-
cillatory features in co-polarized signals only for negative
values of δ where a polariton trap is possible22. Conse-
quently, we restrict our discussion and comparison with
experimental data to the δ < 0 case.

Figure 3 shows the high-intensity experimental tr-PL
signals from Fig.2 (symbols, now independently normal-
ized to their maximum value for each pulse intensity),
with the corresponding fits (solid lines) to our memory-
based theory. A non-oscillatory decay is obtained in the
weak pump limit or when memory effects are neglected
(see below). We therefore focus on the high intensity
laser pumping cases. The memory kernel K0(τ) depends

on the coupling function g(~k,~k′) through its width (in
k-space) σ0 and strength Γ1/2. We use the following fit-
ting parameters: δ = −10 meV, σ0 = 25.7 × 107m−1,
Γ = 3 × 1024s−2, which together with the bare exci-
ton mass, MX , define a typical signal-idler coupling time
scale as tc = e|δ|/α

√

|δ|α/4πΓ2 ∼ 10−10s. In terms of this
coupling time, the effective-pump inverse temporal width
is taken as β = 6/tc. Other parameters are Γ0 = 0.45|δ|
and V0 = 0.02|δ|. By adjusting the pump-polariton pulse
amplitude A, which together with β determine h(t) (in-

sets in Figure 2), in such a way to obtain the same
relative ratios between the effective pump-polariton in-
tensities, Ipp = 1, 0.64, 0.36 as those in the actual laser
pulses I = 110, 70, 40 mW, the computed tr-PL results
reproduce both qualitatively and quantitatively the ex-
perimental data. A non-linear initial rise of the tr-PL
signal, instead of a simple linear one, as well as a tem-
poral width that decreases for increasing pump intensity,
are clear signatures of non-Markovian behavior. Clearly,
at long times the decays are similar for both high- and
low-intensity pump levels, thus memory effects are prac-
tically unobservable in that limit. The non-Markovian
effects are more visible after the accumulation of inter-
mediate polaritons reaches its maximum value.
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FIG. 3: Experimental tr-PL normalized signal for different
pump intensities (symbols) and theoretical fits (continuous
lines). Experimental pulse laser intensities: (a) I=110 mW,
(b)=70 mW and (c) I=40 mW. Insets represent the effective
pump-polariton pulses h(t). For theoretical parameters see
the text.

In order to explore additional consequences of our
model, beyond the comparison with measured tr-PL
data, we proceed to discuss the effects of the pump-
polariton pulse parameters on the tr-PL results. Figure
4 shows simulations of tr-PL, where only variations of
the polariton-pump intensities Ipp are assumed (Ipp = 1
corresponds to the fitting pump intensity for the exper-
imental curve in Fig.3-a). Coupling parameters σ0, Γ
and V0 are identical to those used in Fig. 3. Calculated
tr-PL signals are plotted in Figure 4-a on a logarithmic
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vertical scale to show the sensitivity of memory effects on
the pump-polariton intensity or equivalently on the laser
pulse intensity. Oscillations in the polariton population
develop as the polariton-pump intensity increases. Our
results clearly demonstrate that the polariton popula-
tion dynamics, for a high pump excitation, shows a non-
exponential (oscillatory) behavior in contrast with the
typical exponential one predicted by simple Markovian
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FIG. 4: Simulated tr-PL signals for different pump-polariton
intensities Ipp. (a) Logarithmic scale. (b) Linear-scale. In-
set: Comparison between Markovian (delta kernel) and non-
Markovian tr-PL results for a high intensity pulse Ipp = 1.3
corresponding to a laser intensity of I = 143 mW.

approaches. In the low-intensity limit a Markovian ap-
proach should be sufficient to explain the non-oscillatory
behavior. This is further illustrated on Fig.4-b, where
a vertical linear scale is used to better see the evolu-
tion towards a typical Markovian signal for low intensity
pumping. Furthermore, by collapsing the memory func-
tion or kernel (see Eqs.(13) and (16)) to a delta function,
i.e. K(τ) ∼ δ(τ), for a high pump intensity case, the
peak on the decay side of the tr-PL disappears, as it is
demonstrated in the inset of Figure 4(b). This fact brings
further support to an intensity-controlled memory mech-
anism in these CdTe microcavities.
One last issue to address is the sensitivity of our re-

sults on the effective pump-pulse parameters, A corre-
sponding to the pulse height and β associated to the in-
verse decay time. In Figure 5 simulated tr-PL results,
for a given effective pump intensity Ipp = 1 but different
pulse parameters, are depicted. We emphasize that the
coupling strength between signal and idler subsystems is
time-dependent and goes as Γ1/2h(t). The main conclu-
sion from Figure 5 is that non-Markovian signatures are
enhanced for an impulse-like effective pump pulse, i.e. for

large β or equivalently, for given Ipp, a large amplitude A.
A non-oscillatory behavior of tr-PL signal occurs for wide
pump-pulses but intense and short pump-pulses give rise
to oscillatory patterns in tr-PL. On this basis we can con-
clude that memory effects switch-on when a high inten-
sity pump-pulse has a temporal width such that βt∗c ≫ 1,
where t∗c is an intensity controlled coupling time given by
t∗c = tc/A

2. This feature is fully consistent with our ba-
sic premises for the existence of memory effects in the
sense that a large accumulation rate of intermediate po-
laritons would lead to a strong coupling between signal
and idler (bath) polaritons. Moreover, our results sug-
gest new possibilities for indirectly monitoring the rapid
relaxation of UP polaritons to LP states. Non-Markovian
effects in tr-PL could be interpreted as a signature of a
rapid relaxation dynamics from nonresonantly pumped
polaritons to optically active lower branch polaritons.
Markovian theories give temporal broader tr-PL sig-

nals and no oscillations are observed. Some previous
theoretical treatments12 have attributed those oscilla-
tions to the existence of other states as dark excitons
or spin-splitted states. Our theoretical analysis shows

0 25 50 75 100
t(ps)

0

2

4

6

8
tr

 −
P

L
 (

a
rb

. 
u

n
it
s
)

0 50 t(ps)
0

1

2

h
(t

)(ii)

(i)

(iii)

(ii)

(i)
(iii)

FIG. 5: Simulated tr-PL signals for a fixed polariton-pump
effective intensity Ipp = 1, or equivalently I = 110 mW, but
different pulse-shape parameters: (i) Red curve, A = A1,
β = β1, corresponding to those parameters used in the fitting
of the experimental data in Fig.3-a. (ii) Green curve, A =

7A1/4, β = (7/4)1/4β1. (iii) Black curve A = A1/4, β =
β1/

√

2. The inset shows the pump-pulses h(t).

that oscillations in the tr-PL can be also produced by
non-Markovian effects coming from the coupling between
the trapped optically active polaritons with a polariton
bath via a modulated parametric-like interaction. Fur-
thermore, the wide range of intensities for which a satis-
factory agreement is obtained demonstrates that our the-
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oretical model indeed captures the main physics of the
pulsed response of polaritons in such II-VI SM as due
to memory effects, without the need of invoking other
states as responsible for those oscillations, as required by
Markovian theories.
Finally, it is worthwhile to mention that spin effects

are important in the polariton physics for such II-VI SM.
For the cross-polarized case, i.e. excitation σ+-polarized
and emission analyzed into its σ− component, the same
set of parameters fitting a co-polarized case, for identical
detuning and pump intensity, does not fit the experimen-
tally observed results. This evidences that in this case
the spin dependent polariton scattering must be properly
included to describe the observed data.

IV. CONCLUSIONS

In summary, we have demonstrated that non-
Markovian, or memory effects, produce oscillatory fea-
tures in tr-PL signals in II-VI SM. In particular, we have
found that the nonlinear rise and the revival of the de-
caying PL signal for high laser intensities is explained in
terms of a non-Markovian behavior of the optically ac-
tive polariton system as a consequence of being efficiently
coupled to a structured reservoir. These new features are
enhanced in the high-laser-power excitation case. The
shape and temporal width of a pump laser pulse should
lead to control the dynamics of relaxing polaritons from

a nonresonant initial distribution in the UP to access
optically active states in the LP branch. Experiments
to investigate this control effect would provide valuable
insight into polariton dynamics and are feasible with cur-
rent technology.
It is important to note, that while the tr-PL signal

does not give a definite answer to the question about the
exact intermediate states of the relaxation process from
the initially created UP polaritons, the qualitative and
quantitative agreement with the tr-PL experimental re-
sults, as a function of the excitation intensity, are strong
indications of the validity of the present model. A full
quantum treatment of the intermediate polariton states
would be desirable. These analysis, which require con-
sidering a much more complex quantum state space, are
left for further investigations.
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