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TRIBONACCI NUMBERS THAT ARE CONCATENATIONS OF TWO

REPDIGITS∗

MAHADI DDAMULIRA

Abstract. Let (Tn)n≥0 be the sequence of Tribonacci numbers defined by T0 = 0,
T1 = T2 = 1, and Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0. In this note, we use
of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-
Davenport reduction procedure to find all Tribonacci numbers that are concatenations
of two repdigits.

1. Introduction

A repdigit is a positive integer R that has only one distinct digit when written in its
decimal expansion. That is, R is of the form

R = d · · · d︸ ︷︷ ︸
` times

= d

(
10` − 1

9

)
,(1.1)

for some positive integers d, ` with ` ≥ 1 and 0 ≤ d ≤ 9. The sequence of repdigits is
sequence A010785 on the On-Line Encyclopedia of Integer Sequences (OEIS) [8].

Consider the sequence (Tn)n≥0 of Tribonacci numbers given by

T0 = 0, T1 = 1, T2 = 1, and Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0.

The sequence of Tribonacci numbers is sequence A000073 on the OEIS. The first few terms
of this sequence are given by

(Tn)n≥0 = {0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, . . .}.

2. Main Result

In this paper, we study the problem of finding all Tribonacci numbers that are concate-
nations of two repdigits. More precisely, we completely solve the Diophantine equation

Tn = d1 · · · d1︸ ︷︷ ︸
`1 times

d2 · · · d2︸ ︷︷ ︸
`2 times

= d1

(
10`1 − 1

9

)
· 10`2 + d2

(
10`2 − 1

9

)
,(2.1)

in non-negative integers (n, d1, d2, `1, `2) with n ≥ 0, `1 ≥ `2 ≥ 1, and 0 ≤ d2 < d1 ≤ 9.
Our main result is the following.

Theorem 2.1. The only Tribonacci numbers that are concatenations of two repdigits are

Tn ∈ {13, 24, 44, 81}.
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Our method of proof involves the application of Baker’s theory for linear forms in
logarithms of algebraic numbers, and the Baker-Davenport reduction procedure. Compu-
tations are done with the help of a computer program in Mathematica.

Let (Fn)n≥0 be the sequence of Fibonacci numbers given by F0 = 0, F1 = 1, and
Fn+2 = Fn+1 + Fn for all n ≥ 0, and (Bn)n≥0 be the sequence of balancing numbers given
by B0 = 0, B1 = 1, and Bn+2 = 6Bn+1 − Bn for all n ≥ 0. This paper is inspired by
the results of Alahmadi, et al. [1], in which they show that the only Fibonacci numbers
that are concatenations of two repdigits are Fn ∈ {13, 21, 34, 55, 89, 144, 233, 377}, and
Rayaguru and Panda [9], who showed that Bn ∈ {35} is the only balancing number that
can be written as a concatenation of two repdigits. Other related interesting results in
this direction include: the result of Bravo and Luca [3], the result of Trojovský [11], the
result of Qu and Zeng [10], and the result of Boussayoud, et al. [2].

3. Preliminary results

3.1. The Tribonacci sequence. Here, we recall some important properties of the Tri-
bonacci sequence {Tn}n≥0. The characteristic equation

Ψ(x) := x3 − x2 − x− 1 = 0,

has roots α, β, γ = β̄, where

α =
1 + (r1 + r2)

3
, β =

2− (r1 + r2) +
√
−3(r1 − r2)

6
,(3.1)

and

r1 =
3

√
19 + 3

√
33 and r2 =

3

√
19− 3

√
33.(3.2)

Further, the Binet formula for the general terms of the Tribonacci sequence is given by

Tn = aαn + bβn + cγn for all n ≥ 0,(3.3)

where

a =
1

(α− β)(α− γ)
, b =

1

(β − α)(β − γ)
, c =

1

(γ − α)(γ − β)
= b̄.(3.4)

Furthermore,

a =
α

α2 + 2α+ 3
,

and the minimal polynomial of a over the integers is given by

44x3 + 4x− 1,

has zeros a, b, c with max{|a|, |b|, |c|} < 1. Numerically, the following estimates hold:

(3.5)

1.83 < α < 1.84;

0.73 < |β| = |γ| = α− 1
2 < 0.74;

0.18 < a < 0.19;

0.35 <|b| = |c| < 0.36.
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From (3.1), (3.2), and (3.5), it is easy to see that the contribution the complex conjugate
roots β and γ, to the right-hand side of (3.3), is very small. In particular, setting

e(n) := Tn − aαn = bβn + cγn then |e(n)| < 1

αn/2
,(3.6)

holds for all n ≥ 1. The proof of the last inequality in (3.6) follows from the fact that

|β| = |γ| = α− 1
2 and |b| = |c| < 0.36 (by (3.5)). That is, for any n ≥ 1,

|e(n)| = |bβn + cγn| ≤ |b||β|n + |c||γ|n = |b|α−n
2 + |c|α−n

2 < 2 · 0.36 · α−n
2 <

1

αn/2
.

Furthermore, by induction, one can prove that

αn−2 ≤ Tn ≤ αn−1 holds for all n ≥ 1.(3.7)

Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then, [K,Q] = 6.
Furthermore, [Q(α) : Q] = 3. The Galois group of K over Q is given by

G := Gal(K/Q) ∼= {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼= S3.

Thus, we identify the automorphisms of G with the permutations of the zeros of the
polynomial Ψ. For example, the permutation (αγ) corresponds to the automorphism
σ : α→ γ, γ → α, β → β.

3.2. Linear forms in logarithms. Let η be an algebraic number of degree d with min-
imal primitive polynomial over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then the
logarithmic height of η is given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log
(

max{|η(i)|, 1}
))

.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) =
log max{|p|, q}. The following are some of the properties of the logarithmic height function
h(·), which will be used in the next section of this paper without reference:

h(η1 ± η2) ≤ h(η1) + h(η2) + log 2;

h(η1η
±1
2 ) ≤ h(η1) + h(η2);

h(ηs) = |s|h(η) (s ∈ Z).

We recall the result of Bugeaud, Mignotte, and Siksek ([4], Theorem 9.4), which is a
modified version of the result of Matveev [7], which is one of our main tools in this paper.

Theorem 3.1. Let η1, . . . , ηt be positive real algebraic numbers in a real algebraic number
field K ⊂ R of degree D, b1, . . . , bt be nonzero integers, and assume that

Λ := ηb11 · · · η
bt
t − 1 6= 0.
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Then,

log |Λ| > −1.4 · 30t+3 · t4.5 ·D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(ηi), | log ηi|, 0.16}, for all i = 1, . . . , t.

3.3. Reduction procedure. During the calculations, we get upper bounds on our vari-
ables which are too large, thus we need to reduce them. To do so, we use some result
from the theory of continued fractions. For a nonhomogeneous linear form in two integer
variables, we use a slight variation of a result due to Dujella and Pethő ([5], Lemma 5a).
For a real number X, we write ‖X‖ := min{|X − n| : n ∈ Z} for the distance from X to
the nearest integer.

Lemma 3.1. Let M be a positive integer, p
q be a convergent of the continued fraction

expansion of the irrational number τ such that q > 6M , and A,B, µ be some real numbers
with A > 0 and B > 1. Furthermore, let ε := ‖µq‖ −M‖τq‖. If ε > 0, then there is no
solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, and w with

u ≤M and w ≥ log(Aq/ε)

logB
.

The following Lemma is also useful. It is due to Gúzman Sánchez and Luca ([6], Lemma
7).

Lemma 3.2. If r ≥ 1, H > (4r2)r, and H > L/(logL)r, then

L < 2rH(logH)r.

4. The proof of Theorem 2.1

4.1. The small ranges. With the help of Mathematica, we checked all the solutions to
the Diophantine equation (2.1) in the ranges 0 ≤ d2 < d1 ≤ 9 and 1 ≤ `2 ≤ `1 ≤ n ≤ 200
and found only the solutions stated in Theorem 2.1. From now on we assume that n > 200.

4.2. The initial bound on n. We rewrite (2.1) as

Tn = d1 · · · d1︸ ︷︷ ︸
`1 times

d2 · · · d2︸ ︷︷ ︸
`2 times

= d1 · · · d1︸ ︷︷ ︸
`1 times

· 10`2 + d2 · · · d2︸ ︷︷ ︸
`2 times

= d1

(
10`1 − 1

9

)
· 10`2 + d2

(
10`2 − 1

9

)
(by (1.1))

=
1

9

(
d1 · 10`1+`2 − (d1 − d2) · 10`2 − d2

)
.
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Thus,

Tn =
1

9

(
d1 · 10`1+`2 − (d1 − d2) · 10`2 − d2

)
.(4.1)

We prove the following lemma, which gives a relation on the size of n versus `1 + `2.

Lemma 4.1. All solutions of the Diophantine equation (4.1) satisfy

(`1 + `2) log 10− 2 < n logα < (`1 + `2) log 10 + 2.

Proof. The proof follows easily from (3.7). One can see that

αn−2 ≤ Tn < 10`1+`2 .

Taking the logarithm on both sides, we get that

(n− 2) logα < (`1 + `2) log 10,

which leads to

n logα < (`1 + `2) log 10 + 2 logα < (`1 + `2) log 10 + 2.(4.2)

For the lower bound, we have that

10`1+`2−1 < Tn ≤ αn−1.

Taking the logarithm on both sides, we get that

(`1 + `2 − 1) log 10 < (n− 1) logα,

which leads to

(`1 + `2) log 10− 2 < (`1 + `2 − 1) log 10 + logα < n logα.(4.3)

Comparing (4.2) and (4.3) gives the result in the lemma. �

Next, we examine (4.1) in two different steps.
Step 1. Substituting (3.3) in (4.1), we get that

aαn + bβn + cγn =
1

9

(
d1 · 10`1+`2 − (d1 − d2) · 10`2 − d2

)
.

By (3.6), this is equivalent to

9aαn − d1 · 10`1+`2 = −9e(n)− (d1 − d2) · 10`2 − d2,

from which we deduce that∣∣∣9aαn − d1 · 10`1+`2
∣∣∣ =

∣∣∣9e(n) + (d1 − d2) · 10`2 + d2

∣∣∣
≤ 9α−n/2 + 9 · 10`2 + 9

< 28 · 10`2 .

Thus, dividing both sides by d1 · 10`1+`2 we get that∣∣∣∣(9a

d1

)
· αn · 10−`1−`2 − 1

∣∣∣∣ < 28 · 10`2

d1 · 10`1+`2
<

28

10`1
.(4.4)
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Put

Λ1 :=

(
9a

d1

)
· αn · 10−`1−`2 − 1.(4.5)

Next, we apply Theorem 3.1 on (4.5). First, we need to check that Λ1 6= 0. If it were,
then we would get that

aαn =
d1

9
· 10`1+`2 .

Now, we apply the automorphism σ of the Galois group G on both sides and take absolute
values as follows. ∣∣∣∣d1

9
· 10`1+`2

∣∣∣∣ = |σ(aαn)| = |cγn| < 1,

which is false. Thus, Λ1 6= 0. So, we apply Theorem 3.1 on (4.5) with the data:

t := 3, η1 :=
9a

d1
, η2 := α, η3 := 10, b1 := 1, b2 := n, b3 := −`1 − `2.

By Lemma 4.1, we have that `1 + `2 < n. Therefore, we can take B := n. Observe that
K := Q(η1, η2, η3) = Q(α), since a = α/(α2 + 2α+ 3), so D := 3. We have

h(η1) = h(9a/d1) ≤ h(9) + h(a) + h(d1) ≤ log 9 +
1

3
log 44 + log 9 ≤ 5.66.

Furthermore, h(η2) = h(α) = (1/3) logα and h(η3) = h(10) = log 10. Thus, we can take

A1 := 16.98, A2 := logα, and A3 := 3 log 10.

Theorem 3.1 tells us that

log |Λ1| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(16.98)(logα)(3 log 10)

> −1.94 · 1014(1 + log n).

Comparing the above inequality with (4.4) gives

`1 log 10− log 28 < 1.94 · 1014(1 + log n),

leading to

`1 log 10 < 1.96 · 1014(1 + log n).(4.6)

Step 2. By (3.6), we rewrite (4.1) as

9aαn −
(
d1 · 10`1 − (d1 − d2)

)
· 10`2 = −9e(n)− d2,

from which we deduce that∣∣∣9aαn −
(
d1 · 10`1 − (d1 − d2)

)
· 10`2

∣∣∣ = |9e(n) + d2| ≤ 9α−n/2 + 9 < 18.

Thus, dividing both sides by 9aαn we get that∣∣∣∣(d1 · 10`1 − (d1 − d2)

9a

)
· α−n · 10`2 − 1

∣∣∣∣ < 18

9aαn
<

2

αn
.(4.7)
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Put

Λ2 :=

(
d1 · 10`1 − (d1 − d2)

9a

)
· α−n · 10`2 − 1.(4.8)

Next, we apply Theorem 3.1 on (4.8). First, we need to check that Λ2 6= 0. If not, then
we would get that

aαn =

(
d1 · 10`1 − (d1 − d2)

9

)
· 10`2 .

As before, we apply the automorphism σ of the Galois group G on both sides and take
absolute values as follows.∣∣∣∣(d1 · 10`1 − (d1 − d2)

9

)
· 10`2

∣∣∣∣ = |σ(aαn)| = |cγn| < 1,

which is false. Thus, Λ2 6= 0. So, we apply Theorem 3.1 on (4.8) with the data:

t := 3, η1 :=
d1 · 10`1 − (d1 − d2)

9a
, η2 := α, η3 := 10, b1 := 1, b2 := −n, b3 := `2.

As before, we have that `2 < n. Thus, we can take B := n. Similarly, Q(η1, η2, η3) = Q(α),
so we take D := 3. Furthermore, we have

h(η1) = h

(
d1 · 10`1 − (d1 − d2)

9a

)
≤ h(d1 · 10`1 − (d1 − d2)) + h(9a)

≤ h(d1 · 10`1) + h(d1 − d2) + h(9) + h(a) + log 2

≤ h(d1) + `1h(10) + h(d1) + h(d2) + h(9) + h(a) + 2 log 2

≤ `1 log 10 + 4 log 9 +
1

3
log 44 + 2 log 2

≤ 1.96 · 1014(1 + log n) + 4 log 9 +
1

3
log 44 + 2 log 2 (by (4.6))

< 1.98 · 1014(1 + log n).

Thus, we can take

A1 := 5.94 · 1014(1 + log n), A2 := logα, and A3 := 3 log 10.

Theorem 3.1 tells us that

log |Λ2| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log n)(5.94 · 1014(1 + log n))(logα)(3 log 10)

> −6.77 · 1027(1 + log n)2.

Comparing the above inequality with (4.7) gives,

n logα− log 2 < 6.77 · 1027(1 + log n)2,

which is equivalent to

n < 2.24 · 1028(log n)2.(4.9)
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Applying Lemma 3.2 on (4.9) with the data r = 2, H := 2.24 · 1028, and L := n, gives

n < 1.22 · 1032.

Lemma 4.1 implies that

`1 + `2 < 3.24 · 1031.

We have just proved the following lemma.

Lemma 4.2. All solutions to the Diophantine equation (4.1) satisfy

`1 + `2 < 3.24 · 1031 and n < 1.22 · 1032.

4.3. Reducing the bounds. The bounds given in Lemma 4.2 are too large to carry out
meaningful computation. Thus, we need to reduce them. To do so, we apply Lemma 3.1
as follows.

First, we return to (4.4) and put

Γ1 := (`1 + `2) log 10− n logα− log

(
9a

d1

)
.

The inequality (4.4) can be rewritten as∣∣e−Γ1 − 1
∣∣ < 28

10`1
.

Assume that `1 ≥ 2, then the right–hand side in the above inequality is at most 7/25 < 1/2.
The inequality |ez − 1| < w for real values of z and w implies that z < 2w. Thus,

|Γ1| <
56

10`1
,

which implies that ∣∣∣∣(`1 + `2) log 10− n logα− log

(
9a

d1

)∣∣∣∣ < 56

10`1
.

Dividing through by logα gives∣∣∣∣(`1 + `2)
log 10

logα
− n+

(
log(d1/9a)

logα

)∣∣∣∣ < 56

10`1 logα
.

So, we apply Lemma 3.1 with the data:

τ :=
log 10

logα
, µ(d1) :=

log(d1/9a)

logα
, A :=

56

logα
, B := 10, 1 ≤ d1 ≤ 9.

Let τ = [a0; a1, a2, . . .] = [3; 1, 3, 1, 1, 14, 1, 3, 3, 6, 1, 13, 3, 4, 2, 1, 1, 2, 3, 3, 2, 2, 1, 2, 5, 1, . . .]
be the continued fraction expansion of τ . We choose M := 1032 which is the upper bound
on `1 + `2. With the help of Mathematica, we find out that the convergent

p

q
=
p62

q62
=

5067116767207083507605709005080661

1341009632511071028566373818645201
,

is such that q = q62 > 6M . Furthermore, it yields ε > 0.0893601, and therefore either

`1 ≤
log ((56/ logα)q/ε)

log 10
< 35,

Thus, we have that `1 ≤ 35.
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For fixed 0 ≤ d2 < d1 ≤ 9 and 1 ≤ `1 ≤ 35, we return to (4.7) and put

Γ2 := `2 log 10− n logα+ log

(
d1 · 10`1 − (d1 − d2)

9a

)
.

From the inequality (4.7), we have that∣∣eΓ2 − 1
∣∣ < 2

αn
.

Since n > 200, the right–hand side of the above inequality is less than 1/2. Thus, the
above inequality implies that

|Λ1| <
4

αn
,

which leads to ∣∣∣∣`2 log 10− n logα+ log

(
d1 · 10`1 − (d1 − d2)

9a

)∣∣∣∣ < 4

αn
.

Dividing through by logα gives,∣∣∣∣∣`2
(

log 10

logα

)
− n+

log
(
(d1 · 10`1 − (d1 − d2))/9a

)
logα

∣∣∣∣∣ < 4

αn logα
.

Again, we apply Lemma 3.1 with the data:

τ :=
log 10

logα
, µ(d1, d2) :=

log
(
(d1 · 10`1 − (d1 − d2))/9a

)
logα

, A :=
4

logα
, B := α.

We take the same τ and its convergent p/q = p62/q62 as before. We choose `2 < 1032 := M .
With the help of Mathematica, we get that ε > 0.0000798749, and therefore

n ≤ log ((4/ logα)q/ε)

logα
< 143.

Thus, we have that n ≤ 143, contradicting the assumption that n > 200. Hence, Theorem
2.1 is proved. �
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