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n≥0 be the sequence of Tribonacci numbers defined by T0 = 0, T1 = T2 = 1, and Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0. In this note, we use of lower bounds for linear forms in logarithms of algebraic numbers and the Baker-Davenport reduction procedure to find all Tribonacci numbers that are concatenations of two repdigits.

Introduction

A repdigit is a positive integer R that has only one distinct digit when written in its decimal expansion. That is, R is of the form

R = d • • • d times = d 10 -1 9 , (1.1) 
for some positive integers d, with ≥ 1 and 0 ≤ d ≤ 9. The sequence of repdigits is sequence A010785 on the On-Line Encyclopedia of Integer Sequences (OEIS) [START_REF]The On-Line Encyclopedia of Integer Sequences[END_REF].

Consider the sequence (T n ) n≥0 of Tribonacci numbers given by T 0 = 0, T 1 = 1, T 2 = 1, and T n+3 = T n+2 + T n+1 + T n for all n ≥ 0.

The sequence of Tribonacci numbers is sequence A000073 on the OEIS. The first few terms of this sequence are given by (T n ) n≥0 = {0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, . . .}.

Main Result

In this paper, we study the problem of finding all Tribonacci numbers that are concatenations of two repdigits. More precisely, we completely solve the Diophantine equation

T n = d 1 • • • d 1 1 times d 2 • • • d 2 2 times = d 1 10 1 -1 9 • 10 2 + d 2 10 2 -1 9 , (2.1) in non-negative integers (n, d 1 , d 2 , 1 , 2 ) with n ≥ 0, 1 ≥ 2 ≥ 1, and 0 ≤ d 2 < d 1 ≤ 9.
Our main result is the following.

Theorem 2.1. The only Tribonacci numbers that are concatenations of two repdigits are T n ∈ {13, 24, 44, 81}.

Our method of proof involves the application of Baker's theory for linear forms in logarithms of algebraic numbers, and the Baker-Davenport reduction procedure. Computations are done with the help of a computer program in Mathematica.

Let (F n ) n≥0 be the sequence of Fibonacci numbers given by F 0 = 0, F 1 = 1, and F n+2 = F n+1 + F n for all n ≥ 0, and (B n ) n≥0 be the sequence of balancing numbers given by B 0 = 0, B 1 = 1, and B n+2 = 6B n+1 -B n for all n ≥ 0. This paper is inspired by the results of Alahmadi, et al. [START_REF] Alahmadi | Fibonacci numbers which are concatenations of two repdigits[END_REF], in which they show that the only Fibonacci numbers that are concatenations of two repdigits are F n ∈ {13, 21, 34, 55, 89, 144, 233, 377}, and Rayaguru and Panda [START_REF] Rayaguru | Balancing numbers which are concatenations of two repdigits[END_REF], who showed that B n ∈ {35} is the only balancing number that can be written as a concatenation of two repdigits. Other related interesting results in this direction include: the result of Bravo and Luca [START_REF] Bravo | On a conjecture about repdigits in k-generalized Fibonacci sequences[END_REF], the result of Trojovský [START_REF] Trojovský | Fibonacci numbers with a prescribed block of digits[END_REF], the result of Qu and Zeng [START_REF] Qu | Lucas numbers which are concatenations of two repdigits[END_REF], and the result of Boussayoud, et al. [START_REF] Boussayoud | Generating functions of binary products of k-Fibonacci and orthogonal polynomials[END_REF].

Preliminary results

3.1. The Tribonacci sequence. Here, we recall some important properties of the Tribonacci sequence {T n } n≥0 . The characteristic equation

Ψ(x) := x 3 -x 2 -x -1 = 0, has roots α, β, γ = β, where α = 1 + (r 1 + r 2 ) 3 , β = 2 -(r 1 + r 2 ) + √ -3(r 1 -r 2 ) 6 , (3.1) 
and

r 1 = 3 19 + 3 √ 33 and r 2 = 3 19 -3 √ 33. (3.2)
Further, the Binet formula for the general terms of the Tribonacci sequence is given by

T n = aα n + bβ n + cγ n for all n ≥ 0, (3.3) where a = 1 (α -β)(α -γ) , b = 1 (β -α)(β -γ) , c = 1 (γ -α)(γ -β) = b. (3.4) Furthermore, a = α α 2 + 2α + 3 ,
and the minimal polynomial of a over the integers is given by

44x 3 + 4x -1,
has zeros a, b, c with max{|a|, |b|, |c|} < 1. Numerically, the following estimates hold:

(3.5) 1.83 < α < 1.84; 0.73 < |β| = |γ| = α -1 2 < 0.74; 0.18 < a < 0.19; 0.35 <|b| = |c| < 0.36.
From (3.1), (3.2), and (3.5), it is easy to see that the contribution the complex conjugate roots β and γ, to the right-hand side of (3.3), is very small. In particular, setting

e(n) := T n -aα n = bβ n + cγ n then |e(n)| < 1 α n/2 , (3.6)
holds for all n ≥ 1. The proof of the last inequality in (3.6) follows from the fact that |β| = |γ| = α -1 2 and |b| = |c| < 0.36 (by (3.5)). That is, for any n ≥ 1,

|e(n)| = |bβ n + cγ n | ≤ |b||β| n + |c||γ| n = |b|α -n 2 + |c|α -n 2 < 2 • 0.36 • α -n 2 < 1 α n/2 .
Furthermore, by induction, one can prove that 1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼ = S 3 .

α n-2 ≤ T n ≤ α n-1 holds for all n ≥ 1. (3.7) Let K := Q(α, β) be the splitting field of the polynomial Ψ over Q. Then, [K, Q] = 6. Furthermore, [Q(α) : Q] = 3. The Galois group of K over Q is given by G := Gal(K/Q) ∼ = {(
Thus, we identify the automorphisms of G with the permutations of the zeros of the polynomial Ψ. For example, the permutation (αγ) corresponds to the automorphism σ : α → γ, γ → α, β → β.

Linear forms in logarithms.

Let η be an algebraic number of degree d with minimal primitive polynomial over the integers

a 0 x d + a 1 x d-1 + • • • + a d = a 0 d i=1 (x -η (i) ),
where the leading coefficient a 0 is positive and the η (i) 's are the conjugates of η. Then the logarithmic height of η is given by

h(η) := 1 d log a 0 + d i=1 log max{|η (i) |, 1} . 
In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic height function h(•), which will be used in the next section of this paper without reference:

h(η 1 ± η 2 ) ≤ h(η 1 ) + h(η 2 ) + log 2; h(η 1 η ±1 2 ) ≤ h(η 1 ) + h(η 2 ); h(η s ) = |s|h(η) (s ∈ Z).
We recall the result of Bugeaud, Mignotte, and Siksek ([4], Theorem 9.4), which is a modified version of the result of Matveev [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II[END_REF], which is one of our main tools in this paper. Theorem 3.1. Let η 1 , . . . , η t be positive real algebraic numbers in a real algebraic number field K ⊂ R of degree D, b 1 , . . . , b t be nonzero integers, and assume that

Λ := η b 1 1 • • • η bt t -1 = 0.
Then,

log |Λ| > -1.4 • 30 t+3 • t 4.5 • D 2 (1 + log D)(1 + log B)A 1 • • • A t ,
where

B ≥ max{|b 1 |, . . . , |b t |}, and 
A i ≥ max{Dh(η i ), | log η i |, 0.
16}, for all i = 1, . . . , t.

3.3. Reduction procedure. During the calculations, we get upper bounds on our variables which are too large, thus we need to reduce them. To do so, we use some result from the theory of continued fractions. For a nonhomogeneous linear form in two integer variables, we use a slight variation of a result due to Dujella and Pethő ( [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF], Lemma 5a).

For a real number X, we write X := min{|X -n| : n ∈ Z} for the distance from X to the nearest integer.

Lemma 3.1. Let M be a positive integer, p q be a convergent of the continued fraction expansion of the irrational number τ such that q > 6M , and A, B, µ be some real numbers with A > 0 and B > 1. Furthermore, let ε := µq -M τ q . If ε > 0, then there is no solution to the inequality 4.2. The initial bound on n. We rewrite (2.1) as

0 < |uτ -v + µ| < AB -w ,
T n = d 1 • • • d 1 1 times d 2 • • • d 2 2 times = d 1 • • • d 1 1 times • 10 2 + d 2 • • • d 2 2 times = d 1 10 1 -1 9 • 10 2 + d 2 10 2 -1 9 (by (1.1)) = 1 9 d 1 • 10 1 + 2 -(d 1 -d 2 ) • 10 2 -d 2 .
Thus,

T n = 1 9 d 1 • 10 1 + 2 -(d 1 -d 2 ) • 10 2 -d 2 . (4.1)
We prove the following lemma, which gives a relation on the size of n versus 1 + 2 . 

( 1 + 2 ) log 10 -2 < n log α < ( 1 + 2 ) log 10 + 2.
Proof. The proof follows easily from (3.7). One can see that

α n-2 ≤ T n < 10 1 + 2 .
Taking the logarithm on both sides, we get that (n -2) log α < ( 1 + 2 ) log 10, which leads to

n log α < ( 1 + 2 ) log 10 + 2 log α < ( 1 + 2 ) log 10 + 2. (4.2)
For the lower bound, we have that

10 1 + 2 -1 < T n ≤ α n-1 .
Taking the logarithm on both sides, we get that Next, we examine (4.1) in two different steps.

Step 1. Substituting (3.3) in (4.1), we get that

aα n + bβ n + cγ n = 1 9 d 1 • 10 1 + 2 -(d 1 -d 2 ) • 10 2 -d 2 .
By (3.6), this is equivalent to

9aα n -d 1 • 10 1 + 2 = -9e(n) -(d 1 -d 2 ) • 10 2 -d 2 ,
from which we deduce that

9aα n -d 1 • 10 1 + 2 = 9e(n) + (d 1 -d 2 ) • 10 2 + d 2 ≤ 9α -n/2 + 9 • 10 2 + 9 < 28 • 10 2 .
Thus, dividing both sides by

d 1 • 10 1 + 2 we get that 9a d 1 • α n • 10 -1 -2 -1 < 28 • 10 2 d 1 • 10 1 + 2 < 28 10 1 . (4.4) Put Λ 1 := 9a d 1 • α n • 10 -1 -2 -1. (4.5)
Next, we apply Theorem 3.1 on (4.5). First, we need to check that Λ 1 = 0. If it were, then we would get that

aα n = d 1 9 • 10 1 + 2 .
Now, we apply the automorphism σ of the Galois group G on both sides and take absolute values as follows.

d 1 9 • 10 1 + 2 = |σ(aα n )| = |cγ n | < 1,
which is false. Thus, Λ 1 = 0. So, we apply Theorem 3.1 on (4.5) with the data:

t := 3, η 1 := 9a d 1 , η 2 := α, η 3 := 10, b 1 := 1, b 2 := n, b 3 := -1 -2 .
By Lemma 4.1, we have that 1 + 2 < n. Therefore, we can take B := n. Observe that

K := Q(η 1 , η 2 , η 3 ) = Q(α), since a = α/(α 2 + 2α + 3), so D := 3. We have h(η 1 ) = h(9a/d 1 ) ≤ h(9) + h(a) + h(d 1 ) ≤ log 9 + 1 3 log 44 + log 9 ≤ 5.66.
Furthermore, h(η 2 ) = h(α) = (1/3) log α and h(η 3 ) = h(10) = log 10. Thus, we can take Comparing the above inequality with (4.4) gives 1 log 10 -log 28 < 1.94 • 10 14 (1 + log n), leading to

1 log 10 < 1.96 • 10 14 (1 + log n). (4.6)
Step 2. By (3.6), we rewrite (4.1) as

9aα n -d 1 • 10 1 -(d 1 -d 2 ) • 10 2 = -9e(n) -d 2 ,
from which we deduce that

9aα n -d 1 • 10 1 -(d 1 -d 2 ) • 10 2 = |9e(n) + d 2 | ≤ 9α -n/2 + 9 < 18.
Thus, dividing both sides by 9aα n we get that

d 1 • 10 1 -(d 1 -d 2 ) 9a • α -n • 10 2 -1 < 18 9aα n < 2 α n . (4.7) Put Λ 2 := d 1 • 10 1 -(d 1 -d 2 ) 9a • α -n • 10 2 -1. (4.8)
Next, we apply Theorem 3.1 on (4.8). First, we need to check that Λ 2 = 0. If not, then we would get that

aα n = d 1 • 10 1 -(d 1 -d 2 ) 9 • 10 2 .
As before, we apply the automorphism σ of the Galois group G on both sides and take absolute values as follows.

d 1 • 10 1 -(d 1 -d 2 ) 9 • 10 2 = |σ(aα n )| = |cγ n | < 1,
which is false. Thus, Λ 2 = 0. So, we apply Theorem 3.1 on (4.8) with the data:

t := 3, η 1 := d 1 • 10 1 -(d 1 -d 2 ) 9a , η 2 := α, η 3 := 10, b 1 := 1, b 2 := -n, b 3 := 2 .
As before, we have that 2 < n. Thus, we can take B := n. Similarly, Q(η 1 , η 2 , η 3 ) = Q(α), so we take D := 3. Furthermore, we have From the inequality (4.7), we have that e Γ 2 -1 < 2 α n . Since n > 200, the right-hand side of the above inequality is less than 1/2. Thus, the above inequality implies that

h(η 1 ) = h d 1 • 10 1 -(d 1 -d 2 ) 9a ≤ h(d 1 • 10 1 -(d 1 -d 2 )) + h(9a) ≤ h(d 1 • 10 

Thus, we can take

|Λ 1 | < 4
α n , which leads to 2 log 10 -n log α + log

d 1 • 10 1 -(d 1 -d 2 ) 9a < 4 α n .
Dividing through by log α gives, We take the same τ and its convergent p/q = p 62 /q 62 as before. We choose 2 < 10 32 := M . With the help of Mathematica, we get that ε > 0.0000798749, and therefore n ≤ log ((4/ log α)q/ε) log α < 143.

Thus, we have that n ≤ 143, contradicting the assumption that n > 200. Hence, Theorem 2.1 is proved.

4 . 1 4. 1 .

 411 in positive integers u, v, and w with u ≤ M and w ≥ log(Aq/ε) log B .The following Lemma is also useful. It is due to Gúzman Sánchez and Luca ([6], Lemma 7). Lemma 3.2. If r ≥ 1, H > (4r 2 ) r , and H > L/(log L) r , then L < 2 r H(log H) r . The proof of Theorem 2.The small ranges. With the help of Mathematica, we checked all the solutions to the Diophantine equation (2.1) in the ranges 0 ≤ d 2 < d 1 ≤ 9 and 1 ≤ 2 ≤ 1 ≤ n ≤ 200 and found only the solutions stated in Theorem 2.1. From now on we assume that n > 200.

Lemma 4 . 1 .

 41 All solutions of the Diophantine equation (4.1) satisfy

( 1 +

 1 2 -1) log 10 < (n -1) log α, which leads to ( 1 + 2 ) log 10 -2 < ( 1 + 2 -1) log 10 + log α < n log α. (4.3) Comparing (4.2) and (4.3) gives the result in the lemma.

A 1 :

 1 = 16.98, A 2 := log α, and A 3 := 3 log 10. Theorem 3.1 tells us that log |Λ 1 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(16.98)(log α)(3 log 10) > -1.94 • 10 14 (1 + log n).

A 1 : 2 .

 12 = 5.94 • 10 14 (1 + log n), A 2 := log α, and A 3 := 3 log 10. Theorem 3.1 tells us that log |Λ 2 | > -1.4 • 30 6 • 3 4.5 • 3 2 (1 + log 3)(1 + log n)(5.94 • 10 14 (1 + log n))(log α)(3 log 10) > -6.77 • 10 27 (1 + log n) Comparing the above inequality with (4.7) gives, n log α -log 2 < 6.77 • 10 27 (1 + log n) 2 , which is equivalent to n < 2.24 • 10 28 (log n) 2 . (4.9) For fixed 0 ≤ d 2 < d 1 ≤ 9 and 1 ≤ 1 ≤ 35, we return to (4.7) and put Γ 2 := 2 log 10 -n log α + log d 1 • 10 1 -(d 1 -d 2 ) 9a .

1 • 10 1 -(d 1 -d 2 )

 1112 d 1 , d 2 ) := log (d 1 • 10 1 -(d 1 -d 2 )
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Applying Lemma 3.2 on (4.9) with the data r = 2, H := 2.24 • 10 28 , and L := n, gives n < 1.22 • 10 32 . Lemma 4.1 implies that 1 + 2 < 3.24 • 10 31 . We have just proved the following lemma. First, we return to (4.4) and put

The inequality (4.4) can be rewritten as e -Γ 1 -1 < 28 10 1 . Assume that 1 ≥ 2, then the right-hand side in the above inequality is at most 7/25 < 1/2. The inequality |e z -1| < w for real values of z and w implies that z < 2w. Thus, So, we apply Lemma 3.1 with the data:

. . .] be the continued fraction expansion of τ . We choose M := 10 32 which is the upper bound on 1 + 2 . With the help of Mathematica, we find out that the convergent p q = p 62 q 62 = 5067116767207083507605709005080661 1341009632511071028566373818645201 , is such that q = q 62 > 6M . Furthermore, it yields ε > 0.0893601, and therefore either 1 ≤ log ((56/ log α)q/ε) log 10 < 35, Thus, we have that 1 ≤ 35.