
HAL Id: hal-02547097
https://hal.science/hal-02547097v1

Submitted on 19 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Double Mask: An efficient rule encoding for Software
Defined Networking

Ahmad Abboud, Abdelkader Lahmadi, Michael Rusinowitch, Miguel
Couceiro, Adel Bouhoula, Mondher Ayadi

To cite this version:
Ahmad Abboud, Abdelkader Lahmadi, Michael Rusinowitch, Miguel Couceiro, Adel Bouhoula, et
al.. Double Mask: An efficient rule encoding for Software Defined Networking. ICIN 2020 - 23rd
Conference on Innovation in Clouds, Internet and Networks and Workshops, Feb 2020, Paris, France.
pp.186–193. �hal-02547097�

https://hal.science/hal-02547097v1
https://hal.archives-ouvertes.fr

Double Mask: An efficient rule encoding for
Software Defined Networking

Ahmad Abboud†∗, Abdelkader Lahmadi∗, Michael Rusinowitch∗, Miguel Couceiro∗

Adel Bouhoula‡†, Mondher Ayadi†
∗ Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France, {firstname.lastname}@inria.fr
† NUMERYX, France, a.abboud@numeryx.fr, a.bouhoula@numeryx.fr, m.ayadi@numeryx.fr

‡ Digital Security Research Lab, Sup’Com, University of Carthage, Tunisia, adel.bouhoula@supcom.tn

Abstract—Packet filtering is widely used in multiple network-
ing appliances and applications, in particular, to block malicious
traffic (protect network infrastructures through firewalls and in-
trusion detection systems) and to be deployed on routers, switches
and load balancers for packet classification. This mechanism
relies on the packet’s header fields to filter such traffic by using
range rules of IP addresses or ports. However, the set of packet
filters has to handle a growing number of connected nodes and
many of them are compromised and used as sources of attacks.
For instance, IP filter sets available in blacklists may reach
several millions of entries, and may require large memory space
for their storage in filtering appliances. In this paper, we propose
a new method based on a double mask IP prefix representation
together with a linear transformation algorithm to build a
minimized set of range rules. This representation makes the
network more secure, reliable and easy to maintain and configure.
We define formally the double mask representation over range
rules. We show empirically that the proposed method achieves
an average compression ratio of 11% on real-life blacklists and
up to 74% on synthetic range rule sets. Finally, we evaluate
the performance of our double masks representation through
an OpenFlow based implementation with an SDN testbed using
real hardware. Our results show that our technique is capable
of significantly reducing the matching time in the controller
when compression ratios are higher than 15% leading to a faster
response time, and a good balance between matching time and
memory space in the switch.

I. INTRODUCTION

Multiple network appliances and applications including fire-
walls, intrusion detection systems, routers, and load balancers
rely on a filtering process using sets of rules to decide whether
to accept or deny an incoming packet. Effective filtering is
essential to handle the rapidly increasing and the dynamic
nature of network traffic where more and more nodes are
connected, due to the emergence of 5G networks and the
increasing number of sources of attack. With the large number
of hosts, it remains crucial to minimize the number of entries
in routing tables and to accelerate the lookup process.

On the other hand, attacks on Internet have reached a high
level according to [1]. The number keeps increasing which in
turn increases the size of blacklists and the number of rules
in firewalls. The limited storage capacity [2] requires efficient
management of that space.

To face the large number of hosts and routing tables, [3]
developed Classless Inter-Domain Routing (CIDR) to replace
the classful network architecture. However, using this notation

to represent routing table rules that contain ranges can lead to
multiple entries and thus there is a need for a better notation
along with an efficient algorithm to reduce the number of
entries and therefore the classification and lookup time, and
memory usage [4].

In this work, our main goal is to find a simple representation
of filtering rules that enables more compact rule tables and thus
easier to manage, whilst keeping their semantics unchanged.
The construction of rules should be obtained with reasonably
efficient algorithms too.
To achieve this goal, we introduce a novel representation of
packet filter fields, so called double masks, where the first
mask is used as an inclusion prefix and the second as an
exclusion one. This new representation can add flexibility
and efficiency in the deployment of security policies, since
the generated rules are easier to manage. The double mask
representation makes configurations simpler since we can
accept and exclude IPs within the same rule. A double mask
rule can be viewed as an extension of a standard prefix rule
with exceptions. It is often more intuitive than the alternative
representations and therefore can prevent errors in network
management operations. In this paper, we demonstrate the
practicality of this representation over range rules. We provide
an efficient algorithm (linear time) that is able to build the
double mask representation of a set of range rules. And
finally, we add support to double mask in OpenFlow and we
evaluate the performance of the matching algorithm using a
double mask instead of a simple mask. To summarize, our
contributions are fourfold:

1) We formally define the double masks representation over
range rules.

2) We design a linear algorithm to transform range rules into
a double masks representation.

3) We empirically show that the proposed algorithm
achieves an average compression ratio of 11% on real-life
blacklists and up to 74% on synthetic range rule sets.

4) We implement the double masks representation and
matching in OpenFlow implementation both on an SDN
switch and a controller in order to evaluate its perfor-
mance and impact.

The remainder of this paper is organized as follows. In Section
II, we formally introduce the double mask representation. In

Section III we propose an algorithm to compute the masks for
a given range using double and simple mask representations
and we present the strategy behind our linear algorithm for
building double masks representations over range fields. In
Section IV, we describe our experiments and the performance
evaluation results of the proposed algorithm using real-life
and synthetic datasets. In Section IV-B we evaluate the per-
formance of our matching algorithm for the double mask by
implementing the new representation into an SDN architecture.
Related works are discussed in Section V. In Section VI we
present the conclusion and discuss topics of future research.

II. DOUBLE MASK REPRESENTATION

A. Notation and definitions

Before introducing the double mask representation, we de-
fine the notation used throughout the paper, that is summarized
in Table I.

TABLE I
NOTATION EMPLOYED THROUGHOUT THE PAPER.

ip IP address
w number of bits representing an IP address
P prefix covering an ip

binv(a) binary representation of integer a using v bits
valv(a) integer value of bitstring a with length v

range [a, b] set of IP addresses with value between a and b
tw perfect binary tree of height w
ε empty bitstring
p bitstring (or path in tw)
|p| length of p
t(p) perfect binary subtree of tw with root p
l(p) set of leaves of t(p)
DMp set of double masks covering l(p)

1) Prefix, Simple mask: A prefix P is a word of length w
on alphabet {0, 1, ∗} where all ∗’s occur at the end of the
word: P = pk−1...p0∗i where k + i = w. To avoid confusion
with the usual notion of word prefix, we will also sometimes
call P a simple mask. An address ip ∈ {0, 1}w is covered
by simple mask P if ipi = pi for i ∈ [k, k − i + 1]. The
subword p = pk−1...p0 is called the path of P for reasons to
be explained below.

2) Range: A range is denoted by an integer interval [a, b]
(where 0 ≤ a ≤ b ≤ 2w − 1). A range represents the set of IP
addresses ip, with integer value valw(ip) between a and b.

3) Perfect Range: [a, b] is a perfect range if there is
r ∈ {0, 1}w−k such that binw(a) = r.0k and binw(b) = r.1k.

4) Perfect Binary Tree: Note that the IP addresses of length
w are in bijection with the leaves of a perfect binary tree
tw of height w. More generally, we can define the following
bijection t() on the set of bitstrings of length ≤ w with the
perfect binary subtrees of tw : t(ε) = tw where ε is the empty
bitstring, and given bitstring v we define t(v0) (resp. t(v1)) to
be the left (resp. right) subtree of t(v). In particular, if prefix
P has a path p of length k the IP addresses covered by P

are exactly the leaves of the perfect subtree t(p). This set of
addresses is a perfect range. In fact, every perfect range is also
the set of leaves of a perfect subtree.

a b

t(p) t(p′)

k + 1 k + 1

c d e

height w

Fig. 1. Illustration of a perfect Binary Tree.

In Fig. 1, [a, b] is a perfect range as it is the set of leaves
of the perfect binary tree t(p) of height k. However, [c, d] is
not a perfect range as it is not the set of leaves of a perfect
binary tree.

B. Definition of the double mask representation

Now we will define the double mask representation for
range fields, in particular for IP address fields. Note that the
representation can be applied to other range fields such as
ports.

We assume in the following that IP addresses are binary
words of length w, i.e., IP addresses are elements of {0, 1}w
indexed from 1 to w. A double mask representation has three
components and is denoted netpref/mask1/mask2. The first
component netpref ∈ {0, 1}w is a network prefix. The second
and third components are integers mask1,mask2 ∈ [0, w].
Component mask1 defines all accepted IPs, and component
mask2 defines all excluded IPs from the list of accepted ones.

Definition 1. An IP address ip is in the set defined by
netpref/mask1/mask2 if ipi = netprefi for i ∈
[1, . . . ,mask1] and there exists j ∈ [mask1+1,mask2] such
that ipj 6= netprefj . In that case we say that ip is covered
by netpref/mask1/mask2.

Let us consider the following example of a double mask
representation:

192.168.100.96/26/2

This representation means that any selected (or fil-
tered) address must have its 26 first bits equal to
the 26 first bits of 192.168.100.96 (that is equal to
11000000.10101000.01100100.01), and at least one of the 2
following bits 27,28 should not be equal to the corresponding
bit of 192.168.100.96. In other words either bit 27 is not 1 or
bit 28 is not 0. As we will see, this new representation can
reduce the number of filtering rules dramatically. It is also
possible to represent more explicitly the double mask as a
word where the forbidden combination of bits is overlined,
the leftmost part specifies the fixed bits and the rightmost part

the free bits (that are allowed to take any value). The two
possible notations of a double mask are given below:

N1 : ak−1...a0aj−1...a00i−1...00/k/j

N2 : ak−1...a0aj−1...a00i−1...00

where (i + j + k = w), and if j = 0 the double
mask is equivalent to a simple mask (or a TCAM entry)
ak−1...a0∗w−k.

When designing filtering rules, it is useful and more efficient
to represent the excluded addresses rather than the accepted
ones, especially, when there are much more excluded addresses
than accepted ones.

In this case, using a double mask representation has a
better effect, since by reducing the number of filtering rules,
we reduce the computation time, memory and power usage.
The examples below illustrate the benefits of using double
masks over simple masks.

Example 1. Range [1,14] needs a set of 6 standard prefixes to
be represented. However this range can be represented using
only two double masks prefixes as shown below :

range simple masks double masks

[
1, 14

]
=

0001
001∗
01 ∗ ∗
10 ∗ ∗
110∗
1110

{
0000
1111

Example 2. Range [1, 15] is of form [1, 24 − 1] and needs 4
simple masks {0001, 001∗, 01 ∗ ∗, 1 ∗ ∗∗} but only one double
mask: 0000.
More generally, a range [1, 2w − 1] can be represented by a
unique double mask 0

w
but cannot be represented by less than

w simple masks. Let us demonstrate this by contradiction. Let
us assume that [1, 2w − 1] can be represented by strictly less
than w simple masks. Then at least two different addresses
2i−1, 2j−1(j > i) are covered by the same mask. The mask
has to be a common prefix of their binary representations:
therefore it has to be a prefix of 0w−j . However, in that case,
the mask would also cover 0w, which is a contradiction.

III. DOUBLE MASK COMPUTATION

We now present an algorithm to generate a set of double
masks that covers a range [a, b], i.e., selects exactly the
addresses in this range.

The algorithm proceeds recursively on the binary tree tw =
t(ε) that stores all IP addresses of size w. Note that each node
of t(ε) can be located uniquely by a path (bitstring) p from
the root to this node: the root is located by ε; the left and
right child of the node located by p are located by p0 and p1
respectively. We will identify a node with the path that locates
it. A path can also be viewed as a prefix where the ∗’s are
omitted. The leaves of t(ε) are the IP addresses. We denote the

set of leaves of subtree t(p) by l(p). Algorithm computes in a
bottom-up way a set of double masks covering l(p). Moreover
we denote these partial results by by DMp. We denote by ī
the complement of boolean i, i.e., 0̄ = 1, 1̄ = 0.

To process a node p in t(ε) we have to consider several
cases according to the left and right children of p, as described
below and as illustrated in Fig. 2.

Case 0: if p is a leaf and l(p) ⊆ [a, b], then
DMp = {p/|p|/0}, else ∅

Case 1: if l(p0) and l(p1) are both subsets of [a, b] then
DMp = {p0w−|p|/|p|/0}

Case 2: if there is a unique i ∈ {0, 1} such that l(pi) is a
subset of [a, b] then
Case 2.1: if DMpī = {p̄idq/|p|+2/0} (d ∈ {0, 1}) then
DMp = {p̄id̄q/|p|/2}

Case 2.2: if DMpī = {p̄iq/|p| + 1/m} (where m > 0)
then
DMp = {p̄iq/|p|/m + 1}

Case 3: Otherwise DMp = DMp0 ∪DMp1

pCase 2.2 :

a b

p

a

Case1 :

b

pCase 2.1 :

a b

Fig. 2. Typical examples for Cases 1, 2.1 and 2.2

Algorithm 1 Generate-DMasks(a,b)
1: Input: a,b
2: Output: set of double masks representing [a,b]
3: return DMε where:
4: if p is a leaf then
5: if p 6∈ [a, b] then
6: return DMp = ∅
7: else
8:
9: return DMp = {p/|p|/0} .Case 0

10: end if
11: end if
12: if l(p0), l(p1) ⊆ [a, b] then
13:
14: return DMp = {p0w−|p|/|p|/0} .Case 1
15: else
16: if l(pi) ⊆ [a, b] then
17: if DMpī = {p̄idq/|p|+ 2/0} (d ∈ {0, 1}) then
18:
19: return DMp = {p̄id̄q/|p|/2} .Case 2.1
20: else
21: if DMpī = {p̄iq/|p|+ 1/m} (m > 0) then
22:
23: return DMp = {p̄iq/|p|/m + 1} .Case 2.2
24: end if
25: end if
26: end if
27: end if
28:
29: return DMp = DMp0 ∪DMp1 .Case 3

Given a range [a, b], the set of double masks DMε returned
by Algorithm 1 covers [a, b]. The proof of correctness is
to demonstrate by induction on w − |p| that DMp spans
l(p) ∩ [a, b]. For the base case |p| = w and l(p) is an IP
address: then DMp = {p/0/0}. For the induction step we
have to prove by cases that if DPpi spans l(pi) ∩ [a, b] and
DPpī spans l(p̄i) ∩ [a, b] then DMp spans l(p) ∩ [a, b]. We
then conclude that DMε spans l(ε) ∩ [a, b] = [a, b].

Fig. 3 gives an illustrative example of the algorithm execu-
tion.

0 1 2 3 4 5 6 7

0 1

8 9 10 11 12 13 14 15

0 1

10 10

0

height 4

height 3

height 2

height 1

Fig. 3. Example : Let [a, b] = [2, 15]. The algorithm start from the button.
[2, 2] is a leaf and ∈ [a, b]. According to Case 0, DM0010 = {0010/1/0}.
Same for each leaf in [a, b]. At height 1, if l(p0), l(p1) ⊆ [a, b], the algorithm
return DMp = {p0w−|p|/|p|/0}. For [2, 3], DM001 = {0010/3/0}
according to Case 1 since l(p0) = 2 and l(p1) = 3. At height 2,
according to Case 3, DM00 = DM000 ∪ DM001, but DM000 = ∅ since
0, 1 6∈ [a, b], so DM00 = {0010/3/0}. For [4, 7], [8, 11] and [12, 15],
l(p0), l(p1) ⊆ [a, b]. For example, in [4, 7], l(010), l(011) ⊆ [2, 15],
the algorithm return DM01 = {p0w−|p|/|p|/0} = {0100/2/0} according
to Case 1. At height 3, for [2, 7], l(00) 6∈ [2, 15] but l(01) ∈ [2, 15]
and DM00 = {p̄idq/|p| + 2/0} = {0010/3/0}. DM0 will be equal to
{0000/1/2} according to Case 2.1. For [8, 15] the algorithm return DM1 =
{1000/1/0} since l(10), l(11) ⊆ [2, 15]. At height 4, l(0) 6∈ [2, 15],
but DM0 = {0000/1/2}, according to Case 2.2 the algorithm return
DM = {0000/0/3}.

By performing a case analysis, we can show the following
results:

Proposition 1. Let w > 2. Every range [a, b] ⊆ [0, 2w − 1]
can be represented by at most 2w − 4 masks.

Proposition 2. Let w > 3. The range [3, 2w − 4] cannot be
represented by less than 2w − 4 double masks.

From these two propositions, we can easily see that the
2w − 4 bound is tight.

A. Deriving a linear time algorithm

We introduce an efficient variant of our algorithm, named
DoubleMask, to compute a set of masks covering a range [a, b]
for positive integers a and b.

Let bink(a) and bink(b) be the binary representations of a
and b, respectively using k bits. The key idea is the following.
Let c be the longest common prefix of bink(a) and bink(b).
Then bink(a) = c0a′ and bink(b) = c1b′. The algorithm com-
putes the set of masks for [a, b] in a bottom up way, starting
from the two nodes binw(a) and binw(b). When reaching node
c, the sets of computed masks for [c0a′, c01 · · · 1] and for
[c10 · · · 0, c1b′] are combined and the algorithm stops. This
algorithm is linear in k where k is the number of bits to
represent an IP address.

IV. EVALUATION

We evaluate our double mask representation through simu-
lation IV-A and an implementation of a proof of concept with
openFlow in a physical SDN testbed. Our evaluation is focused
on showing the compression gain by using double masks as
well as its practical capability to reduce matching time both
in an SDN switch and a controller.

A. Results from Simulation

We evaluate the performance of the Algorithm DoubleMask
and we compare it with the algorithm that only generates
simple masks and that is obtained by a simple modifica-
tion of DoubleMask. We conducted experiments using two
types of data sets. The first dataset is a real IP blacklist
downloaded from the repository http://iplists.firehol.org/. The
second dataset is a list of synthetically generated IP addresses.

1) Simulation setup: The real blacklist dataset contains
more than 1.5 million IP addresses that are collected from
different sources and combined together. We first transform
this set of IPs into ranges. Then we compare the effects of a
double mask representation w.r.t. a simple mask representation
in reducing the size of our dataset. To generate double masks
we rely on DoubleMask algorithm and to generate simple
masks we rely on a simple modification of DoubleMask called
SimpleMask.
The two programs were coded in Java language. The exper-
iments are carried on a desktop computer with Intel core i7-
7700 3.6-GHz CPU, 32 GB of RAM and running Windows
10 operating system.

We define the following metrics for analysing the perfor-
mance of the two algorithms:

Average Compression Ratio = 1− M
n∗S

where
M is the number of masks generated in all iterations,
S is the number of IPs in the dataset,
n denotes the number of iterations.

To compute the average compression ratio, the number
of iterations is set to 20. We use this metric to show that
our algorithm can generate a more compact list of rules in
comparison with SimpleMask algorithm.

2) Results from real life IP blacklist: The blacklist IPs are
aggregated into approximately 6000 ranges. In order to have
a much larger ranges, the two algorithms will take as input
all the ranges located between the set of ranges computed
previously. The two programs take as input each range and
compute a set of masks covering this range.

Fig. 4 compares the number of masks generated by the
two algorithms. By using double masks representation, we
are able to reduce the number of masks by more than 11%.
In total, 7% of generated masks are double masks (i.e. 3088
DM). As the number of ranges increases, we observe that
DoubleMask algorithm generates less masks than SimpleMask.
In this example, from the 6000 ranges only 15 are perfect
ranges, and 13 are of the form [1, 2w − 1] or [1, 2w − 2]. As

discussed before, the real benefit of double masks to have a
large compression ratio is obtained with these type of ranges.
The limited number of this type of ranges in the blacklist
dataset explains why the difference in the number of masks
generated by the two algorithms is only at 11%.

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 m

as
ks

 (
*1

04
)

Number of ranges

DM
SM

Fig. 4. Number of masks generated respectively by DoubleMask and
SimpleMask algorithms using the IP blacklist dataset.

3) Results from synthetically generated dataset: In the
second experiment, we conducted an evaluation over 6000
ranges computed from more than 1.5 millions IPs obtained
in a synthetic way. Fig. 5 shows the difference between the
total number of masks computed respectively by the two
algorithms. In this scenario, we observe a large difference
between simple and double mask techniques. The total number
of generated simple masks is 29958. Using DoubleMask
algorithm, we are able to reduce this number by 74% (i.e. 7872
masks). The synthetic dataset used in Fig. 5 contains a higher
number of ranges of the form [1, 2w − 1] which explains the
difference between the obtained number of double and simple
masks. Fig. 6 shows the average compression ratio of the two

 0

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000

N
um

be
r

of
 m

as
ks

 (
*1

02
)

Number of ranges

DM
SM

Fig. 5. Number of masks generated respectively by DoubleMask and
SimpleMask algorithms using the synthetic dataset.

algorithms while increasing the number of IPs. We observe,
that DoubleMask algorithm performs better than SimpleMask
with a difference of at least 10%.

Fig. 7 shows the difference in compression ratio between
DoubleMask and SimpleMask while modifying the length of
IPs. We observe that DoubleMask always performs better than
SimpleMask for each length value.

 0

 10

 20

 30

 40

 50

 60

 70

0 1 2 3 4 5

Av
er

ag
e

co
m

pr
es

si
on

 r
at

io
 (

%
)

Number of IPs (*104)

DM
SM

Fig. 6. Compression ratio of DoubleMask and SimpleMask using a synthetic
dataset of range fields of length 16bits.

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 12 16 20 24 32

Av
er

ag
e

co
m

pr
es

si
on

 r
at

io
 (

%
)

Field length (bits)

DM
SM

Fig. 7. Comparison of compressions ratio between DoubleMask and Simple-
Mask while varying the length of a field.

The compression ratio depends on each dataset and on the
nature of IPs ranges. We use two types of datasets in order to
demonstrate that this technique can reduce the number of rules
by 79% and more in some cases and by 11% or less in others
depending on the nature of IPs ranges. Since DoubleMask
algorithm generates a simple mask when no double mask can
be generated, the total number of masks will be at most equal
to the number of simple masks computed by SimpleMask. This
is why, according to our empirical simulations, SimpleMask
cannot generate a smaller set of masks than DoubleMask.

B. Experimental Evaluation

We implement the double masks representation and its
respective matching algorithm using an OpenFlow switch and
a SDN controller. We evaluate and compared the performance
of our matching algorithm with simple masks representation
considered as a baseline.

1) Experimental setup and parameters: In this setup, we
use the physical SDN testbed shown in Figure 8. The testbed
contains a Zodiac FX switch [5] connected to a RYU controller
[6] and three hosts. The code in the controller and the Switch
has been modified with double masks representation for IP
matching fields. A matching function has also been added in
both of them in order to match a received packet with the set
of rules in the routing table of the switch or with a list of rules

in the controller.
In this scenario, a host machine (host 3) connected to the
switch takes a list of IP addresses then sends packets to those
destinations. Another host (host 1) tries to send a ping message
to host 2. The ping message will match all rules in the routing
table of the switch before forwarding the packet to host 2. If
no match is found, the message will be sent to the controller
who matches the message with the list of rules then send back
the action needed for the specific packet to the switch. The
round trip time (RTT) from host 1 to host 2 is recorded.

Fig. 8. The experimental physical SDN testbed.

a) Rules in the controller: The code of the RYU con-
troller has been modified in order to integrate the double masks
representation in the OpenFlow protocol match fields. The
controller takes a set of rules (simple or double masks) com-
puted from a blacklist using our transformation algorithm. The
controller matches the header of the OpenFlow PACKET IN
messages with the set of rules in order to block or not the
traffic to certain destinations.

b) Rules in Zodiac FX switch: In our set-up, we use the
OpenFlow-enabled Zodiac FX switch that provides an inex-
pensive alternative to experiment SDN networks in hardware.
The OpenFlow implementation of the Zodiac FX switch has
been modified to integrate the processing of rules containing
the double masks representation. This code has also been
modified in order to apply a matching between the IP source of
a packet and all the rules in the switch. The routing table of our
Zodiac FX switch can store a maximum number of 448 rules
using simple or double masks. The timeout for each rule is set
to 30 seconds after that the rule will be automatically removed
from the table. The switch has two matching algorithms. The
first algorithm is the standard algorithm used to match a
received packet with a simple mask rule in the routing table
and the second one is used for the double mask rules.
Algorithm 2 implemented in the switch and the controller
shows the matching process between the source IP and the
rule in the flow table. If the value of S0 is zero that means
the IP source matches the network IP. If the value of S1 is
different from zero that means the IP source is not included in
the set of rejected IPs by mask2, in this case, the IP source
will match the rule.

Algorithm 2 Matching(netref,mask1,mask2, ip source)
1: Input: netref,mask1,mask2, ip source
2: Output: accept or deny
3: AND1← mask1 ∧ netref
4: XOR1← AND1⊕ ip source
5: S0← XOR1 ∧mask1
6: if S0 = 0 then
7: .ip source match the ip of the network
8: OR← mask1 ∨mask2
9: AND2← OR ∧ ip source

10: AND3← OR ∧ netref
11: S1← AND2⊕AND3
12: if S1 # 0 then
13: .ip source not included in IPs rejected by mask2
14: return accept
15: else
16: return deny
17: end if
18: else
19: return deny
20: end if

c) Packet generator: The packet generator takes a list
of IP addresses and then sends packets to each address in
the list. We set the packet rate for each experiment to be
9, 12 or 15 packets/second. The packets are being sent to
different destinations based on multiple datasets. The number
of packets per second is chosen so that the time needed for the
saturation of the switch routing table is around 10 min. If the
number of packets is too small the table will never reach the
maximum number of 448 rules, and if it is too large the table
will max-out quickly. We repeat each experiment 6 times on 6
different datasets then we compute the average matching time.
The same datasets are used to generate the different packets
in order to match the sets of simple and double masks rules.

2) Matching time in the switch: In these experiments, the
average matching time is computed after using a simple or
a double masks list. Our goal is to study the impact of the
compression ratio on the matching time in the switch. We
will use two sets of rules the first one with a compression
ratio of 5% and the second one with 30%. Figure 9 shows
the difference in the average time between simple and double
masks while changing the number of the packets generated at
host 3. As shown in the two subfigures, the average matching
time with simple and double masks are very close. Matching
with a double mask is more costly than with a simple mask.
However, this increase in time is compensated by a smaller
number of rules in the routing table while using a double
mask.

In order to see the real impact of the compression ratio
on the global matching time, we will test the response time
on the controller using the two matching functions for simple
and double masks with multiple sets of rules with a different
compression ratio.

3) Matching time in the controller: In a second experiment,
we compare the matching time between a list of simple or
double masks in the controller side. Our experiment uses 7
IP blacklists. Each blacklist generates two lists of rules one
with only simple masks and the other with both simple and
double masks. The compression ratio for the different sets of

 0

 1

 2

 3

 4

 5

9 12 15

Av
er

ag
e

Ti
m

e
(m

s)

Number of Packets/second

DM
SM

(a) 5% compression ratio

 0

 1

 2

 3

 4

 5

 6

9 12 15

Av
er

ag
e

Ti
m

e
(m

s)

Number of Packets/second

DM
SM

(b) 30% compression ratio

Fig. 9. Average matching time measured in the switch with simple (SM) or double masks (DM) using : (a) 5% compression ratio or (b) 30% compression
ratio.

lists varies between 0.5% and 83%. The goal here is to test
the effect of the compression ratio on the response time of
the controller. A set of 300K IPs is being used in order to
match each IP address with each rule for the different sets.
We use this number of IPs to simulate heavy traffic in order to
show the gain in response time. First we compute the response

-20

 0

 20

 40

 60

 80

 100

0.5 15 30 50 63 70 83

G
ai

n
ov

er
 s

im
pl

e
m

as
k

(%
)

Compression ratio (%)

DM

Fig. 10. Gain in the response time in the controller side when using double
masks filters.

time of the controller using only simple mask rules. Then we
compute the response time using the same sets of IPs on a
second set of rules that uses simple and double masks.
As shown in Figure 10, when the compression ratio is at 0.5%
it is better to use a simple mask over a double mask since the
gain in space is small in comparison with what we lose by
using the matching function for the double mask that takes
more time than the matching time for simple mask. At 15%
we can see that the time needed for matching double or simple
mask is similar. When the compression ratio is higher than
15%, we obtain substantial gain in response time by using
double masks.
From a 30% compression ratio, the results show a gain in
controller’s matching time. However, at the same ratio, the
gain in space is obtained in both: the switch and the controller.

V. RELATED WORKS

Reducing the number of rules in a firewall is a very common
problem that has been studied in multiple works. For instance,
[7] proposes an approach to detect anomalies in firewall
rules like generalization, shadowing and correlation and rec-
ommends actions for correcting those anomalies in order to
reduce the number of rules and increase the performance of
firewalls. In [2], a new compression scheme was presented to
minimize the number of policies in a firewall by removing
redundant and shadowed rules. In [8], the authors present a
new aggressive reduction algorithm by merging rules together
using two-dimensional representation.

Since TCAM is the standard for rules storage and match-
ing in packet classification for Openflow switches, multiple
attempts to solve their problems was considered in [9], [10],
[11], [12], [13]. To reduce the number of entries in TCAM,
[14] proposes a new algorithm to remove redundant rules using
a tree representation. On the other hand, [15] proposes a new
compiler that aims to reduce the number of entries in switches
and to speed up the packet classification process. In [16] a new
systematic approach was introduced to minimize the prefix
rules in TCAM. A mechanism called “Flow Table Reduction
Scheme” has been introduced in [17] to minimize the number
of flow entries in SDN. This paper focuses on reducing
the number of entries by using a new representation for IP
ranges, since reducing the number of entries can improve the
power consumption of TCAM, while respecting the capacity
constraint.

The number of prefixes needed to cover a range has also
been studied extensively in the literature. In [18], the authors
show that by using Gray encoding, the number or intervals
needed is also 2w − 4. Despite having the same upper
bound with the double mask approach, our technique can be
more efficient in some cases. For example, the range [6,14]
mentioned in [18], need three entries to be represented using
gray code but two using a double mask.
The DNF (disjunctive normal form) has also been applied to
compute the minimal Boolean expression for a range in linear
time [19] and to prove the 2w − 4 upper bound.

The works above admit only “accept” actions. Several works
have also addressed the minimization of the number of entries
with both “accept” and “deny” actions. In this case the upper
bound can reach w entries [20], [21]. However the order
of rules is very important in these approaches and rules
management gets more complex.
Our work is software-based, and relies only on accept rules,
unlike [20], [21], [4]. Our notation can reduce dramatically the
number of entries in routing tables. In comparison, represent-
ing a w-bit range may need 2w−2 prefixes [22]. For example
[1, 14] needs 6 entries but with the double mask notation two
entries are sufficient. This new notation has the same upper
bound of 2w − 4 presented in other papers [19], [18], but in
some cases, the number can be reduced as shown before in
our experimental results.

VI. CONCLUSION AND FUTURE WORK

The double masks is a new representation used to reduce the
number of rules in firewalls, IDS’s or routing tables in order
to make the configuration, the management and deployment
easier. In this paper, we formally propose the first linear
algorithm to compute a set of double masks covering a range
of IPs. Note that our algorithm can be applied after or in
combination with known redundancy removal techniques [2]
in order to further reduce the number of entries in filtering
rule tables. Then we conducted a series of experiments on
real and synthetic datasets. According to our experiments,
using the double mask representation allows one to reduce
the number of rules needed to cover a set of ranges by more
than 11% on a real blacklist (after removing the redundant
rules) and more than 74% on synthetic data. The algorithm
is not limited to IP ranges and it can be applied to port
ranges too and to reduce the range expansions in TCAM.
We also evaluate the effectiveness of double masks using an
OpenFlow based implementation and evaluate its matching
time using a physical SDN testbed. Although the similar
matching time in the switch between the simple and double
masks representations, the storage space of rules is reduced. In
the controller side, with compression ratios higher than 15%
we observe a substantial gain in the matching and response
times. Our future work consists of computing double masks
for union of ranges in order to achieve a higher level of
optimization in routing tables. We also plan to design fast
update strategies of generated double masks to handle rapid
changes in filtering policies.

ACKNOWLEDGEMENT

This work is supported by a CIFRE convention between the
ANRT (National Association of Research and Technology) and
the company NUMERYX Technologies.

REFERENCES

[1] Symantec, Internet Security Threat Report, April 2017.
[Online]. Available: https://www.symantec.com/content/dam/symantec/
docs/reports/istr-22-2017-en.pdf

[2] A. X. Liu, E. Torng, and C. R. Meiners, “Firewall compressor: An
algorithm for minimizing firewall policies,” in IEEE INFOCOM 2008
- The 27th Conference on Computer Communications, April 2008, pp.
176–180.

[3] V. Fuller, T. Li, J. Yu, and K. Varadhan, “Classless inter-domain routing
(CIDR): An address assignment and aggregation strategy,” United States,
1993.

[4] N. B. Neji and A. Bouhoula, “Naf conversion: An efficient solution
for the range matching problem in packet filters,” in 2011 IEEE 12th
International Conference on High Performance Switching and Routing,
July 2011, pp. 24–29.

[5] NorthboundNetworks, Zodiac Fx switch. [Online]. Available: https:
//github.com/NorthboundNetworks/ZodiacFX

[6] Ryu OpenFlow controller. [Online]. Available: https://osrg.github.io/ryu/
[7] A. Bouhoula, Z. Trabelsi, E. Barka, and M. Anis Benelbahri, “Firewall

filtering rules analysis for anomalies detection,” IJSN, vol. 3, pp. 161–
172, 01 2008.

[8] M. Yoon, S. Chen, and Z. Zhang, “Reducing the size of rule set in a
firewall,” in 2007 IEEE International Conference on Communications,
June 2007, pp. 1274–1279.

[9] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding
tables for fast routing lookups,” SIGCOMM Comput. Commun. Rev.,
vol. 27, no. 4, pp. 3–14, Oct. 1997.

[10] H. Liu, “Efficient mapping of range classifier into ternary-cam,” in
Proceedings 10th Symposium on High Performance Interconnects, Aug
2002, pp. 95–100.

[11] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and A. Shukla, “Packet
classifiers in ternary cams can be smaller,” SIGMETRICS Perform. Eval.
Rev., vol. 34, no. 1, pp. 311–322, Jun. 2006.

[12] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended TCAMs,” in 11th IEEE International Conference on Network
Protocols, 2003. Proceedings., Nov 2003, pp. 120–131.

[13] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and E. Porat, “On
finding an optimal TCAM encoding scheme for packet classification,”
in 2013 Proceedings IEEE INFOCOM, April 2013, pp. 2049–2057.

[14] Y. Sun and M. S. Kim, “Tree-based minimization of TCAM entries for
packet classification,” in 2010 7th IEEE Consumer Communications and
Networking Conference, Jan 2010, pp. 1–5.

[15] S. Hommes, P. Valtchev, K. Blaiech, S. Hamadi, O. Cherkaoui, and
R. State, “Optimising packet forwarding in multi-tenant networks using
rule compilation,” in 2017 IEEE 16th International Symposium on
Network Computing and Applications (NCA), Oct 2017, pp. 1–9.

[16] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM razor: A systematic
approach towards minimizing packet classifiers in TCAMs,” in 2007
IEEE International Conference on Network Protocols, Oct 2007, pp.
266–275.

[17] B. Leng, L. Huang, C. Qiao, H. Xu, and X. Wang, “Ftrs: A mechanism
for reducing flow table entries in software defined networks,” Computer
Networks, vol. 122, pp. 1 – 15, 2017.

[18] A. Bremler-Barr and D. Hendler, “Space-Efficient TCAM-Based Classi-
fication Using Gray Coding,” IEEE Transactions on Computers, vol. 61,
no. 1, pp. 18–30, Jan 2012.

[19] B. Schieber, D. Geist, and A. Zaks, “Computing the minimum DNF
representation of boolean functions defined by intervals,” Discrete
Applied Mathematics, vol. 149, no. 1, pp. 154 – 173, 2005.

[20] R. Cohen and D. Raz, “Simple efficient TCAM based range classifica-
tion,” in 2010 Proceedings IEEE INFOCOM, March 2010, pp. 1–5.

[21] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy, “Exact worst case
TCAM rule expansion,” IEEE Transactions on Computers, vol. 62, no. 6,
pp. 1127–1140, June 2013.

[22] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” SIGCOMM Comput. Commun. Rev.,
vol. 28, no. 4, pp. 191–202, Oct. 1998.

