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ABSTRACT
The problem ofmulti-label classificationwithmissing labels (MLML)
is a common challenge that is prevalent in several domains, e.g.
image annotation and auto-tagging. In multi-label classification,
each instance may belong to multiple class labels simultaneously.
Due to the nature of the dataset collection and labelling proce-
dure, it is common to have incomplete annotations in the dataset,
i.e. not all samples are labelled with all the corresponding labels.
However, the incomplete data labelling hinders the training of clas-
sification models. MLML has received much attention from the
research community. However, in cases where a pre-trained model
is fine-tuned on an MLML dataset, there has been no straightfor-
ward approach to tackle the missing labels, specifically when there
is no information about which are the missing ones. In this paper,
we propose a weighted loss function to account for the confidence
in each label/sample pair that can easily be incorporated to fine-
tune a pre-trained model on an incomplete dataset. Our experiment
results show that using the proposed loss function improves the
performance of the model as the ratio of missing labels increases.
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1 INTRODUCTION
Multi-label classification [14, 30] is a common task in various re-
search fields, such as audio auto-tagging [1], image annotation
[3], text categorization [23], and video annotation [25]. Multi-label
classification is concerned with the problem of predicting multi-
ple correct labels for each input instance. A relevant problem to
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multi-label classification is missing labels. Collecting a multi-label
dataset is a challenging and demanding task that is less scalable
than collecting a single-label dataset [10]. This is because collecting
a consistent and complete list of labels for every sample requires
significant effort. It is shown in [40] that learning with corrupted
labels can lead to very poor generalization performances. Various
strategies in dataset collection, such as crowdsourcing platforms
like Amazon Mechanical Turk1 or web services like reCAPTCHA2,
lead to datasets with a set of well-labelled positive samples and a
set of missing negative labels. The set of missing labels is often not
known. Hence, this problem of MLML is different from the problem
of partial labels [11], where the position of the missing labels is
known but its value is unknown, and noisy labels [31] where a set
of both positive and negative labels are corrupted.

The problem of MLML is a common challenge in previous re-
search that received much attention [2, 4, 6, 12, 24, 34, 38, 39]. Most
of the previous approaches relied on exploiting the correlation be-
tween labels to predict the missing negative labels [2, 6, 34, 37].
However, the state-of-the-art approaches in MLML [15, 17] are not
easily usable in cases where a pre-trained model is used. They either
rely on jointly learning the correlations between the labels along
with the model parameters, require prior extraction of manually
engineered features for the task [15], or assume the location of
the missing labels is known but the value is missing [17]. These
methods do not allow to fine-tune a pre-trained model on a dataset
with missing labels. This is limiting because it has been shown
that fine-tuning a pre-trained architecture is useful and, in most
cases, gives superior results to models trained from scratch [18, 28].
Multiple domains exploit existing pre-trained models especially
when access to large annotated data is challenging, such as medical
image classification [13, 22, 42], or when access to resources and
computation power to fully train a complex model are scarce.

In this work, we propose a solution to address MLML with pre-
trained models. In this direction, our main contributions are:

(1) Present a new weighted loss function that accounts for the
confidence in the labels while training in a way that is easily
usable to fine-tune pre-trained models.

(2) A weighting schema per sample per label to estimate the
presence of the missing labels, unlike previous work where
the location of missing labels is assumed to be known [11, 17]

(3) We demonstrate the benefit of our approach on synthetic
experimental setup by comparing the performance of the

1https://www.mturk.com/
2https://www.google.com/recaptcha/
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fine-tuned models with the weighted loss compared to non-
weighted loss on two different datasets. The improvement is
consistent across different ratios of missing labels3.

2 PREVIOUS WORK
Label correlations has been frequently used in several approaches
on multi-label classification to predict the missing labels in the
dataset. For example, [5, 36] proposed using a matrix completion
approach to predict the missing labels. Similarly, [7, 10] learned
correlation between the categories to predict some missing labels.
Additionally, [35] used a mixed graph approach to discover label
dependencies to recover missing labels. Recently, [15] proposed
an approach to jointly learn independent binary classifiers, while
also learning label correlation for a multi-label classifier. However,
most of the recent approaches are not usable to train a deep neural
network with unknown missing labels. They either assume the
location of the missing labels is known, or require solving an op-
timization problem with the training set in memory, which is not
practically usable to fine-tune a pre-trained model.

Unlike these methods, we propose an approach that is scalable
and usable to fine-tune a pre-trained model. To train our model,
we introduce a new loss function that accounts for the confidence
in the labels. Weighted loss functions is a common approach for
different problems, e.g. to solve class imbalance [32], to focus on
samples that are harder to predict [20], or to solve a similar problem
of partial labels [11]. However, to our knowledge, this is the first
attempt to use a per sample per label weighted loss for missing
labels where the missing labels are unknown.

3 PROPOSED APPROACH
We propose to modify the binary cross entropy loss to account for
the confidence in the missing labels. This can be done by adding
weighting factors to our loss function. We apply confidence-based
weight per sample for each of the positive and negative labels inde-
pendently. We hypothesise that using these weights can improve
our model performance in predicting the correct label by giving
less weight to samples with low confidence in their label.

Formally, let X = R𝑑 denote the d-dimensional space for the in-
put vector, Y = {0, 1}𝑚 denote the label space marking the absence
or presence of each of the𝑚 labels for each instance. The task of
multi-label classification is to estimate a classifier 𝑓 : X ↦→ Y using
the labelled dataset 𝐷 = {(xi, yi) |1 < 𝑖 ≤ 𝑛}.

We can describe our classifier as 𝑓 (yi |xi, 𝜃 ), which estimates the
labels yi for the given sample xi, while 𝜃 represents the trainable
parameters of the model. The model parameters are trained by
minimizing a loss function 𝐽 (𝐷, 𝜃 ) that describes how the model is
performing over the training examples. In multi-label classification,
it is common to use the binary cross entropy loss:

𝐶𝐸 (xi, yi) = −
𝑚∑
𝑐=1

𝑦𝑖,𝑐𝑙𝑜𝑔(𝑓𝑐 (xi)) + (1 − 𝑦𝑖,𝑐 )𝑙𝑜𝑔(1 − 𝑓𝑐 (xi)) (1)

where 𝑦𝑖,𝑐 is the 𝑐𝑡ℎ label in yi and 𝑓𝑐 (xi) is the output of the
classifier 𝑓 corresponding to the 𝑐𝑡ℎ label.

3https://github.com/KarimMibrahim/Sample-level-weighted-loss.git

The cross entropy is made of two terms, one is “active” when
the label is positive while the second is zero, and vice versa. We
propose to modify each term to add a weighting factor, one relative
to the confidence in the positive label and a second one relative to
the confidence of a negative label for each sample.

𝐶𝐸𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 (xi, yi) = −
𝑚∑
𝑐=1

𝜔𝑖,𝑐𝑦𝑖,𝑐𝑙𝑜𝑔(𝑓𝑐 (xi))

+ �̄�𝑖,𝑐 (1 − 𝑦𝑖,𝑐 )𝑙𝑜𝑔(1 − 𝑓𝑐 (xi)) (2)

where 𝜔𝑖,𝑐 represents the confidence in the positive label, while
�̄�𝑖,𝑐 represents the confidence in the negative label.

Estimating the weights
The weights used in the proposed loss function depend vastly on
the problem in hand. In most cases, the missing labels exist in the
negative labels while the positive labels are complete, i.e. 𝜔𝑖,𝑐 = 1.
�̄�𝑖,𝑐 depends on the information we have about the collection of the
dataset. However, a common way to estimate them is by using the
labels correlation [34]. Even if missing, a label could still be correctly
inferred, signalled by frequently co-occurring labels associated with
the same sample. The weights can be estimated as:

�̄�𝑖,𝑐 = 𝑃 (𝑦𝑖,𝑐 = 0|yi) (3)

which corresponds to the probability of having a negative label
for the 𝑐𝑡ℎ label given the vector of labels yi for the point xi. This
probability can be estimated from the ground-truth label matrix
based on label co-occurrences. However, we propose using positive
label co-occurrences when computing yi, and ignore the negative
labels since there is lower confidence in them, i.e. we would not
rely on missing labels to estimate the missing labels. Regarding the
positive weights 𝜔𝑖,𝑐 , while less common to have low confidence in
the positive labels, a potential approach is using inter-raters agree-
ment in cases where the labels are crowd-sourced to put emphasize
on samples with higher agreement.

4 EXPERIMENTS
To validate the advantage of using the weighted cross entropy, we
compare between the performance of the same model trained with
original cross entropy and with the weighted cross entropy across
different ratios of artificially created missing labels. Specifically,
we use the proposed loss on the problem of image classification
with multiple labels. Image classification is a popular problem with
multiple approaches proposed to it and a vast repertoire of pre-
trained models on large datasets. We apply one of the commonly
used pre-trained models, which is inception-resnet v2 [27], on two
different datasets: MSCOCO [21] and NUS-WIDE [8]. We use two
different schemes for computing the weights:

(1) Setting the weights for the missing labels to zero and one oth-
erwise (by using our knowledge of which labels are missing,
which is not the case in most real-world datasets) referred to
as ignore missing weighted cross entropy (IM-WCE);

(2) Estimating them using label co-occurrences, referred to as
correlation-based weighted cross entropy (CB-WCE).
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Figure 1: Results of the weighted cross entropy loss and original cross entropy on the MSCOCO dataset with different ratios
of missing labels

Datasets
The experiment requires a strongly labelled multi-label dataset
with no missing labels at the start. Hence, we decided to work with
MSCOCO4 [21] which is commonly used in multi-label classifica-
tion with and without missing label [11, 16, 19, 33]. The dataset
is originally intended for image segmentation, but is also usable
for image classification. We use the 2017 version of the dataset.
The dataset contains ~122k images and 80 classes. However, after
filtering out the samples with less than 4 labels, the total number
of images drops to ~33k images.

The second dataset is NUS-WIDE5 [8], which is another im-
age classification dataset that is suitable for this problem and also
commonly used in the multi-label classification studies along with
MSCOCO. The dataset contain ~270k images and 81 classes. How-
ever, the number of images drops to ~24k images after filtering out
samples with less than 3 labels per sample. We reduced the thresh-
old to 3 for this dataset because it has less labels co-occurrences
compared to MSCOCO.

Creating artificial missing labels
An important part of the experiment is creating missing labels
in the training dataset. We propose to create missing labels with
different ratios. We follow a similar procedure to [11]. We hide the
labels randomly as a ratio of the complete labels per image, i.e. we
hide 𝑥𝑖 = 𝑟 ∗ 𝑛𝑖 labels for each image, where 𝑟 is the ratio of labels
to hide, 𝑛𝑖 is the total number of positive labels of the image 𝑖 , and
𝑥𝑖 is the corresponding number of labels to hide in this image. We
use ratios of 0.0, 0.25, 0.5, and 0.75 missing labels to complete labels.

Classification model
We propose to use a pre-trained classification model for the task
of image classification that needs to be fine-tuned to a different
4http://cocodataset.org
5https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-
WIDE.html

dataset with missing labels. Previous papers on multi-label classifi-
cation used models as VGG16 [19] and resnset-101 [11]. The exact
architecture of the model is not the focus of this work and would
not have a significant effect on the comparison between the two
losses. Hence, we used the inception-resnet v2 [27], which is one
of the best performing models in image classification, pretrained
on the ImageNet dataset [9] through the TensorFlow pre-trained
models library6.

Evaluation Procedure
We perform a 4-fold cross-validation, each with the aforementioned
ratios of missing labels in the training sets and no missing labels in
the test sets. We evaluate the model performance using standard
multi-label classification metrics: Precision, Recall, f1-score and
AUC [41], all computed with ’micro’ averaging to account for the
large number of classes with few samples [26]. The effect of the
missing labels is specifically prominent in predicting the positive
labels correctly. As the ratio of missing labels increases, the models
learn to predict all zeros. Hence, the selected metrics are useful in
evaluating the model’s performance particularly in these cases.

4.1 Evaluation Results
Figure 1 shows the results obtained when training with the 3 dif-
ferent losses on the MSCOCO dataset on different ratios of missing
labels. It shows that using the weighted loss clearly improves the
performance of the model in terms of recall, f1-score and ROC-AUC,
with an expected decrease in the precision. The decrease in the
precision is explained by the fact that the model trained with the
unweighted loss is learning to predict mostly zeros and the few
samples that are predicted as positive are more likely to be correct.
This is evident when observing the recall and the f1-score results
alongside the precision. Additionally, the improvement is larger as
the ratio of missing labels increases. We can also notice the effect

6https://github.com/tensorflow/models/tree/master/research/slim

http://cocodataset.org
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
https://lms.comp.nus.edu.sg/wp-content/uploads/2019/research/nuswide/NUS-WIDE.html
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Figure 2: Results of the weighted cross entropy loss and original cross entropy on the NUS-WIDE dataset with different ratios
of missing labels
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samples between the different methods

of missing labels on the performance of the model. The higher
the ratio of the missing labels is the worse the model performs.
Moreover, we find that using the correlation as weights generally
gives better results in all cases even in the case where there are
no missing labels. This is understandable since using the correla-
tions in training a multi-label classifier leads the model to learn the
underlying relationship between labels [29].

Similarly in Figure 2, we find the results of applying the different
loss function on the NUS-WIDE dataset. We find a similar pattern
in the performance of the model across different values of miss-
ing labels which shows the advantage of using the weighted loss
function. However, as NUS-WIDE shows less correlation and co-
occurrences between the labels on average compared to MSCOCO,
the improvement is less impactful, yet evident.

Additionally, Figure 3 shows a comparison of the true positives
of each of the methods for the 15 most frequent classes in the
MSCOCO dataset with a ratio of 0.5 missing labels. It is evident
that the correlation based (CB-WCE) gives superior results in all
classes even compared to (IM-WCE). However, the improvement

is particularly noticeable in certain classes, such as "bottle" and
"chair", which we interpret such that some classes that are harder
to learn becomes easier when emphasizing their co-occurrences
with other classes.

Considering the evaluation results on these two different datasets,
we can advise towards using the weighted loss for multi-label clas-
sification when missing labels are present. We experimented with
using the correlations to weight the loss function and concluded
an evident improvement across different evaluation metrics. While
there are various proposed solutions for missing labels, our proposal
is particularly more suitable to be used in the cases of fine-tuning a
pre-trained model, or even in cases where a specific deep learning
architecture is preferred to be used and a simple modification in
the loss is needed to account for the missing labels.

5 CONCLUSION
In this paper, we presented a weighted loss function for multi-label
classification with missing labels. The weighted loss depends on
estimating the confidence in the labels when used in training fol-
lowed by adjusting the loss accordingly. Hence, sample/label pairs
with higher confidence contribute more in the learning process. The
proposed approach show a clear improvement compared to original
unweighted loss. The proposed approach is simple to integrate in
pre-trained models, which is a relevant solution that has not been
previously explored in the literature. Future work includes studying
additional weighting schemes for estimating the missing labels for
both the positive and negative cases and in other domains such as
text and audio classification and other scenarios for creating the
artificial missing labels.
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