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NONPARAMETRIC ESTIMATION FOR I.I.D. GAUSSIAN CONTINUOUS

TIME MOVING AVERAGE MODELS

FABIENNE COMTE* AND VALENTINE GENON-CATALOT*

Abstract. We consider a Gaussian continuous time moving average model X(t) =
∫ t

0
a(t −

s)dW (s) where W is a standard Brownian motion and a(.) a deterministic function locally
square integrable on R+. Given N i.i.d. continuous time observations of (Xi(t))t∈[0,T ] on [0, T ],
for i = 1, . . . , N distributed like (X(t))t∈[0,T ], we propose nonparametric projection estimators

of a2 under different sets of assumptions, which authorize or not fractional models. We study
the asymptotics in T,N (depending on the setup) ensuring their consistency, provide their
nonparametric rates of convergence on functional regularity spaces. Then, we propose a data-
driven method corresponding to each setup, for selecting the dimension of the projection space.
The findings are illustrated through a simulation study.

Keywords. Continuous time moving average. Gaussian processes. Model selection. Nonpara-
metric estimation. Projection estimators.
MSC 2010. 62G05-62M09

1. Introduction

Samples of infinite dimensional data, especially of data recorded continuously over a time
interval are now a commonly encountered type of data due to the possibilities of modern tech-
nology. They arise in many fields of applications, e.g. in econometrics where authors rather
speak of panel data and supply the field of functional data analysis (FDA) whose scope is no
more to be demonstrated (see, for general ideas and lots of examples, Hsiao (2003), Ramsay et
al. (2007), Wang et al. (2016)). Parametric models are most often proposed to deal with FDA.
However, nonparametric approaches allow for more flexibility and robustness.

In the present contribution, we consider i.i.d. observations (Xi(t), t ∈ [0, T ], i = 1, . . . , N) of
the continuous time moving average (CMA) process

(1) X(t) =

∫ t

0
a(t− s)dW (s)

where (W (t), t ≥ 0) is a Wiener process and a : R+ → R is a deterministic square integrable
function. Our aim is to study the new and challenging question of the nonparametric estimation
of the function g = a2 from these observations under very general conditions on the function
a(t). Our assumptions include in particular the classical CARMA processes (continuous ARMA)
but also more complicated processes such as the continuous time fractionally integrated process
of order d (see (3)), defined in Comte and Renault (1996, Definition 2) which is linked with
Brownian motion with Hurst index H = d+ (1/2).
CMA processes have been the subject of a huge number of contributions concerned with mod-
elling properties. Estimation procedures rely on the observation of a unique sample path on a
time interval [0, T ] and usually, the stationary version of (X(t)), namely

(2) Y (t) =

∫ t

−∞
a(t− s)dW (s),
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is considered. We refer e.g. to Brockwell (2001) for a reference book, Brockwell et al. (2012)
and the references given therein, where a general Lévy process (L(t)) may replace (W (t)) (see
also e.g. Belomestny et al. (2019), Schnurr and Woerner (2011)). For what concerns nonpara-
metric estimation, a pointwise estimator of a(t) for mainly Gaussian CARMA(p, q) processes in
stationary regime (see formula (2)), is proposed in Brockwell et al. (2012) based on the discrete
observation of one sample path. Except for this reference, to our knowledge, the nonparametric
estimation of a(t) for general CMA processes has not yet been studied.

In the present paper, stationarity of the process is not required. The asymptotic framework
will be that either N tends to infinity with fixed T or both Nand T tend to infinity. We assume
that g is square integrable. Considering sequences (Sm,m ∈ N) of finite dimensional subspaces
of L2(R+), we propose two kinds of projections estimators of g built using the observations
(Xi(t), t ∈ [0, T ], i = 1, . . . , N): i.e., we build estimators of the orthogonal projection gm of g
on Sm by estimating the coefficients of the projection on an orthonormal basis of Sm. The first
method relies on the assumption that a(t) belongs to C1([0,+∞)) which excludes the continuous
time fractionally integrated process. In this case, (X(t)) is an Itô process with explicit stochastic
differential. The second approach which is more general applies without regularity assumptions
on a(t). Then, in the general case, we propose a data-driven selection of the dimension leading to
an adaptive estimator. For this part, the Gaussian character of the process (X(t)) is especially
exploited. Proofs which do not rely on this property are possible though longer.

In Section 2, we present assumptions and the collections of models. Two collections are
especially investigated. First, we consider for fixed T the collection of spaces generated by
the trigonometric basis of L2([0, T ]) and thus we estimate gT = g1[0,T ]. Second, for large T ,

we consider spaces generated by the Laguerre basis of L2(R+). This basis has been largely
investigated and used in recent references for nonparametric estimation by projection method
(see e.g. Comte and Genon-Catalot (2018)). The estimators are presented in Sections 2.2 (first
method) and 2.3 (second method under more general assumptions). Several risk bounds for the
projection estimators on a fixed space are obtained and discussed. In Section 3, we detail the
possible rates of convergence that can be deduced from the risk bounds depending on regularity
spaces for the unknown function g. Section 4 is concerned with the data-driven choice of the
dimension of the projection space. We prove that our estimators are adaptive in the sense that
their risk bounds automatically achieve the best compromise between square bias and variance
terms (Theorems 1 and 2). Section 5 contains a simulation study. Estimators are implemented
on simulated data for various examples of functions g. We give table of risks obtained by
Monte-Carlo simulations. In Section 6, some concluding remarks are given. Proofs are gathered
in Section 7 and Section 8 contains the necessary definitions and properties of the Laguerre
basis.

2. Projection estimators on a fixed space.

2.1. Assumptions and collection of models. We estimate the function

g(t) := a2(t).

Note that the sign of a(t) is not identifiable. Our study will depend on assumptions on the
unknown function a(t):

• [H0] The function g(t) = a2(t) belongs to L1(R+) ∩ L2(R+)

• [H1] The function a(t) belongs to C1(R+), is bounded and
∫ +∞

0 (a′(t))2dt < +∞.
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Example 1. Consider the following example: a(t) = tdã(t)/Γ(d + 1) where d > −1/2 and
ã ∈ C1(R+) and ã(0) 6= 0,

(3) X(t) =

∫ t

0

(t− s)d

Γ(d+ 1)
ã(t− s)dW (s).

In particular for ã(x) = 1, this process is the continuous time fractional Brownian motion
of order d defined in Comte and Renault (1996, Definition 1) and the general formulation
above corresponds to the continuous time fractionally integrated process of order d (Definition
2 therein). The integrability of a2, a′2, a4 near infinity can be ensured by the rate of decrease of
ã near infinity, for instance if ã(t) = e−t. The behaviour near 0 depends on d:

(i) The process X(t) is well defined for any d > −1/2 as a is locally square integrable.
(ii) For −1/2 < d < 0, a(0) is not defined.

(iii) For d ≥ 1, a(t) belongs to C1(R+) and a′ is locally square integrable.
(iv) As a(t) ∼ (ã(0)/Γ(d+ 1))td at 0, [H0] requires d > −1/4.

In other words, fractional processes can be studied only under [H0].

We denote respectively by ‖.‖T (resp. 〈., .〉T ) the norm (resp. the scalar product) of L2([0, T ])
and ‖.‖ (resp. 〈., .〉) the norm (resp. the scalar product) of L2(R+). We set

(4) G(t) :=

∫ t

0
a2(s)ds ≤ ‖a‖2.

Note that E(X2(t)) = G(t) is what enables us to estimate g, whereas E(Y 2(t)) = ‖a‖2 would
not. To build estimators of g, we use a projection method and consider two settings.

• In the first case, T is fixed and we estimate gT = g1[0,T ]. For this, we consider the col-

lection (STrigm ,m ≥ 0) of subspaces of L2([0, T ]) where STrigm has odd dimension m and is

generated by the orthonormal trigonometric basis (ϕj,T ) where ϕ0,T (t) =
√

1/T1[0,T ](t),

ϕ2j−1,T (t) =
√

2/T cos(2πjt/T )1[0,T ](t) and ϕ2j,T (t) =
√

2/T sin(2πjt/T )1[0,T ](t) for
j = 1, . . . , (m− 1)/2. This basis satisfies

m−1∑
j=0

ϕ2
j,T (t) =

m

T
and

∫ T

0
ϕ0,T (t)dt =

√
T ,

∫ T

0
ϕj,T (t)dt = 0 for j 6= 0.

• In the second case, we may consider that either T is fixed but large enough, or that T
tends to infinity. In this case, we estimate g on R+ and we rather consider a collection
of subspaces of L2(R+), generated by an orthonormal basis. The basis considered here
is the Laguerre basis defined by

(5) `j(t) =
√

2Lj(2t)e
−t1t≥0, j ≥ 0, Lj(t) =

j∑
k=0

(−1)k
(
j

k

)
tk

k!
.

We set SLagm = span{`j , j = 0, . . . ,m− 1}. We have

∀t ≥ 0,

m−1∑
j=0

`2j (t) ≤ 2m, and

∫ +∞

0
`j(t)dt =

√
2(−1)j .

The second property is obtained by exact computation and the first one comes from the

fact that ∀j, |`j(t)| ≤
√

2. Moreover, Lj(T ) :=
∫ T

0 `j(u)du can computed recursively, see
(47). All formulae concerning this basis are recalled in Section 8.
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Remark 1. In the case of fixed T , we could also consider the subspaces (SHistm ) of L2([0, T ])
generated by the histogram basis

ϕj,T (t) =
√
m/T1[jT/m,(j+1)T/m[(t), j = 0, . . . ,m− 1

where
∑m−1

j=0 ϕ2
j,T (t) = m/T and

∫ T
0 ϕj,T (t)dt =

√
T/m. But these basis functions are not

differentiable and thus would not be suitable for all our proposals.

For simplicity, in order to use a unique notation, we denote by ϕj either ϕj,T or `j and set
Sm = span{ϕj , j = 0, . . . ,m− 1}. In all cases, under [H0], the function g admits a development

g =
∑
j≥0

θjϕj , with θj =

∫ +∞

0
g(s)ϕj(s)ds = 〈g, ϕj〉.

We define gm(t) =
∑m−1

j=0 θjϕj(t) the orthogonal projection of g on Sm.

2.2. Estimators under [H0]-[H1]. Under [H1], the stochastic differential of (X(t)) satisfies:

(6) dX(t) = a(0)dW (t) +

[∫ t

0
a′(t− s)dW (s)

]
dt.

(see Comte and Renault, 1996, equation (6)).

Remark 2. By equation (6), we have, for each trajectory Xi, for tk = kT/n with fixed T ,

1

T

n−1∑
k=0

(Xi(tk+1)−Xi(tk))
2 →n→+∞ a2(0) = g(0), in probability.

Thus, we can assume that g(0) is known, as we have continuous observation of the sample paths.

The construction of our first estimator relies on the following lemma.

Lemma 1. Under [H0]-[H1], denoting by θj = 〈g, ϕj〉, we have

E
(∫ +∞

0
ϕj(s)X(s)dX(s)

)
=

1

2

(
θj − g(0)

∫ +∞

0
ϕj(s)ds

)
.

Obviously, if the basis has support [0, T ], integrals are on this interval. Relying on this lemma,
we can set:

(7) θ̂j = θ̂j(N,T ) = 2

[
1

N

N∑
i=1

(∫ T

0
ϕj(s)Xi(s)dXi(s)

)]
+ g(0)

∫ T

0
ϕj(s)ds.

The projection estimator of g on a fixed space Sm is given by:

ĝm =

m−1∑
j=0

θ̂jϕj .

We refer to Remark 2 concerning the fact that g(0) is known. We mention that here, the
histogram basis can be used in the fixed-T setting.

Note that, by the Ito formula and (6), we can write θ̂j without stochastic integral, provided
that ϕj is differentiable:

(8) θ̂j = ϕj(T )
1

N

N∑
i=1

X2
i (T )− 1

N

N∑
i=1

∫ T

0
ϕ′j(s)X

2
i (s)ds.

The following proposition gives bounds for the L2-risk of ĝm in the case of fixed T and the
trigonometric basis.
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Proposition 1. Assume [H0]-[H1] and consider that (ϕj = ϕj,T ) is the trigonometric basis.
Then

(9) E(‖ĝm − g‖2T ) ≤ ‖gm − g‖2T + 8g(0)G(T )
m

N
+ 4

(
2G(T )G1(T ) + g2(0)

) T
N

+
4‖g‖2T
N

where G1(T ) =
∫ T

0 (a′(u))2du. (Recall that G is defined in (4), that gm denotes the orthogonal

projection of g on STrigm and that ‖u‖2T =
∫ T

0 u2(s)ds.)
If g(0) = 0,

(10) E(‖ĝm − g‖2T ) ≤ ‖gm − g‖2T + 4G(T )G1(T )
T

N
+
‖g‖2T
N

Let us discuss these bounds for fixed T and large N . The bounds involve a standard squared
bias term ‖g − gm‖2T due to the projection method. For g(0) 6= 0, the variance has order m/N
and the last two terms are residuals (see (9)). Therefore in this case, for choosing m, the
bias-variance compromise can be done between the first two terms.

The case g(0) = 0 is different as the process is differentiable, see (6) with a(0) = 0, and the
bound (10) shows that m must simply be chosen as large as possible.

Proposition 2. Assume [H0]-[H1].
If (ϕj) is an orthonormal basis of L2(R+), for all T ≥ 1, N ≥ 1,m ≥ 0, we have

E(‖ĝm − g‖2) ≤ ‖gm − g‖2 + 8g(0)G(T )
m

N
+ cG

T

N
+ 2

∫ +∞

T
g2(s)ds+

4‖g‖2

N
.(11)

where cG = 4
(
2G(T )G1(T ) + g2(0)

)
. If in addition g(0) = 0,

(12) E(‖ĝm − g‖2) ≤ ‖gm − g‖2 + 4G(T )G1(T )
T

N
+

∫ +∞

T
g2(s)ds+

2‖g‖2

N
.

If (ϕj) is the Laguerre basis of L2(R+), g is bounded and T ≥= 6m− 3, then

(13) E(‖ĝm − g‖2) ≤ ‖gm − g‖2 + C
m2

N
+ C ′‖a‖2m exp (−12γ2m)

where C = C ′(g(0)2 + ‖g‖2∞ + ‖a‖2‖a′‖2)), C ′ and γ2 are positive constants depending on the
basis only.

We can discuss these bounds for fixed T or large T . Here again, the bounds involve a standard
squared bias term ‖g − gm‖2.
Bounds (11) and (12) may be compared to (9) and (10). In (9), T is fixed so that the variance
has order m/N for g(0) 6= 0 and the term T/N is a negligible residual. If T can be large, the

term T/N may no more be negligible and (11)-(12) involve an additional bias term
∫ +∞
T g2(s)ds

which is small for large T . But the order of these terms, depending on T which can not be
chosen, are difficult to discuss.
Bound (12) implies as in the trigonometric case that m must be chosen as large as possible.
Bound (13) looks more classical: T does not appears, the variance term has order m3/N and
m exp (−12γ2m) is a negligible additional bias term.
Comparing (11) and (13), we see that in the Laguerre case, the variance term is less than

min

{
8g(0)G(T )

m

N
+ 4

(
2G(T )G1(T ) + g2(0)

) T
N
,C

m2

N

}
.

Note that the constants G1(T ) and C are difficult to estimate which is a drawback for model
selection. In section 5, we propose a practical data-driven choice of m taking into account this
difficulty.



6 FABIENNE COMTE* AND VALENTINE GENON-CATALOT*

2.3. Estimator under [H0]. In this paragraph, to handle more general processes, including
fractional processes, we propose another estimation method. We no longer assume that a belongs
to C1(R+). Therefore, the stochastic differential (6), which requires [H1], no more holds. As a
counterpart, we consider basis functions that have to be differentiable on their domain, [0, T ] or
R+.

The construction of the second estimator is based on the following lemma.

Lemma 2. Assume that [H0] holds and that (ϕj)j is differentiable on [0, T ], then

E
(∫ T

0
ϕ′j(s)X

2(s)ds

)
= ϕj(T )G(T )−

∫ T

0
g(u)ϕj(u)du.

Therefore, we can set

(14) θ̃j = − 1

N

N∑
i=1

(∫ T

0
ϕ′j(s)X

2
i (s)ds

)
+ ϕj(T )Ĝ(T ) and Ĝ(T ) =

1

N

N∑
i=1

X2
i (T ).

Note that under [H0] only, formula (8) no longer holds, this is why we use another notation,

θ̃j instead of θ̂j . If ϕj = ϕj,T is the trigonometric basis, then ϕ0,T (T ) = 1/
√
T , ϕ2j−1,T (T ) =√

2/T , ϕ2j,T (T ) = 0, j ≥ 1. Then we define the estimator by

g̃m =
m−1∑
j=0

θ̃jϕj .

We introduce the assumption:

• [H2]

∫ 1

0

G2(s)

s
ds = c0 < +∞.

Actually, [H2] is rather weak and allows to consider fractional processes.

Example 1 (continued). If we consider, as in example 1, a(t) = tdã(t)/Γ(d+1), where d > −1/2
and ã ∈ C1(R+), with ã(0) 6= 0, then G2(s)/s ∼s→0 s4d+1ã4(0)/Γ4(d + 1) and [H2] holds
(d > −1/2). The constraint is weaker than [H0].

The following risk bounds hold for g̃m.

Proposition 3. Assume [H0].

• If (ϕj = ϕj,T ) the trigonometric basis, then

(15) E(‖g̃m − g‖2T ) ≤ ‖gm − g‖2T + 6G2(T )
4π2m2

NT
+ 6G2(T )

m

NT
.

• Let (ϕj = `j) be the Laguerre basis.
– Then, for all T ≥ 1, N ≥ 1,m ≥ 0,

(16) E(‖g̃m−g‖2) ≤ ‖gm−g‖2 +12

(
G2(T ) + 2

∫ T

0

G2(u)

u
du

)
m

N
+12G2(T )

T

N
+

∫ ∞
T

g2(s)ds,

where, if [H2] holds, ,∫ T

0

G2(u)

u
du ≤ c0 +G2(T ) log(T ).
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– If T ≥ 6(m− 1) + 3 = 6m− 3 and (ϕj) is the Laguerre basis, then

(17) E(‖g̃m − g‖2) ≤ ‖gm − g‖2 + c1G
2(T )

m3

N
+ c2‖a‖2m exp (−12γ2m)

where c1, c2, γ2 are constants depending on the basis only.

As previously, all the risk bounds involve a squared bias term, ‖g − gm‖2T or ‖g − gm‖2. The
variance term in (15) can be compared to the one in (9), taking into acount that G(T ) ≤ ‖a‖2 <
+∞, and the order is now m2/(NT ) which for fixed T is larger than m/N obtained for ĝm with
the sama basis. Similarly, the variance term in (17) has order m3/N , which is larger than m2/N
in (13). This increase is the price of more general assumptions and estimators. As for (16), it
is to be compared with (11): the variance order is m/N and there are the two additional terms
T/N and

∫∞
T g2(s)ds, difficult to discuss. We develop a data-driven selection method in section

4, based on (15)-(16), which is implemented on simulated data.

3. Rates of convergence

Rates of convergence can be deduced from Propositions 1 and 3 in the asymptotic framework
where N tends to infinity. As it is always the case in nonparametric estimation, we must link the
bias term ‖g − gm‖2 with regularity properties of function g, and the regularity spaces depend
on the projection spaces.

3.1. Rates on periodic Fourier-Sobolev spaces for trigonometric basis. Consider first
Inequality (9) and estimators built using the trigonometric basis. Let β be a positive integer,
L > 0 and define

W per(β, L) = {f : [0, T ]→ R, f (β−1) is absolutely continuous,∫ T

0
[f (β)(x)]2dx ≤ L2, f (j)(0) = f (j)(T ), j = 1, . . . , β − 1}.

By Proposition 1.14 of Tsybakov (2009), a function f ∈ W per(β, L) admits a development
f =

∑∞
j=0 θjϕj,T such that

∑
j≥0 θ

2
j τ

2
j ≤ C(L, T ) where τj = jβ for even j, τj = (j− 1)β for odd

j and C(L, T ) = L2(T/π)2β.

Therefore, if g ∈W per(β, L), then ‖g − gm‖2 ≤ C(L, T )m−2β and Inequality (9) becomes

E(‖ĝm − g‖2T ) ≤ C(L, T )m−2β + C1g(0)
m

N
+ C1

T

N
.

If g(0) 6= 0, choosing mopt = cTN
1/(2β+1) yields, for fixed T ,

E(‖ĝmopt − g‖2T ) . N−2β/(2β+1) +
T

N
.

For fixed (not large) T , the estimator ĝmopt is convergent in MISE when N grows to infinity,

with rate N−2β/(2β+1).
If g(0) = 0, we choose m as large as possible and can obtain the rate N−1 for fixed T .

On the other hand, if g ∈W per(β, L), Inequality (15) yields, for a choice m̃opt = c̃T N
1/(2β+2) a

rate for g̃m̃opt of order N−2β/(2β+2) > N−2β/(2β+1). The rate is less good than the one of ĝmopt ,
but the assumptions are different: the rate of ĝmopt holds under [H0] and [H1] while g̃m̃opt only
requires [H0].
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3.2. Rates on Sobolev-Laguerre spaces. Now, look at inequality (13) where ĝm is computed
using the (non compactly supported) Laguerre basis. Assume for consistency that m2 . N and
m ≤ T/6. The last term is negligible with respect to the variance term m2/N and the usual
square bias term ‖g− gm‖2. An adequate solution to assess the rate of the bias term is provided
by the balls of Sobolev-Laguerre spaces. For s ≥ 0, let

(18) W s((0,+∞),K) = {h : (0,+∞)→ R, h ∈ L2((0,+∞)),
∑
k≥0

ksθ2
k(h) ≤ K < +∞}

where θk(h) =
∫ +∞

0 h(u)ϕk(u)du. We set

W s((0,+∞)) = {h : (0,+∞)→ R, h ∈ L2((0,+∞)),
∑
k≥0

ksθ2
k(h) < +∞}

for the Sobolev-Laguerre space. The link with regularity properties of functions can be seen for
s integer. In this case, if h : (0,+∞)→ R belongs to L2((0,+∞)),

(19)
∑
k≥0

ks(θk(h))2 < +∞

is equivalent to the property that h admits derivatives up to order s− 1, with h(s−1) absolutely
continuous on (0,+∞) and for m = 0, . . . , s− 1, the functions

x(m+1)/2(hex)(m+1)e−x = x(m+1)/2
m+1∑
j=0

(
m+ 1

j

)
h(j)

belong to L2((0,+∞)). Moreover, for m = 0, 1, . . . , s− 1,

‖x(m+1)/2(hex)(m+1)e−x‖2 =
∑

k≥m+1

k(k − 1) . . . (k −m)θ2
k(h).

(see Comte and Genon-Catalot, 2015, 2018).
Now, assume that g belongs to W s((0,+∞),K) so that ‖g − gm‖2 ≤ Km−s. Considering

Inequality (13), the minimization of m−s + m2/N yields mopt = N1/(2+s) and a rate of order

N−s/(2+s) for the L2-risk of ĝm on a Sobolev-Laguerre ball.
The constraint mopt = N1/(2+s) ≤ T/6 holds for all s as soon as T ≥

√
N .

As for the first estimator, we can discuss rates of convergence for the L2-risk of g̃m, rely-
ing on Inequality (17). Assume that m3 . N and that g belongs to W s((0,+∞),K) so that

‖g− gm‖2 ≤ Km−s. By minimizing (m3/N) +m−s, we find mopt = N1/(s+3) and a rate of order

N−s/(s+3). The constraint T > 6mopt holds for all s as soon as T ≥ N1/3.

Inequalities (11) and (16) are appealing: the variance terms are smaller and they require less

conditions. However they contain a term
∫ +∞
T g2(s)ds: this term is hopefully small for large

(not too small) T , but rates of convergence are difficult to discuss. Nevertheless, our model
selection procedures rely on these inequalities because the constants g(0)G(T ) and G2(T ) are
known in theory and possible to estimate in practice.

Example 1 (continued). Consider the function a(t) = td exp (−t) with −1/4 < d < 1/2, case
where a(0) may not be defined and a′ is not locally square integrable. Then, g belongs to
W 1((0,+∞)) if, moreover,

√
t(a2(t) + 2a(t)a′(t)) ∈ L2((0,+∞)), which holds for 0 < d < 1/2.

But for these values of d, we can check that g does not belong to W 2((0,+∞)) as t(a2(t) +
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2(a′)2(t)+(a2)′′(t)) does not belong to L2((0,+∞)). Therefore, the bias term for such a function
is of order smaller than m−1 but larger than m−2, for 0 < d < 1/2.

4. Adaptive procedure under [H0]

As the second estimator can be computed under more general assumptions, we concentrate
on this one for finding a data-driven choice of the projection dimension.

The estimator g̃m can be obtained as:

(20) g̃m = arg min
h∈S(B)

m

γN,T (h),

for (B) = (Lag) or (B) = (Trig), and where

γN,T (h) = ‖h‖2 +
2

N

N∑
i=1

(∫ T

0
h′(u)X2

i (u)du− h(T )X2
i (T )

)
.

We consider the sets M(Lag)
N = {m ∈ N,m ≤ N/ log(T )} and M(Trig)

N = {m ∈ N,m2 ≤ N}.
By inequalities (15)-(16), the variance term in the L2-risk of all g̃m with m ∈M(B)

N is bounded,
where the superscript (B) indicates the basis: (B) = (Trig) for the trigonometric basis and
(B) = (Lag) for the Laguerre basis. Now, we define, for κ a numerical constant,

(21) m̃(B) := arg min
m∈M(B)

N

(
γN,T (g̃m) + pen(B)(m)

)
,

where

pen(Lag)(m) = κ log(N)

(
G2(T ) +

∫ T

0

G2(u)

u
du

)
m

N
,

pen(Trig)(m) = κG2(T ) log(N)
m2

NT
.

Note that γN,T (g̃m) = −‖g̃m‖2. Thus, as ‖g − gm‖2 = ‖g‖2 − ‖gm‖2, −‖g̃m‖2 provides an

estimation of the squared bias, up to a constant. On the other hand, pen(B)(m) has the variance
order, up to the log(N) factor. We do not know if this factor is structural or due to technical

problems (in the proofs) only. Anyway, the choice of m̃(B) mimicks the squared bias-variance
compromise. The following risk bound holds.

Theorem 1. Assume [H0] and [H2]. Then, there exists a numerical value κ
(B)
0 > 0 such that

∀κ ≥ κ(B)
0 ,

E(‖g̃m̃(B) − g‖2) ≤ 4 inf
m∈M(B)

N

(
‖g − gm‖2 + pen(B)(m)

)
+ C(B)(T,N),

C(Lag)(T,N) = 32G2(T )
T log(N)

N
+

∫ +∞

T
g2(s)ds+

C

N

(
TG2(T )

N
+

∫ T

0

G2(u)

u
du

)
and

C(Trig)(T,N) =
C

N

(
1

T
+
G2(T )

T

1

N1/2

)
where C is a numerical constant.
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The term G2(T ) is unknown and must be replaced by an estimator. In practical implemen-
tation, we set

(22) Ĝ2(T ) =
1

3N

N∑
i=1

X4
i (T ).

Indeed, E(X4
1 (T )) = 3G2(T ). From theoretical point of view, it can be proved that Theorem 1

still holds with this substitution.
For the implementation of the procedure, we have to fix the constants κ in the penalties (see

(21)). The numerical values of κ
(B)
0 , given in the proofs, are too large. In this method, finding

the minimal value of κ is a difficult problem. This is why the choice of κ in the penalties is
standardly calibrated by preliminary simulations.

Theorem 1 shows that the estimator g̃m̃(B) is adaptive in the sense that its L2-risk automati-
cally achieves the best compromise between squared bias and variance terms, up to remainder
terms C(B)(T,N). For C(Trig)(T,N), it is clearly negligible, as T > 1 is fixed. As already

noticed earlier, the term C(Lag)(T,N) contains T/N and
∫ +∞
T g2(s)ds which are in conflict: T

should be large enough for the latter, but not too large for the former. However our risk bounds
are valid for any T,N .

Another strategy is possible for Laguerre basis, without [H2], which solves the conflict men-
tioned above. Let M?

N = {m,m3 ≤ N} so that, by inequality (17), the variance term of g̃m is
bounded and define

(23) m? := arg min
m∈M?

N

(γN,T (g̃m) + pen?(m)) , where pen?(m) = κ log(N)G2(T )
m3

N
.

Theorem 2. Assume [H0]. Consider the Laguerre basis, and T ≥ 6N1/3. Then, there exists a
numerical value κ?0 > 0 such that ∀κ ≥ κ?0,

E(‖g̃m? − g‖2) ≤ 4 inf
m∈M?

N

(
‖g − gm‖2 + pen?(m)

)
+G2(T )

C

N
,

where C is a constant depending on the basis.

Theorem 2 also shows that the estimator g̃m? is adaptive in the sense that its L2-risk au-
tomatically achieves the best compromise between the squared bias and the variance term of
inequality (17). The comments after Theorem 1 apply also here.

5. Simulation study

In this section, we implement the adaptive estimators of the previous sections on simulated
data. To simulate an exact discrete sampling of (Xi(t), i = 1, . . . , N with small sampling interval
∆, we use the property that the vectors (Xi(k∆), k = 1, . . . , n)′ with T = n∆ are i.i.d. centered
Gaussian vectors with covariance matrix A = (Aj,k) where for 1 ≤ j ≤ k,

Aj,k =

∫ j∆

0
a(j∆− u)a(k∆− u)du =

∫ j∆

0
a(v)a((k − j)∆ + v)dv.

which can be computed exactly or numerically according to the examples. Integrals in the
estimators formulae are discretized. The following examples of functions a(.) and thus g(.) are
considered.
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(1) (Ornstein-Uhlenbeck process) a1(t) = σ exp (−θt),

A(j, k) =
σ2 exp (−θk∆)

2θ
(exp (θj∆)− exp (−θj∆)), k ≥ j.

We take σ = 0.5, θ = 0.25.

(2) a2(t) = (β(3, 3, t/10)/ω
1/2
2 )1/2 where β(p, q, x) is the density of a β(p, q) distribution at

point x and ω2 = 14.157 is such that
∫
R+ g

2
2(u)du ≈ 1.

(3) a3(t) = (1
2β(3, 3, t/3) + 1

2β(3, 3, t/3− 2))1/2.

(4) a4(t) = 10b(6t)/(ω4)0.25 with b(t) = 0.3Γ(3, 2, t) + 0.7Γ(7, 4, t) where Γ(p, q, x) is the
density of a Γ(p, q) distribution at point x and ω4 = 0.03048 is such that

∫
R+ g

2
4(u)du ≈ 1.

(5) a5(t) = t1.25e−t/2.

(6) a6(t) = t0.25e−t/3.

(7) a7(t) = t−0.125e−t/5.

(8) a8(t) = 1/
√

1 + t2.

In all cases, recall that gi(t) = a2
i (t). The functions a2 and a4 are normalized (constants ω2, ω4),

in order that
∫
g2
i (u)du ≈ 1, i = 2, 4, while for the other functions, this integral falls between

0.5 and 2.5. In Table 1, we compute the values of residual terms of formula (16): the values

of
∫ +∞
T g2

i (u)du are always negligible; but the values of TG2
i (T )/N are comparable to the risk

values obtained in Table 2, and thus not so small.

i 1 2 3 4 5 6 7 8∫ +∞
T

g2i (u)du 2.8 10−6 0 0 5.4 10−8 1.4 10−4 1.4 10−5 1.3 10−4 3.3 10−4

TG2
i (T )

N
0.5 10−2 3.5 10−2 4.4 10−2 2.5 10−2 5.4 10−2 1.3 10−2 3.2 10−2 1.1 10−2

Table 1. Order of residual terms, for T = 10 and N = 2000.

All functions gi, i = 1, . . . , 8 satisfy [H0]. The functions g2 to g6 are null at zero, a6 and a7 do
not satisfy [H1]. Thus, the first method (valid under [H0]-[H1]) should work for all functions
except g6 and g7, with parametric rate (and large chosen dimension) for g2 to g5. Nevertheless,
we implemented both methods for all functions. Note that all functions satisfy [H2].

We also experiment different settings for (N,T ): T = n∆ = 10, n = 400,∆ = 0.1/4 with
N = 500, 2000, 8000.

The estimators are computed via the formulae given in Section 2.2 and 2.3.
More precisely, inspired by Inequalities (9) and (11), we implement a data driven estimator

relying on ĝm given in Section 2.2 with dimension selected as follows: for (B) = (Lag), (Trig),

m̂(B) = arg min
1≤m≤Dmax

{
−‖ĝ(B)

m ‖2 + κ
(B)
1 g†(0)Ĝ(T )

m

N

}
.

Note that no theoretical result is given in this case. We compute (ĝ
(Trig)
m )1≤m≤Dmax and

(ĝ
(Lag)
m )1≤m≤Dmax the collections of estimators respectively in trigonometric and Laguerre ba-

sis, with coefficients given by (7), with Dmax = 45. Note that the first term in the curly
bracket estimates the squared bias and the second estimates the main variance term. Moreover

Ĝ(T ) = (1/N)
∑N

i=1X
2
i (T ) and g†(0) is computed using the quadratic variation (see Remark 2)

g†(0) =
1

NT

N∑
i=1

n−1∑
k=0

[
Xi

(
(k + 1)T

n

)
−Xi

(
kT

n

)]2
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Figure 1. Examples of 50 estimated curves (in gray-green) using the Laguerre
basis, with the two methods (method 1 left, method 2 right, for each couple of
plots) for functions 3 (first line), function 6 (second line) and function 7 (third
line), for N = 500 (left plots) and N = 8000 (right plots). The bold curve is the
true function. Under each plot, the MISE over the 50 paths, and the mean of
the selected dimensions.

Next, we implement the estimators of Therem 1. We compute (g̃
(Trig)
m )1≤m≤Dmax and (g̃

(Lag)
m )1≤m≤Dmax

the collection of estimators in trigonometric and Laguerre basis, with coefficients given by (14).
We select

m̃(Trig) = arg min
m

{
−‖g̃(Trig)

m ‖2 + κ
(Trig)
2 Ĝ2(T ) log(N)

m2

NT

}
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(N,T ) = (500, 10) (N,T ) = (2000, 10) (N,T ) = (8000, 10)
a ĝm̂,L ĝm̂,T g̃m̃,L g̃m̃,T ĝm̂,L ĝm̂,T g̃m̃,L g̃m̃,T ĝm̂,L ĝm̂,T g̃m̃,L g̃m̃,T

a1 MISE 0.07 15.9 1.90 14.7 0.02 9.11 0.28 9.71 0.01 6.19 0.05 8.47
(std) (0.1) (3.5) (2.4) (2.2) (.03) (0.9) (0.5) (0.9) (.01) (0.3) (0.1) (0.7)

Or 0.07 12.5 0.07 12.3 0.02 8.21 0.02 8.38 0.01 6.06 0.01 6.92
dim 1.00 16.4 7.31 11.3 1.00 28.5 3.68 17.4 1.00 41.5 2.63 40.8

dim Or 1.06 16.1 1.03 16.5 1.04 30.2 1.04 25.7 1.04 42.7 1.03 19.1

a2 MISE 1.44 1.54 2.02 1.00 0.43 0.44 1.04 0.39 0.12 0.11 0.35 0.19
(std) (1.2) (1.3) (1.1) (1.0) (0.3) (0.3) (0.5) (0.3) (.09) (.09) (.07) (.07)
Or 1.24 0.90 1.24 0.90 0.40 0.31 0.39 0.31 0.11 0.09 0.12 0.10
dim 11.2 10.8 5.08 2.03 14.2 11.4 5.84 2.02 18.3 11.8 7.16 2.02

dim Or 11.9 2.99 12.0 2.79 16.3 4.17 15.8 3.48 20.5 4.89 16.5 4.08

a3 MISE 14.5 17.3 20.7 15.1 4.26 4.81 6.93 5.48 1.40 1.47 1.25 3.30
(std) (2.5) (2.6) (4.1) (2.3) (0.8) (0.8) (0.8) (0.9) (0.2) (0.2) (0.1) (0.2)
Or 10.3 11.5 9.84 11.4 3.59 4.09 3.12 3.96 1.26 1.38 0.86 1.42
dim 25.2 20.8 14.9 6.86 32.8 21.1 21.6 7.07 38.7 23.0 31.0 7.45

dim Or 28.6 8.91 28.4 8.64 36.0 12.9 35.5 10.7 39.3 17.7 38.5 11.5

a4 MISE 7.46 19.6 4.72 21.06 2.26 5.08 1.69 9.06 0.81 1.49 0.58 3.30
(std) (6.2) (6.8) (3.0) (6.3) (1.2) (1.6) (0.6) (2.8) (0.3) (0.5) (0.2) (0.8)
Or 2.77 13.4 2.56 13.21 1.20 4.47 1.00 4.78 0.54 1.45 0.34 2.24
dim 14.5 29.8 7.16 7.60 15.3 30.7 8.77 10.4 18.9 33.5 11.7 13.7

dim Or 9.07 13.0 8.96 13.1 13.1 20.8 12.9 16.4 19.7 32.9 18.8 17.8

a5 MISE 5.26 6.80 2.92 6.99 1.64 2.09 0.95 2.45 0.43 0.55 0.17 1.57
(std) (3.9) (4.1) (2.4) (4.3) (1.1) (1.2) (0.9) (1.0) (0.3) (0.3) (0.2) (0.3)
Or 1.53 4.76 1.51 4.70 0.50 1.84 0.47 1.86 0.15 0.53 0.13 0.69
dim 10.5 16.6 3.41 3.70 11.4 15.7 3.80 4.00 10.6 16.6 4.14 4.13

dim Or 4.01 6.01 3.99 5.77 4.27 9.06 4.27 7.37 4.62 13.8 4.56 8.32

a6 MISE 1.18 9.03 1.33 6.42 0.58 2.85 0.51 3.13 0.23 0.95 0.17 1.49
(std) (0.9) (3.0) (1.2) (2.1) (0.2) (0.8) (0.2) (0.8) (.09) (0.2) (.08) (0.2)
Or 0.67 4.42 0.63 4.35 0.32 1.95 0.28 2.01 0.15 0.84 0.11 1.16
dim 2.46 30.4 3.03 5.42 3.13 34.1 3.30 7.53 4.23 38.1 4.23 11.5

dim Or 3.66 10.5 3.60 10.1 5.62 17.4 5.37 14.0 8.69 29.2 8.19 16.1

a7 MISE 24.8 115 12.7 101 24.5 80.1 7.27 82.0 14.9 59.9 3.37 73.1
(std) (1.6) (13) (4.3) (7.7) (0.8) (7.2) (2.5) (4.7) (1.9) (2.3) (1.2) (4.5)
Or 8.90 87.0 7.15 85.9 4.48 68.6 3.18 71.3 2.07 57.4 1.35 64.9
dim 1.00 5.16 4.94 8.11 1.00 14.8 6.73 13.7 2.93 36.2 10.9 40.0

dim Or 6.61 5.29 4.68 5.11 9.29 6.32 6.07 4.59 37.9 44.0 25.3 30.2

a8 MISE 1.64 20.7 2.55 19.8 1.53 11.0 0.64 12.2 0.53 7.01 0.18 9.57
(std) (0.2) (5.9) (2.7) (3.6) (.05) (1.5) (0.6) (1.4) (0.2) (0.4) (0.2) (1.7)
Or 0.68 15.9 0.67 15.7 0.29 9.76 0.28 10.0 0.11 6.78 0.10 7.93
dim 1.00 15.7 4.87 9.50 1.00 25.7 4.23 14.0 1.96 38.4 5.24 30.7

dim Or 3.14 15.2 3.18 15.1 4.39 25.4 4.39 21.7 5.36 40.8 5.29 25.4

Table 2. Simulation results, 100 MISE one lines MISE, 100 std on lines (std),
MISE of the oracle (best unknown choice, using the true), dim = mean of the
selected dimensions, dim Or = mean of dimensions associated to the oracle, 200
repetitions.

and

m̃(Lag) = arg min
m

{
−‖g̃(Lag)

m ‖2 + κ
(Lag)
2 Ĝ2(T ) log(T ) log(N)

m

N

}
where Ĝ2(T ) is defined by (22).

We do not present results using the procedure of Theorem 2, as the method seemed not stable.
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Based on preliminary simulations, the constants are calibrated once and for all to the following

values κ
(Lag)
1 = 27, κ

(Trig)
1 = 6, κ

(Lag)
2 = 0.11 and κ

(Trig)
2 = 0.6.

Table 2 presents the values of the risks of the adaptive estimators computed for the eight
functions, following the two methods (method 1: estimators ĝ, method 2: estimators g̃) and
using two bases, Laguerre (index L) and trigonometric (index T ). For each function, the first
line gives the MISE multipled by 100, over 200 repetitions, with standard deviation multiplied
by 100 in parenthesis on the line below. The line ”Or” gives the mean of path-by-path minimal
integrated error (computed using the true function). The fourth line provides the mean of
selected dimensions, and ”dim or” the mean of the dimensions associated to the oracle estimators.
We can compare lines 1 (MISE)and 3 (Or), and lines 4 (dim) and 5 (dim Or), where MISE and
dim should be as close as possible to Or and dim Or.

Naturally, the risk decreases as N increases. Globally, the Laguerre basis performs satisfacto-
rily, and better than the trigonometric one, except for function a2. Note that the methods are
easy to implement and the computation time is quite fast.

To conclude this section, we provide in Figure 1 plots illustrating the behaviour of our es-
timators following the two strategies in the Laguerre basis, for three of the functions of the
list, namely the mixed-beta function 3) and two functions of type tde−t/b with d = 0.25, b = 3
(function 6)) and d = −0.25, b = 5 (function 7)). Each couple of plots corresponds to the rep-
resentation of 50 estimators computed by the two methods, together with the true function in
bold (red). Two values of N are compared, and the MISE are given, to make the orders of Table
2 concrete; the improvement from N = 500 to N = 8000 is obvious in most cases. We note that
the first method seems to still work for function 6), contrary to what was expected from the
theory. But it fails for function 7), as expected : the estimator is biased. Method 2 always gives
good results.

6. Concluding remarks

In this paper, we consider i.i.d. continuous observations of the processes (Xi(t), t ∈ [0, T ]), i =
1, . . . , N) distributed as the CMA process (1). We build collections of nonparametric estima-
tors of the unknown function g = a2 by projection method on finite-dimensional subspaces of
L2(R+). The subspaces are generated by the trigonometric basis of L2([0, T ]) or the Laguerre
basis of L2(R+). After proving various risk bounds for each estimator, we propose a data-driven
selection of the dimension of the projection space and prove that it leads to an adaptive estima-
tor. Our methods are implemented on simulated data and show convincing results in terms of
risks and plots with a better performance for the estimators in Laguerre basis.
The consistency of the estimators is ensured for fixed T as N tends to infinity (case of trigono-
metric basis) or when both Tand N tend to infinity (case of Laguerre basis) but with T/N not
too large. It would be interesting to clarify this point which has an impact on the risk bounds
as we noticed on Monte-Carlo simulations.
Our proofs rely on the Gaussian character of (1) especially for the adaptive procedure. The
generalization to other processes than the Wiener process in (1) is of interest and left to further
work. Clearly, the results could be obtained with more general deviation inequalities, rather
than the χ-square deviations specifically used here.
The question of taking into account, from the theoretical point of view, the discretization step
used in practice may also be worth investigation. Lastly, there may be some developments about
optimality, but the meaning of this in our context would have first to be carefully defined.
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7. Proofs

7.1. Proofs of section 2. Proof of Lemma 1 Using the stochastic differential (6), we write:∫ +∞

0
ϕj(s)X(s)dX(s) = a(0)

∫ +∞

0
ϕj(s)X(s)dW (s) +

∫ +∞

0
ϕj(s)X(s)

∫ s

0
a′(s− u)dW (u)ds

Therefore, as E
∫ +∞

0 ϕ2
j (s)X

2
i (s)ds =

∫ +∞
0 ϕ2

j (s)G(s)ds ≤ ‖a‖2 < +∞,

E
∫ +∞

0
ϕj(s)X(s)dX(s) =

∫ +∞

0
ϕj(s)

∫ s

0
a(s− u)a′(s− u)du ds

=
1

2

∫ +∞

0
ϕj(s)(a

2(s)− a2(0))ds,

which gives the result. �

Proof of Proposition 1. We consider that (ϕj) = (ϕj,T ) is the trigonometric basis on [0, T ].

In this case, Eθ̂j = θj , we can write E‖ĝm− g‖2T = E‖ĝm−Eĝm‖2 + ‖gm− g‖2T . We have, setting
X = X1,
(24)

E‖ĝm − Eĝm‖2 =
1

N

m−1∑
j=0

Var

(
2

∫ T

0
ϕj(s)X(s)dX(s)

)
≤ 1

N

m−1∑
j=0

E
(

2

∫ T

0
ϕj(s)X(s)dX(s)

)2

.

(Note that for functions on Sm,T , the norms ‖.‖T and ‖.‖ are identical). We have:
(25)

E
(∫ T

0
ϕj(s)X(s)dX(s)

)2

≤ 2g(0)

∫ T

0
ϕ2
j (s)E(X2(s))ds+ 2E

[(∫ T

0
ϕj(s)X(s)Y (s)ds

)2
]

where Y (s) =
∫ s

0 a
′(s − u)dW (u). We have E(X2(s)) = G(s) ≤ G(T ) ≤ ‖a‖2. Now, using that

(ϕj) = (ϕj,T ) is an orthonormal basis of L2([0, T ])

m−1∑
j=0

E
(∫ T

0
ϕj(s)X(s)Y (s)ds

)2

= E

m−1∑
j=0

(∫ T

0
ϕj(s)X(s)Y (s)ds

)2
 ≤ E

∫ T

0
X2(s)Y 2(s)ds.

As (X(s), Y (s)) is a Gaussian centered vector, we know that:

(26) E(X2(s)Y 2(s)) = 2 [E(X(s)Y (s))]2 + E(X2(s))E(Y 2(s)) =
1

4
(g(s)− g(0))2 +G(s)G1(s),

with G1(s) =
∫ s

0 (a′(u))2du ≤ ‖a′‖2. Therefore, if g(0) 6= 0

E‖ĝm − Eĝm‖2 ≤ 4

N

(
2g(0)G(T )m+ 2TG(T )G1(T ) + Tg2(0) + ‖g‖2T

)
.

Therefore, we obtain (9).
If g(0) = 0, (25) becomes

E
(∫ T

0
ϕj(s)X(s)dX(s)

)2

= E

[(∫ T

0
ϕj(s)X(s)Y (s)ds

)2
]

and thus

E‖ĝm − Eĝm‖2 ≤ 4
TG(T )G1(T )

N
+
‖g‖2T
N

,
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which gives inequality (10). �

Proof of Proposition 2. Now, we look at the case of a basis of L2(R+). The estimator θ̂j
is no more unbiased. We write ĝm − g = ĝm − Eĝm + Eĝm − gm + gm − g and

(27) E(‖ĝm − g‖2) = ‖gm − g‖2 + E‖ĝm − Eĝm‖2 + ‖Eĝm − gm‖2.
The first term is the usual square bias term. The middle term is a variance term which can

be treated as in the previous proposition. The last term is an additional bias term, due to the
truncation of the integrals. We have:

(28) ‖Eĝm − gm‖2 =
m−1∑
j=0

(Eθ̂j − θj)2 =
m−1∑
j=0

(∫ +∞

T
g(s)ϕj(s)ds

)2

≤
∫ +∞

T
g2(s)ds,

and we obtain inequalities (11) and (12).
Now, consider the Laguerre basis. To get (13), we bound differently (25). We write:(
E
∫ T

0
ϕj(s)X(s)Y (s)ds

)2

=

∫
[0,T ]2

ϕj(s)ϕj(u)E[X(s)Y (s)X(u)Y (u)]dsdu

≤
∫

[0,T ]2
|ϕj(s)ϕj(u)|

{
E[(X(s)Y (s))2]E[(X(u)Y (u))2]

}1/2
dsdu

=

(∫ T

0
|ϕj(s)|

{
E[(X(s)Y (s))2)]

}1/2
ds

)2

.(29)

By (26) and the assumptions, E(X(s)Y (s))2 ≤ 1
2(g2(0) + ‖g‖2∞) + ‖a‖2‖a′‖2 is bounded. There-

fore, we need to bound
∫ T

0 |ϕj(s)|ds. For this, we split each integral according to the inequalities
of Askey and Wainger (1965) recalled in Section 8 (we assume without loss of generality that
they hold for all j). We have:∫ T

0
|ϕj(s)|ds =

∫ 2T

0
|ϕj(x/2)|dx/2 =

1

2
(

6∑
`=1

I`)

and bound each term. Setting νj = 4j + 2,

I1 =

∫ 1/νj

0
dx = ν−1

j , I2 =

∫ νj/2

1/νj

(xνj)
−1/4dx ≤ 25/4

3
ν

1/2
j , I3 =

∫ νj−ν
1/3
j

νj/2
ν
−1/4
j (νj−x)−1/4dx ≤ 3/4,

I4 =

∫ νj+ν
1/3
j

νj−ν
1/3
j

ν
−1/3
j dx = 2, I5 =

∫ 3νj/2

νj+ν
1/3
j

exp(−γ1ν
−1/2
j (x− νj)3/2)

ν
1/4
j (x− νj)1/4

dx ≤ ν1/6
j

exp (−γ1)

γ1
,

I6 =

∫ T

3νj/2
exp (−γ2x)dx ≤ exp (−3γ2νj/2)

γ2
.

Consequently, for j = 0, . . . ,m− 1 and T ≥ 6(m− 1) + 3 = 6m− 3,

(30)

∫ T

0
|ϕj(s)|ds . j1/2.

Finally,

(31)

m−1∑
j=0

(∫ T

0
|ϕj(s)|ds

)2

. m2
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Using again the inequalities of Askey and Wainger (1965) (see Section 8), for T ≥ 6m− 3, for
all j ∈ {0, 1, . . . ,m− 1}, |ϕj(x/2)| ≤ exp (−γ2x) and∣∣∣∣∫ +∞

T
ϕj(s)g(s)ds

∣∣∣∣ ≤ ∫ +∞

T
|ϕj(s)|g(s)ds ≤ exp (−2γ2T )‖a‖2 ≤ exp (−2γ2(6(m− 1) + 3))‖a‖2.

The additional bias term (28) is therefore bounded as follows:

(32)

m−1∑
j=0

[

∫ +∞

T
ϕj(s)g(s)ds]2 . ‖a‖2m exp (−12γ2m).

We thus obtain (13) by joining (29), (31) and (32). �

Proof of Lemma 2. We have

E(

∫ T

0
ϕ′j(s)X

2(s)ds) =

∫ T

0
ϕ′j(s)(

∫ s

0
g(s− u)du)ds =

∫ T

0
ϕ′j(s)G(s)ds

= [ϕj(s)G(s)]T0 − 〈g, ϕj〉T = ϕj(T )G(T )− 〈g, ϕj〉T ,

which is the result. �

Proof of Proposition 3. Assume that (ϕj = ϕj,T ) is the trigonometric basis. Then, θ̃j is an
unbiased estimator of θj . We only need to study the variance term of the risk.

E‖g̃m − Eg̃m‖2 ≤ 2

N

m−1∑
j=0

E
(∫ T

0
ϕ′j,T (s)X2(s)ds

)2

+
m−1∑
j=0

ϕ2
j,T (T )EX4(T )


where EX4(T ) = 3

(∫ T
0 a2(s)ds

)2
= 3G2(T ) and

∑m−1
j=0 ϕ2

j (T ) = m/T .

We have

(33) ϕ′0,T (s) = 0, ϕ′2j,T (s) = (2πj/T )ϕ2j−1,T (s), ϕ′2j−1,T (s) = −(2πj/T )ϕ2j,T (s), j ≥ 1.

Proceeding as in Proposition 1 (projection argument), we obtain

m−1∑
j=0

E
(∫ T

0
ϕ′j,T (s)X2(s)ds

)2

≤ 4π2m2

T 2
E
∫ T

0
X4(s)ds ≤ 3G2(T )

4π2m2

T
,

using that EX4(s) = 3
(∫ s

0 a
2(s)ds

)2 ≤ 3G2(T ). This gives (15).

Now, we look at the case of the Laguerre basis on L2(R+). We start as above by

E(‖g̃m − g‖2) = E‖g̃m − Eg̃m‖2 + ‖Eg̃m − gm‖2 + ‖gm − g‖2.

We get

E‖g̃m − Eg̃m‖2 =
1

N

m−1∑
j=0

Var

(∫ T

0
`′j(s)X

2
1 (s)ds−X2

1 (T )`j(T )

)

≤ 2

N

m−1∑
j=0

E

[(∫ T

0
`′j(s)X

2
1 (s)ds

)2
]

+
2

N

m−1∑
j=0

`2j (T )E[X4
1 (T )] := T1 + T2.
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Using that EX4(T ) = 3
(∫ T

0 a2(s)ds
)2

= 3G2(T ) and |`j | ≤
√

2, we get

T2 ≤ 12G2(T )
m

N
.

Next, we use that the Laguerre basis satisfies `′0(x) = −`0(x) and `′j(x) = −`j(x)−
√

2j/x`
(1)
j−1(x)

for j ≥ 1 where (`
(1)
k (x), k ≥ 0) is the Laguerre basis with index 1 (see section 8) and we find

T1 ≤ 4

N

m−1∑
j=0

E

[(∫ T

0
`j(s)X

2
1 (s)ds

)2
]

+
4

N

m−1∑
j=1

E

(∫ T

0
`
(1)
j−1(s)

√
2j

s
X2

1 (s)ds

)2


≤ 4

N
E
(∫ T

0
X4

1 (s)ds

)
+

8m

N
E
(∫ T

0

X4
1 (s)

s
ds

)
= 12TG2(T )

1

N
+ 24

m

N

∫ T

0

G2(s)

s
ds.

Under [H2], we obtain

T1 ≤ 12TG2(T )
1

N
+ 24(c0 + log(T )G2(T ))

m

N
.

Finally, the variance term is bounded by

E‖g̃m − Eg̃m‖2 ≤ 12
(
G2(T ) (2 log(T ) + 1) + 2c0

) m
N

+ 12G2(T )
T

N
.

If [H2] does not hold and T ≥ 6m− 3, we can bound differently the variance and bias terms.

m−1∑
j=0

E
(∫ T

0
`′j(s)X

2(s)ds

)2

=

∫
[0,T ]2

m−1∑
j=0

`′j(s)`
′
j(u)E[X2(s)X2(u)]ds du

≤
∫

[0,T ]2

m−1∑
j=0

(`′j(s))
2E(X4(s))

m−1∑
j=0

(`′j(u))2E(X4(u))

1/2

dsdu

=

∫ T

0

m−1∑
j=0

(`′j(s))
2E(X4(s))

1/2

ds


2

≤ 3G2(T )

∫ T

0

m−1∑
j=0

(`′j(s))
2

1/2

ds


2

We decompose the integral to obtain∫ T

0

m−1∑
j=0

(`′j(s))
2

1/2

ds


2

≤ 2

(∫ 6m−3

0
. . .

)2

+ 2

(∫ T

6m−3
. . .

)2

,

and bound each term. Using (46) and again the inequalities of Askey and Wanger (1965)(see

Section 8), we get that, for s ≥ 6m − 3, |ϕ′j(s)| ≤ 2
∑j

k=0 |`j(s)| ≤ 2(j + 1) exp (−γ2s). Thus,∑m−1
j=0 (`′j(s))

2 ≤ 4m3 exp (−2γ2s). So,

(34)

∫ T

6m−3

m−1∑
j=0

(`′j(s)
2

1/2

ds


2

≤ 4m3

γ2
2

exp (−(12m− 6)γ2).
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Now,
(35)∫ 6m−3

0

m−1∑
j=0

(`′j(s)
2

1/2

ds


2

≤ (6m−3)

∫ +∞

0

m−1∑
j=0

(`′j(s))
2 ds = (6m−3)

m−1∑
j=0

(1+4j) ≤ 12m3.

Finally, we get

(36) E‖g̃m − Eg̃m‖2 ≤
3

N
G2(T )

(
12m3 +

4m3

γ2
2

exp (−(12m− 6)γ2)

)
So, we have the two variance bounds.
For the bias term, we have Eθ̃j = θj−`j(T )G(T )−

∫ +∞
T `j(s)g(s)ds. We have G(T ) ≤ G(+∞) =

‖a‖2. Moreover, inequality (32) still holds. Joining variance and bias terms, we obtain (16) and
(17). �

7.2. Proof of Theorem 1. Let us state a preliminary Lemma:

Lemma 3. Let VN =
∑N

i=1(X2
i − 1) where Xi are i.i.d. standard Gaussian variables. Then for

all ε ∈ (0, 1],

P(|VN | ≥ Nε) ≤ 2 exp

(
−Nε

2

8

)
.

Proof of Lemma 3. By Lemma 1 and Inequalities (4.3)-(4.4) in Laurent and Massart (2000),
we have, for any u > 0,

P(|VN | ≥ 2
√
Nu+ 2u) ≤ 2 exp(−u).

Thus, setting u = Nx, we have, for any x > 0, P(|VN | ≥ 2N
√
x + 2Nx) ≤ 2 exp(−Nx). Now

we set Nε = 2N(x+
√
x) and using Birgé and Massart (1998), Lemma 8, Inequality (7.14) with

v =
√

2 and c = 2, we find

P(|VN | ≥ Nε) ≤ 2 exp

(
− Nε2

4(1 + ε)

)
,

and the result follows.�

7.2.1. Case of Laguerre basis. Note that, as G(0) = 0 and h(+∞) = 0, 〈h, g〉 = −〈h′, G〉.
Therefore,

γN,T (h) = ‖h‖2 − 2〈h, g〉 − 2νN,T (h) + 2RT (h)

where νN,T (h) = νN,1(h) + νN,2(h),

(37) νN,1(h) = − 1

N

N∑
i=1

∫ T

0
h′(u)[X2

i (u)−G(u)]du, νN,2(h) =
1

N

N∑
i=1

h(T )(X2
i (T )−G(T )),

and

RT (h) =

∫ +∞

T
h(u)g(u)du.

Therefore,

(38) γN,T (h1)− γN,T (h2) = ‖h1 − g‖2 − ‖h2 − g‖2 − 2νN,T (h1 − h2) + 2RT (h1 − h2).

Using the definition of m̃ = m̃(Lag), we have for all gm ∈ Sm,

γN,T (g̃m̃) + pen(m̃) ≤ γN,T (g̃m) + pen(m),
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where for simplicity pen = pen(Lag). We deduce

‖g̃m̃ − g‖2 ≤ ‖gm − g‖2 + 2νN,T (g̃m̃ − gm)− 2RT (g̃m̃ − gm) + pen(m)− pen(m̃)

Let Bm = {h ∈ Sm, ‖h‖ ≤ 1}. We use that

2|νN,T (g̃m̃ − gm)| ≤ 1

8
‖g̃m̃ − gm‖2 + 8 sup

h∈Bm̃∨m

ν2
N,T (h)

≤ 1

4
(‖g̃m̃ − g‖2 + ‖g − gm‖2) + 8 sup

h∈Bm̃∨m

ν2
N,T (h)

2|RT (g̃m̃ − gm)| ≤ 1

4
(‖g̃m̃ − g‖2 + ‖g − gm‖2) + 8 sup

h∈Bm̃∨m

R2
T (h).

We have suph∈Bm
R2
T (h) ≤

∫ +∞
T g2(u)du so that

E

(
sup

h∈Bm̃∨m

R2
T (h)

)
≤
∫ +∞

T
g2(u)du.

Gathering terms yields

1

2
‖g̃m̃ − g‖2 ≤ 3

2
‖gm − g‖2 + pen(m) + 8

∫ +∞

T
g2(u)du

+8( sup
h∈Bm̃∨m

ν2
N,T (h)− p(Lag)(m, m̃)) + 8p(Lag)(m, m̃)− pen(m̃).

where p(Lag)(m,m′) = p
(Lag)
1 (m,m′) + p

(Lag)
2 (m,m′),

p
(Lag)
1 (m,m′) = 128 log(N)

∫ T

0

G2(u)

u
du
m ∨m′

N
, p

(Lag)
2 (m,m′) = 32G2(T ) log(N)

m ∨m′

N
.

Now we use that 8p(Lag)(m,m′) ≤ pen(m) + pen(m′) for κ ≥ κ(Lag)
0 = 8× 128, and the result

of the following Lemma:

Lemma 4. Under the Assumptions of Theorem 1, for ` = 1, 2,

E

(
sup

h∈Bm̃∨m

ν2
N,`(h)− p(Lag)

` (m, m̃)

)
+

≤ C(Lag)
` (T,N),

where

C
(Lag)
1 (T,N) =

C

N

(
TG2(T )

N
+

∫ T

0

G2(u)

u
du

)
+
C logN

N
TG2(T ), C

(Lag)
2 (T,N) =

C

N
G2(T )

and C is a positive numerical constant.

And we obtain

E(‖g̃m̃ − g‖2) ≤ 3‖gm − g‖2 + 4pen(m) + 16

∫ +∞

T
g2(u)du+ 32(C

(Lag)
1 (T,N) + C

(Lag)
2 (T,N)),

which ends the proof of Theorem 1 in the Laguerre case. �
Proof of Lemma 4. Let us define

ZN (u) =
1

N

N∑
i=1

(
X2
i (u)

G(u)
− 1

)
,
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which is for all u distributed as (χ2(N)−N)/N , and set

AN (u) =

{
Z2
N (u) ≤ 16

log(N)

N

}
.

By Lemma 3, P(AN (u)c) ≤ 2N−2 provided that 16 log(N)/N ≤ 1 i.e. N ≥ 68.

Now we can write νN,1(h) = −
∫ T

0 G(u)h′(u)ZN (u)du and split it

νN,1(h) = −
∫ T

0
G(u)h′(u)ZN (u)1AN (u)du−

∫ T

0
G(u)h′(u)ZN (u)1AN (u)cdu(39)

:= νN,1,1(h) + νN,1,2(h).

Then(
sup

h∈Bm̃∨m

ν2
N,1(h)− p(Lag)

1 (m, m̃)

)
+

≤

(
2 sup
h∈Bm̃∨m

ν2
N,1,1(h)− p(Lag)

1 (m, m̃)

)
+

+2 sup
h∈Bm̃∨m

ν2
N,1,2(h).

With B(u) := G(u)ZN (u)1AN (u), and by using Formula (45), we have

sup
h∈Bm̃∨m

ν2
N,1,1(h) ≤

m̃∨m−1∑
j=0

(∫ T

0
B(u)`′j(u)du

)2

≤ 2

m̃∨m−1∑
j=0

(∫ T

0
B(u)`j(u)du

)2

+ 2

m̃∨m−1∑
j=1

(2j)

(∫ T

0

B(u)√
u
`
(1)
j−1(u)du

)2

≤ 2

∫ T

0
B2(u)du+ 4(m̃ ∨m)

∫ T

0

B2(u)

u
du.

Now, using the definition of AN (u),

sup
h∈Bm̃∨m

ν2
N,1,1(h) ≤ 32G2(T )

T log(N)

N
+ 64

∫ T

0

G2(u)

u
du

(m̃ ∨m) log(N)

N
.

As a consequence

(40) E

[(
2 sup
h∈Bm̃∨m

ν2
N,1,1(h)− p(Lag)

1 (m, m̃)

)
+

]
≤ 64G2(T )

T log(N)

N
.

Similarly, for C(u) := G(u)ZN (u)1AN (u)c , we have

sup
h∈Bm̃∨m

ν2
N,1,2(h) ≤ 2

∫ T

0
C2(u)du+ 4N

∫ T

0

C2(u)

u
du.

Now, by the Rosenthal Inequality (see Hall and Heyde (1980)), E(Z4
N (u)) . N−2 and thus

(41) E[Z2
N (u)1AN (u)c ] ≤ E1/2[Z4

N (u)]P1/2(AN (u)c) . N−2.

As a consequence,

(42) E

(
2 sup
h∈Bm̃∨m

ν2
N,1,2(h)

)
≤ C(

TG2(T )

N2
+

∫ T

0

G2(u)

u
du

1

N
).
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Gathering (40) and (42) implies the result of Lemma 4 for ` = 1 and (B) = (Lag). Now we look
at νN,2(h) and write

sup
h∈Bm̃∨m

ν2
N,2(h) =

(
sup

h∈Bm̃∨m

h2(T )

)
G2(T )Z2

N (T ) ≤
m̃∨m−1∑
j=0

ϕ2
j (T )G2(T )Z2

N (T )

≤ 2(m̃ ∨m)G2(T )Z2
N (T ).

Therefore

sup
h∈Bm̃∨m

ν2
N,2(h)1AN (T ) ≤ 32(m̃ ∨m)G2(T )

log(N)

N

and using (41),

E

(
sup

h∈Bm̃∨m

ν2
N,2(h)1AN (T )c

)
≤ 2NG2(T )E(Z2

N (T )1AN (T )c) .
G2(T )

N
.

Finally

E

[
( sup
h∈Bm̃∨m

ν2
N,2(h)− p(Lag)

2 (m, m̃))+

]
≤ E

[
( sup
h∈Bm̃∨m

ν2
N,2(h)1AN (T ) − p

(Lag)
2 (m, m̃))+

]

+E

(
sup

h∈Bm̃∨m

ν2
N,2(h)1AN (T )c

)

≤ C
G2(T )

N
,

where C is a numerical constant. Thus, we obtain Lemma 4 for ` = 2 and (B) = (Lag).

7.2.2. Case of Trigonometric basis. We proceed analogously. As now RT (h) = 0, we have, with

for simplicity, m̃ = m̃(Trig),

‖g̃m̃ − g‖2 ≤ 3‖gm − g‖2 + 2pen(Trig)(m)

+16( sup
h∈Bm̃∨m

ν2
N,T (h)− p(Trig)(m, m̃)) + 16p(Trig)(m, m̃)− 2pen(Trig)(m̃).

with p(Trig)(m,m′) = p
(Trig)
1 (m,m′) + p

(Trig)
2 (m,m′) and we find

p
(Trig)
1 (m,m′) = 64π2G2(T ) log(N)

(m ∨m′)2

NT
, p

(Trig)
2 (m,m′) = 128G2(T ) log(N)

m ∨m′

NT
.

In the same way as Lemma 4, the following lemma determines p
(Trig)
1 (m,m′), p

(Trig)
2 (m,m′).

Lemma 5. Under the Assumptions of Theorem 1, for ` = 1, 2,

E

(
sup

h∈Bm̃∨m

ν2
N,`(h)− p(Trig)

` (m, m̃)

)
+

≤ C(Trig)
` (T,N),

where

C
(Trig)
` (T,N) =

C

NT
, C

(Trig)
2 (T,N) = C

G2(T )

T

1

N3/2

and C is a positive numerical constant.
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To conclude the proof in the trigonometric basis case, analogously, we use that 8p(Trig)(m,m′) ≤
pen(Trig)(m) + pen(Trig)(m′) for κ ≥ κ(Trig)

0 = 8× 16(8π2 + 1) and obtain

E‖g̃m̃ − g‖2 ≤ 3‖gm − g‖2 + 4pen(Trig)(m)

+16(C
(Trig)
1 (T,N) + C

(Trig)
2 (T,N))

�
Proof of Lemma 5. Using the properties of the derivatives ϕ′j,T (see (33)) and the definition

of AN (u), the bound for ν2
N,1,1(h) now writes

sup
h∈Bm̃∨m

ν2
N,1,1(h) ≤

m̃∨m−1∑
j=0

(∫ T

0
B(u)ϕ′j,T (u)du

)2

≤ 4π2 (m̃ ∨m)2

T 2

∫ T

0
B2(u)du = 4π2 (m̃ ∨m)2

T 2

∫ T

0
G2(u)Z2

N (u)1AN (u)du

≤ 16
logN

N
4π2 (m̃ ∨m)2

T 2
TG2(T ) =

1

2
p

(Trig)
1 (m, m̃).

And, using the definition of M(Trig)
N and (41),

sup
h∈Bm̃∨m

ν2
N,1,2(h) ≤ 4π2 (m̃ ∨m)2

T 2

∫ T

0
C2(u)du = 4π2 (m̃ ∨m)2

T 2

∫ T

0
G2(u)Z2

N (u)1AN (u)cdu

≤ 4π2 N

T 2

∫ T

0
G2(u)du

C

N2
≤ 4π2C

G2(T )

NT
=

1

2
C

(Trig)
1 (N,T ).

The other term is

sup
h∈Bm̃∨m

ν2
N,2(h) = sup

h∈Bm̃∨m

h2(T )G2(T )Z2
N (T )(1AN (T ) + 1AN (T )c)

≤ 16
m̃ ∨m
T

G2(T )
logN

N
+

√
N

T
G2(T )× C

N2

≤ p
(Trig)
2 (m, m̃) + C

(Trig)
2 (N,T ).

This implies Lemma 5. �

7.3. Proof of Theorem 2. The proof follows the same steps as Theorem 1. We only indicate
the changes. Here, we have, proceeding as in Proposition 3:

sup
h∈Bm̃∨m

ν2
N,1,1(h) ≤

m̃∨m−1∑
j=0

(∫ T

0
B(u)`′j(u)du

)2

=

∫
[0,T ]2

m̃∨m−1∑
j=0

`′j(u))B(u)`′j(v)B(v)

 dudv
≤

∫ T

0

m̃∨m−1∑
j=0

(`′j(u)B(u))2

1/2

du


2

≤ 16
logN

N
G2(T )

∫ T

0

m̃∨m−1∑
j=0

(`′j(u))2

1/2

du


2

≤ 16
logN

N
G2(T )(m̃ ∨m)3(12 + 4γ−2

2 ) :=
1

2
p?1(m, m̃).
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Analogously, for the term with C(u), using that the maximal value inM?
N is bounded by N1/3,

sup
h∈Bm̃∨m

ν2
N,1,2(h) ≤ C

G2(T )

N2

∫ T

0

m̃∨m−1∑
j=0

(`′j(u))2

1/2

du


2

≤ CG
2(T )

N
.

Thus,

E

(
sup

h∈Bm̃∨m

ν2
N,1(h)− p?1(m, m̃)

)
+

≤ CG
2(T )

N
.

The study of suph∈Bm̃∨m
ν2
N,1,2(h) is the same as previously and we can set

p?2(m, m̃) = p
(Lag)
2 (m, m̃) ≤ 32

logN

N
G2(T )(m̃ ∨m)3.

Then,

E

(
sup

h∈Bm̃∨m

ν2
N,2(h)− p?2(m, m̃)

)
+

≤ CG
2(T )

N
.

We set p?(m,m′) = p?1(m,m′) + p?2(m,m′) and check that 8p?(m,m′) ≤ pen?(m) + pen?(m′) for

κ ≥ κ?0 = 8× (16(12 + 4γ−2
2 ) + 32).

Lastly, we have from the proof of Inequality (17) in Proposition 3 that, for T ≥ 6m − 1, we
have

sup
h∈Sm,‖h‖≤1

|RT (h)| ≤ 2‖a‖2m
3/2

γ2
exp (−(6m− 3)γ2).

Therefore, suph∈SMN
,‖h‖≤1R

2
T (h) . 1

N . �

8. Appendix

For this paragraph, we refer to Abramowitz and Stegun (1964) and Comte and Genon-Catalot
(2018).

The Laguerre polynomial with index δ, δ > −1, and degree k is given by

L
(δ)
k (x) =

1

k!
exx−δ

dk

dxk

(
xδ+ke−x

)
=

k∑
j=0

(
k + δ

k − j

)
(−x)j

j!
.

The following holds:

(43)
(
L

(δ)
k (x)

)′
= −L(δ+1)

k−1 (x), for k ≥ 1, and

∫ +∞

0

(
L

(δ)
k (x)

)2
xδe−xdx =

Γ(k + α+ 1)

k!
.

We consider the Laguerre functions with index δ, given by

(44) `
(δ)
k (x) = 2(δ+1)/2

(
k!

Γ(k + δ + 1)

)1/2

L
(δ)
k (2x)e−xxδ/2.

The family (`
(δ)
k )k≥0 is an orthonormal basis of L2(R+).

For δ = 0, we set L
(0)
k = Lk, ϕ

(0)
k = `k. Using (43), we obtain for j ≥ 1:

(45) `′j(x) = −`j(x)−
√

2j

x
`
(1)
j−1(x).
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The following properties hold for the `j ’s. For all x ≥ 0,

|`j(x)| ≤
√

2,

∫ +∞

0
`j(x)dx =

√
2(−1)j , j ≥ 0,

(46) `′0(x) = −`0(x), `′j(x) = −`j(x)− 2

j−1∑
k=0

`k(x), j ≥ 1.

Then integrating from x to +∞ formula (46) for j ≥ 1, and setting L̃j(x) =
∫ +∞
x `j(u)du,

we obtain `j = L̃j + 2
∑j−1

k=0 L̃k. Thus, L̃j = `j − `j−1 − L̃j−1. Using that L̃0 = `0, we obtain

by elementary induction L̃j = `j + 2
∑j

k=1(−1)k`j−k. Moreover, setting Lj(x) =
∫ x

0 `j(u)du, we
have

(47) L0(x) = `0(0)− `0(x), Lj(x) = −Lj−1(x)− `j(x) + `j−1(x), j ≥ 1.

Moreover, the following asymptotic formulae can be found in Askey and Wainger (1965). For
ν = 4k + 2, and k large enough

|`k(x/2)| ≤ C



a) 1 if 0 ≤ x ≤ 1/ν

b) (xν)−1/4 if 1/ν ≤ x ≤ ν/2
c) ν−1/4(ν − x)−1/4 if ν/2 ≤ x ≤ ν − ν1/3

d) ν−1/3 if ν − ν1/3 ≤ x ≤ ν + ν1/3

e) ν−1/4(x− ν)−1/4e−γ1ν
−1/2(x−ν)3/2 if ν + ν1/3 ≤ x ≤ 3ν/2

f) e−γ2x if x ≥ 3ν/2

where γ1 and γ2 are positive and fixed constants.
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