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On a Phase Transition of Regret in Linear Quadratic
Control: The Memoryless Case

Ingvar Ziemann, Henrik Sandberg

Abstract—We consider an idealized version of adaptive control
of a multiple input multiple output (MIMO) system without
state. We demonstrate how rank deficient Fisher information
in this simple memoryless problem leads to the impossibility of
logarithmic rates of regret. Our analysis rests on a version of
the Cramér-Rao inequality that takes into account possible ill-
conditioning of Fisher information and a pertubation result on
the corresponding singular subspaces. This is used to define a
sufficient condition, which we term uniformativeness, for regret
to be at least order square root in the samples.

I. INTRODUCTION

Recently, there has been a revitilization of interest in the
adaptive linear quadratic regulator (LQR) as it serves as good
theoretically tractable example of reinforcement learning in
continuous state and action spaces, [1]-[2]. Much progress has
been made toward analyzing the statistical convergence rate,
the regret incurred, of adaptive algorithms. Several works over
the past decade, [3], [4] and [5], have been able to prove
upper bounds on the regret at a rate of approximately

√
T

in the time horizon. However, in some special cases, [6],
[7] [8] and [9], the authors have actually been able to prove
regret to scale at a rate of log T , ensuring considerably faster
convergence. In particular, [7] and [8] show that, suitably
modified, the Åström-Wittenmark self-tuning regulator [10]
for SISO tracking problems converges at the rate log T . Given
these two very different rates, it is thus natural to ask whether
regret undergoes a phase transition in its asymptotic scaling.
Here, we consider a simplified, and memoryless, version of
the linear quadratic problem to verify that such a phenomenon
indeed occurs. The point of such an analysis, as presented here,
is to isolate the essence of this phase transition. With this in
mind, Our goal is to identify and give conditions for when the
lower bound changes from order log T to

√
T .

a) Contribution: As hinted above, the main contribution
of this note is to establish a sufficient condition, uninforma-
tiveness, for regret to necessarily scale on the order

√
T , see

Definition IV.4 and Theorem V.2. We will see that this phase
transition depends both on the rank of the optimal linear feed-
forward matrix and on the excitation of the reference signal.
In the uninformative regime, there is an asymptotically non-
neglible trade-off between exploration and exploitation. These
results partially answer an unresolved question in the literature
[11], [12], as to precisely when logarithmic rates are attainable
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for linear quadratic problems by showing when they are not.
On the theoretical side, the method of analysis to provide lower
bounds here is novel and rests on comparing the Fisher infor-
mation of any policy to the Fisher information of the optimal
policy having knowledge of the system’s parameters using
singular subspace perturbation theory. This clarifies some
connections between regret and parameter estimation ([11],
[13]) via the spectral properties of the Fisher information. We
believe this proof strategy to potentially be of general interest.
Moreover, we are among the first to record a

√
T lower bound

for linear quadratic adaptive control problems.
b) Related Work: After the initial submission of this

manuscript the authors became aware of the results by [14]
and [15] which independently arrive at

√
T lower bounds for

similar problems. It is particularly interesting to compare our
work to [14] which, as our work, contains an instance specific
bound. There, it is shown that regret for an unknown LQR
scales as dim(state) × dim(inputs)2 ×

√
T . By contrast, we

consider a memoryless tracking problem where dim(state) = 0
and the above results are not applicable. In particular, when
there is a reference signal to track, we show that regret can
be of order

√
T even if the dimension of the state is zero.

We also remark that our proof is very different from those
in [14] and [15] and has the appealing property of generating
lower bounds directly dependent on an information quantity,
the Fisher information.

c) Notation: We use � (and �) for (strict) inequality in
the matrix positive definite partial order. By ‖·‖ we denote the
standard 2-norm and by ‖·‖∞ the matrix operator norm. More-
over, ⊗, vec and † are used to denote the Kronecker product,
vectorization (mapping a matrix into a column vector), and
the Moore-Penrose pseudoinverse, respectively. We use ∇ for
gradient or Jacobian. All vectors, including gradients, are in
this paper represented as column vectors. For two functions
f, g, lim sup |f(t)/g(t)| = 0, for some norm | · |, is written as
f = o(g). If instead lim sup |f(t)/g(t)| ≤ C,C > 0, we write
f = O(g). Asymptotic lower bounds are written as f = Ω(g)
which means that lim inf f(t)/g(t) ≥ c, c > 0. In general,
these limits will be for large times, usually indexed by t or
T . For stochastic quantities, we also use the notation o,O, in
which case it corresponds to convergence in probability. We
write E for the expectation operator.

II. PROBLEM FORMULATION

We consider the memoryless adaptive control problem{
min(ut)

∑T
t=1 E‖rt − yt‖2 + λE‖ut‖2,

s. t. yt = But + wt,
(1)

where yt, rt, wt ∈ Rn, ut ∈ Rm and λ ≥ 0. B ∈ Rn×m
is assumed unknown in advance. Moreover, we assume that



a unique solution to (1) of the form ut = Krt exists, in
which case K = (B>B + λI)†B> ∈ Rm×n. Our goal is
to investigate whether, depending on the dimensionality of B,
there may be phase transition in the regret – learning-based
performance – any algorithm can attain. We are able to prove
that there are two regimes for regret (defined below): one in
which regret scales like log T and one in which it scales like√
T . To this end, our Theorem V.2 gives regret lower bounds

for (1) and a sufficient condition for the
√
T -scaling limit to

occur. This is then contrasted with Theorem V.4 which gives
a logarithmic lower bound valid in both regimes.

To qualify this, some further assumptions are necessary. We
suppose B has rank at least 1. We write K = K(B, λ) ∈
Rm×n for the optimal linear law and its Jacobian is G =
∇B vecK(B, λ). The reference signal, rt, is assumed to be
known in advance and we will make a standard persistence
of excitation assumption, namely that

∑t
k=1 rkr

>
k � tcI +

o(t) and that ‖rt‖ > c′ for some c, c′ > 0 and sufficiently
large t. The noise wt ∈ Rn is assumed to be mean zero,
indepedent and identically distributed, and have density q(w),
which admits Fisher information1. The control ut ∈ Rm is
constrained to depend on only past inputs and outputs and is
in particular oblivious of the parameter B – it is adaptive. To
compare adaptive laws to the optimal law, one introduces the
regret.

Definition II.1. The regret of ut, RT = RT ({ut};B) is

RT =

T∑
t=1

E‖rt −But‖2 −
T∑
t=1

E‖rt −BKrt‖2

+ λE

T∑
t=1

‖ut‖2 − λE
T∑
t=1

‖Krt‖2. (2)

This measures the cumulative difference between the cost
incurred by the adaptive law (ut) and the optimal law Krt
which uses knowledge of B.

Example II.2. Consider a scalar system yt = but + wt with
variance 1 of wt. Suppose that rt is sufficiently excited, say
rt = 1 for all time and that λ = 0. This case is then covered
by [7] and [8] (by setting all lag parameters of y to zero),
where it is shown that

RT = O(log T )

for a policy based on least squares and certainty equivalence.

III. REGRET DECOMPOSITION

The following result is key, as it directly relates regret to an
estimation error.

Lemma III.1. For any linear policy ut = K̂trt, we have

RT =

T∑
t=1

E tr
[(

(I⊗rtr>t )+λ(I⊗B)>(I⊗rtr>t )(I⊗B)
)

× vec(K̂t −K)(vec(K̂t −K))>
]
. (3)

1The density of wt needs to satisfy certain absolute continuity and mean
square differentiability conditions. We prefer not to go into these details and
simply assume existence, see Definition IV.1 and consult [16] for details.

Proof. Setting ut = K̂trt, we see that K also is for each t the
minimizer of

‖rt −BK̂trt‖2 − ‖rt −BKrt‖2 + λ
(
‖K̂trt‖2 − ‖Krt‖2

)
.

Vectorizing, we observe that this is a quadratic expression
in vec K̂t, minimized at vecK, where its value is zero. A
straightforward computation shows that the Hessian in vector-
ized variables is

2(I ⊗ rtr>t ) + 2λ(I ⊗B)>(I ⊗ rtr>t )(I ⊗B)

Since there are no higher order terms, Taylor expansion around
the minimum K gives

‖rt −BK̂trt‖2 −‖rt −BKrt‖2 + λ
(
‖K̂trt‖2 − ‖Krt‖2

)
= tr

[(
(I ⊗ rtr>t ) + λ(I ⊗B)>(I ⊗ rtr>t )(I ⊗B)

)
× vec(K̂t −K)(vec(K̂t −K))>

]
.

The result follows by summation and expectation.

This shows that regret is linear in the estimation error,
vec(K̂t−K)(vec(K̂t−K))>. To relate this to any particular
policy, we make the following definitions.

Definition III.2. The control sequence (ut) is α-fast conver-
gent if for all B, ut = Krt + vt with

√
E tr vtv>t = o(t−α).

Remark III.3. Since
√
E tr vtv>t = o(t−α), Chebyshev’s

inequality implies that vt = o(t−α) in probability.

Definition III.4. An α-fast convergent policy ut = Krt + vt
is called β-unbiased if Evt = o(t−β).

In particular, α-fast convergence prohibits constant strate-
gies such as selecting K which is optimal for one parametriza-
tion but sub-optimal for others. The reason for introducing β-
unbiasedness is similar. Observe also that trivially an α-fast
convergent policy is α-unbiased.

Lemma III.5. Any α-fast convergent policy can be written as
ut = K̂trt, for some sequence of matrices K̂t = K + o(t−α).

Proof. Since by assumption ‖rt‖ > c′ uniformly in time for
large t and some constant c′, there exists a linear transforma-
tion Vt such that vt = Vtrt and E‖Vt‖ = o(t−α)/‖rt‖ =
o(t−α). Take K̂t = K + Vt.

Lemma III.5 shows that for α-fast convergent policies, it
suffices to consider linear representations. In the subsequent
analysis, we will also need some asymptotic control of the
gradient of these linear representations, with respect to the
parameter, B.

Definition III.6. An α-fast convergent policy, ut = K̂trt is
regular if ∇BE vec K̂t = ∇B vecK + o(1).

IV. INFORMATION

As indicated by the regret decomposition, Lemma III.1, our
regret analysis will essentially be estimation-theoretic. The
following notion is key in the Cramér-Rao bound we will use.



Definition IV.1. For a parametrized family of probability
densities {pθ, θ ∈ Θ}, Θ ⊂ Rd, Fisher information Iθ ∈ Rd×d
is

Iθ =

∫
∇θ log pθ(x) [∇θ log pθ(x)]

>
pθ(x)dx

whenever the integral exists.

Since the density, q(w), of the noise in (1) was assumed
sufficiently regular, for the parameter θ = B, the parametrized
family of densities induced by yk = Buk + wk, k =
1, . . . , t admits Fisher information, It,B ∈ Rmn×mn. Let
J =

∫
q(w)[∇wq(w)][∇wq(w)]>dw, then one has that

It,B =

t∑
k=1

uk ⊗ J ⊗ u>k , (4)

by the chain rule for Fisher information and change of
variables. We note in passing that J is often called Fisher
information about the location parameter of q. If in addition
ut = Krt + vt is α-fast convergent (4) becomes

It,B =

t∑
k=1

E
[
Krk ⊗ J ⊗ r>k K>

]
︸ ︷︷ ︸

I∗t,B

+

t∑
k=1

Evk ⊗ J ⊗ v>k

+

t∑
k=1

E
[
vk ⊗ J ⊗ r>k K> +Krk ⊗ J ⊗ v>k

]
. (5)

where vk = o(k−α) due to α-fast convergence. Above, one
recognizes I∗t,B as the Fisher information generated by the
optimal trajectory, where vk ≡ 0 and the optimal law is
always applied. Observe that unless K has rank n, I∗t,B , is
degenerate for all t. A degenerate Fisher information has bleak
implications for model identifiability. For instance, if It,K is
degenerate, the analysis of [17] shows that no finite variance
estimator with a given bias exists except for under very
special circumstances (see also Theorem IV.2). Fortunately,
the remainder term in (5) may be chosen to complete rank-
deficiency. However, all is not won, since the requirement that
ut is α-fast convergence entails that this term is small.

a) A Multi-Scale Cramér-Rao Bound: We now state the
general Cramér-Rao analysis of [17].

Theorem IV.2 (cf. [17]). Let {pθ, θ ∈ Θ ⊂ Rd}, be a family of
densities with Fisher information Iθ. Suppose that α = α(θ) ∈
Rd′ is a vector-valued function of θ and let α̂ be any estimate
of α. Let Iθ have singular value decomposition

Iθ = ZSZ> =
[
Z1 Z2

] [S1 0
0 S2

] [
Z>1
Z>2

]
.

Suppose A = ∇θEα̂ exists and set
[
A1 A2

]
= A

[
Z1 Z2

]
.

Then one has that

E[(α̂− α)(α̂− α)>] � A1S
†
1A
>
1 +A2S

†
2A
>
2 . (6)

Moreover, if A 6= AIθI
†
θ , the covariance is infinite in the sense

that trE[(α̂− α)(α̂− α)>] ≥ σ, ∀σ ∈ R.

Proof. The proof of this result is essentially the same as in
[17], and is thus omitted for brevity.

This is the Cramér-Rao inequality split into two blocks. The
idea in the sequel will be to use that the second block of an
α-fast convergent policy is very near rank deficient whenever
I∗t,B in (5) loses rank. This also relates to the reason we prefer
to state the bound in terms of pseudo-inverses; we cannot a
priori guarantee that the second block is non-zero.

For our model (1), the following consequence is immediate
and is just the above Theorem restated for our problem.

Corollary IV.3. Let K̂t be any estimator of the optimal policy
K of (1) such that H = ∇BE vec K̂t(B, λ) ∈ Rnm×nm exists.
Decompose It,B (5) spectrally and define H1, H2 via

It,B = UΛU> =
[
U1 U2

] [Λ1 0
0 Λ2

] [
U>1
U>2

]
(7)[

H1 H2

]
= H

[
U1 U2

]
. (8)

Then

E vec(K̂t −K)(vec(K̂t −K))>

� H1Λ†1H
>
1 +H2Λ†2H

>
2 . (9)

We let the block sizes in (7) correspond to those in (11) and
Λ2 contains the smallest singular values. The notation (7)-(8)
is fixed throughout the rest of the paper.

b) Uninformative Optimal Policies: The regret decompo-
sition (3) shows that regret depends fundamentally on

tr
((
I ⊗ rtr>t

)
E vec(K̂t −K)(vec(K̂t −K))>

)
.

Since the estimation error is lower-bounded by (9), degeneracy
of Fisher information should be a factor in regret if for the
small block, say Λ2,

tr
((
I ⊗ rtr>t

)
H2Λ†2H

>
2

)
6= 0. (10)

Now, the Fisher-information, It,B , of an α-fast convergent
policy one imagines is close to that of the optimal policy,
I∗t,B . To that end, apply the spectral decomposition

I∗t,B = OΛ′O> =
[
O1 O2

] [Λ′1 0
0 0

] [
O>1
O>2

]
(11)

where the columns of O2 span ker I∗t,B . This relates to (7)
where U2 spans the smallest singular space of dim ker I∗t,B .
We expect regret to scale differently in the following regime.

Definition IV.4. The pair (rt, B) is said to be γ-uninformative
if G 6= GI∗t,B(I∗t,B)† and

tr
((
I ⊗ rtr>t

)
G2G

>
2

)
≥ γ (12)

for γ > 0, G2 = GO2 where G = ∇B vecK(B, λ), I∗t,B is
given in (5), and O2 is defined through (11).

This definition is meaningful when I∗t,B of (5) does not
have full rank (for otherwise G = GI∗t,B(I∗t,B)†) and is
best understood as a quantitative observability-type condition;
the kernel of the optimal policy’s information matrix should
be visible through the cost (regret). Note also the implicit
dependence on B, via G2 which depends both on the subspace
ker I∗t,B and on the optimal policy K. Geometrically, γ-
uninformativeness means that ker I∗t,B (5), which is spanned by



O2 and G2 = GO2, is γ-separated from being perpendicular
to the reference signal’s power, rtr>t , in the geometry of
symmetric matrices. A rank drop in I∗t,B of (5) can occur
when rankK = rankB < m. Note here also that [6]
establishes logarithmic rates precisely when B is invertible,
i.e. of full rank. We now give an example illustrating γ-
uninformativeness.

Example IV.5. Suppose yt, rt, wt ∈ R and u ∈ Rm so that
yt is given by yt = b>ut + wt with b ∈ Rm and b given by
the first standard Euclidean basis vector

b> =
[
1 0 . . . 0

]
.

If furthermore λ = 0, the optimal policy can be expressed as
ut = brt. Thus in the notation of (11)-(12), G = ∇bb = I .

Let us also assume that wt is Gaussian with variance 1
and suppose rt = 1 for all t. Substitution into (5) shows that
Fisher information of the optimal policy is

I∗t,b> =

t∑
k=1

bb>

which has nullspace ker b> and clearly G 6= GI∗t,B(I∗t,B)†.
This also means that O>2 of (11)-(12) is given by

O2 =

[
01×m−1

Im−1×m−1

]
.

Thus, in this case, since G2 = ∇bbO2 = IO2 = O2, wherefore
we have that

tr
((
I ⊗ rtr>t

)
G2G

>
2

)
= trO2O

>
2 = m− 1.

That is, the pair (1, b>) is (m− 1)-uninformative.

c) Spectral Information Comparison: The main reason
for using G2 (11)-(12) instead of H2 (7)-(8), in Definition IV.4
is that we wish to study how the parametrization of (1)
impacts regret. If we had defined uninformativeness in terms
of the H2, which depends on the choice of algorithm through
H = ∇B vec K̂t(B, λ), it would be hard to claim that a phase
transition occurs through the parametrization and our lower
bound would not be algorithm indepedent. Of course, this
entails that we need to control the gap between the system
quantity (12) and the algorithm-dependent quantity (10). To
this end, we perform a perturbation analysis of the subspace
spanned by U2 (spans ker I∗t,B), to relate it to O2 (spans the
subspace of the dim ker I∗t,B smallest singular values of It,B).

Lemma IV.6. Let H2 be as in (8) and G2 be as in (11)-(12).
Then for any regular and α-fast convergent policy K̂t, α > 0,
one has that

H2Pt = G2 + o(1)

for some sequence of orthonormal matrices (Pt).

Proof. The proof relies on Wedin’s sin Θ Theorem [18]
(quoted in the appendix) which describes the perturbation the-
ory of range and nullspace in the singular value decomposition.
By (5) it follows that

1

t
It,B =

1

t
I∗t,B + o(t−2α log t)

using α-fast convergence2. Moreover, it is clear that rescaling
Fisher informations does not change the singular value de-
composition except for rescaled singular values. This gives
control of the residuals (1.8) in [18] and for sufficiently
large t the separation conditions there are satisfied since
(1/t)Λ2 = o(1). We recall also from Lemma 1 of [19] that
the sin Θ Theorem provides an upper bound on the distance
d(U2, O2) = minP ‖U2P − O2‖∞, where P is optimized
over the orthogonal group. Apply now Wedin’s Theorem in
combination with Lemma 1 of [19] to conclude that

U2Pt = O2 + o(t−2α)

where Pt optimizes d(U2, O2). Finally, by regularity H =
G+ o(1), and therefore H2Pt → G2.

Remark IV.7. The matrix Pt is necessary to account for the
possibly arbitrary ordering of the singular vectors correspond-
ing to ker I∗t,B . It exists by continuity and compactness of the
orthogonal group in the standard matrix topology.

V. FUNDAMENTAL LIMITATIONS

We need one more lemma which relates regret to the spectral
properties of It,B and I∗t,B .

Lemma V.1. For any γ-uninformative pair (rt, B), and regu-
lar and α-fast convergent policy K̂t, α > 0, with Λ2 as in (7)
and H2 as in (8), one has that

tr
((
I ⊗ rtr>t

)
H2Λ†2H

>
2

)
≥ γσmin(Λ†2)× (1 + o(1)).

Proof. The trace cyclic property and Lemma IV.6 yields

tr
((
I ⊗ rtr>t

)
H2H

>
2

)
= tr

((
I ⊗ rtr>t

)
H2PtP

>
t H

>
2

)
= tr

(
P>t H

>
2

(
I ⊗ rtr>t

)
H2Pt

)
= tr

(
G>2

(
I ⊗ rtr>t

)
G2

)
+ o(1)

using that Pt from Lemma IV.6 is orthonormal and where G2

is as in (11)-(12). Multiplication by Λ†2 � 0 rescales the bound
by σmin(Λ†2).

Lemma V.1 is used together with the second part of the
Cramér-Rao bound, Theorem IV.2. Either σmin(Λ†2) is non-
zero, or the policy has infinite variance. In either case, we will
be able to establish our regret bound. We are now in position
to state our main result.

Theorem V.2. Consider the model (1) and suppose that
(rt, B) is γ-uninformative for each t in a sequence of subsets
τT ⊂ N, τT ⊂ {1, . . . , T} with |τT | > cT , for some γ > 0
and c ∈ (0, 1). Then any regular α-fast convergent policy, with
α > 0, which is (1/2)-unbiased satisfies the following regret
lower bound

RT = Ω(
√
T ). (13)

2The appearance of the logarithmic factor is due to the case α = 1/2, since∫
t−1 ∼ log t 6= O(1).



More generally, any α-fast convergent policy (not necessarily
(1/2)-unbiased) satisfies

RT = Ω(max(Tα, T 1−2α) = Ω(T 1/3)).

Remark V.3. In our proof, the idea behind (1/2)-
unbiasedness is to prevent super-efficiency of the policy;
following our analysis α-fast convergence is not sufficient to
guarantee that the policy K̂t does not perform better at certain
points B in parameter space. The second part of the Theorem
shows that this can be relaxed somewhat (but at some cost).

Proof. According to Lemma III.5 we may restrict our attention
to linear policies. Let Λ2 be as in (7) and to emphasize its time-
dependence, we now write Λ2 = Λ2(t). Let also H2 be as in
(8). Combining the results that we have established this far
offers

RT ≥
T∑
t=1

E tr
[(
I⊗ rtr>t

)
vec(K̂t−K)(vec(K̂t−K))>

]
≥

T∑
t=1

[
tr
((
I ⊗ rtr>t

)
H2Λ†2(t)H>2

)]
≥
bcTc∑
j=1

[
γσmin(Λ†2(tj))(1 + o(1))

]
. (14)

This merits some explanation: The first inequality in (14)
above is obtained by dropping the part pertaining to B, in
(3). The second inequality is Corollary IV.3 to the Cramér-
Rao bound, Theorem IV.2. In the third inequality, we use the
assumption that the model is uninformative for a sequence
of sets τT and thus also for a subsequence {tj} of time
{t}. We then apply Lemma V.1 discarding all terms which
are not in some set τT . Fourth, we observe that the length
of this subsequence by assumption is proportional to T , i.e.
cardinality greater than bcT c for some c ∈ (0, 1).

Now, we may assume that σmin(Λ2(tj)) > 0 for all tj of
this subsequence, for otherwise we may use the condition G 6=
GI∗t,B(I∗t,B)† of Definition IV.4. Since H = G + o(1) and
It,B/t = I∗t,B/t+o(1) the second part of Theorem IV.2 would
in this case imply infinite variance, which contradicts α-fast
convergence.

The idea of the rest of the proof is to balance the conver-
gence rate of the policy with the necessary exploration for
large Fisher information. Fix α, α′ > 0. If the policy is not
α-fast convergent (so that it only is α′-fast convergent, for
α′ < α), one has that

T∑
t=1

tr

(I ⊗ rtr>t )E

vec(K̂t −K)(vec(K̂t −K))>︸ ︷︷ ︸
Ω(t−2α)




= Ω(T 1−2α). (15)

Hence, unless the policy is (1/4)-fast convergent (i.e. α ≥
1/4), we have R(T ) = Ω(

√
T ).

We will now balance this term with smallest singu-
lar value of Fisher information. Using the fact that the
policy is assumed (1/2)-unbiased, it clear from (5) that

σmax(Λ2(t)) = o(t1−2α) + o(t−1/2). To see this, note that
the mixed term (mixed in vt,Krt) of (5) has contribution
at most o(t−1/2) by the unbiasedness assumption and that
the term quadratic in vt has contribution o(t−2α). Hence
σmin(Λ†2(t)) = Ω(min(t2α−1, t−1/2)). From this, we gather
that

∑dcTe
j=1

[
γσmin(Λ†2(tj))(1 + o(1))

]
= Ω(min(

√
T , T 2α)).

Balancing this with Ω(T 1−2α) in (15) by setting α = 1/4
finishes the proof of the first part of the theorem.

If we drop the unbiasedness assumption, we may make
the same analysis as above, but the mixed term in (5) may
dominate and instead be on the order of magnitude o(t−α)
(instead of o(t−1/2)). Mutatis mutandis, one arrives at a lower
bound Ω(Tα), which can be balanced with Ω(T 1−2α) at
α = 1/3, yielding the result.

Let us now put Theorem V.2 into perspective by comparing
with what kind of lower bound we can prove if Fisher
information has full rank.

Theorem V.4. Suppose that σmin(I∗t,B) ≥ δt + o(t), δ > 0
and assume the additional regularity condition σminH =
σmin∇BE vec K̂t(B) = Ω(1). Then for any α > 0 and any
regular α-fast convergent policy, (1) satisfies

RT = Ω(log T ).

In this regime, there is only very little trade-off between
exploration and exploitation. Essentially, an optimal policy
which has full rank, and thus full rank Fisher information,
will already excite all directions of B and so there is little to
be gained by adding extra excitation.

Proof. Write, using (3), and the Cramér-Rao bound, Theo-
rem IV.2, with the second block of dimension zero,

RT ≥
T∑
t=1

E tr
[(

(I⊗rtr>t )
)

vec(K̂t−K)(vec(K̂t−K))>
]

≥
T∑
t=1

E tr
[(
I ⊗ rtr>t

)
HI−1

t,BH
>︸ ︷︷ ︸

=Ω(δ/(t+o(t))

]
.

The result is now immediate since
∑T
t=1 δ/(t + o(t)) scales

like log T .

Theorems V.2 and V.4 together provide strong evidence that
a phase transition occurs. We now return to Example II.2 to
understand why logarithmic rates are feasible in [8].

Example V.5. Let us revisit the scalar system yt = but +wt.
Here Fisher information is given by I∗t,b =

∑t
k=1 r

2
kb

2 = tb2,
for rt = 1, which, in particular, has no nullspace. Hence the
optimal policy is not uninformative for any constant and the
singular value condition of Theorem V.4 is satisfied. Indeed,
the lower bound Ω(log T ) presented above matches (in order)
the upper bound due to [8] discussed in Example II.2.

VI. DISCUSSION

Our analysis here is similar spirit to [13]. The largest
difference is that we take a closer look at the Cramér-Rao
bound when the information matrix is nearly degenerate. In



this regime learning becomes difficult. Similarly, the proof
strategy is here also based on comparing the information
“collected” by any algorithm and that of the optimal algorithm.
However, degeneracy makes this comparison more difficult and
we need to resort to singular space perturbation theory, [18].
It is this difference that allows us to demonstrate the

√
T -rate.

Using this, we show that if the optimal policy to (1) gives
degenerate information in a certain sense, then regret must
be super-logarithmic. In this regime, one is forced to intro-
duce supplementary excitation beyond the randomness already
present in the algorithm. It is also interesting to note that
the lower bound strongly suggests that a certainty equivalent
controller perturbed by noise with full rank covariance of order
1/
√
t is a good idea since this corresponds closely to the case

for which the lower bound is optimized to Ω(
√
T ). Indeed,

this was the strategy pursued by [11] attaining regret of order√
T for the full LQR.
We also wish to mention that the concept of α-fast con-

vergence is much inspired by the notion of uniformly fast
convergence for the related bandit problems, see [20] and [21].
It is also interesting to note that for certain bandit problems, the
lower bound is also order

√
T , [22]. See [23] for an overview

of bandits.
Directions for Future Work: It would be very desirable to

extend the present analysis to dynamic models such as LQR.
On the one hand, such extension could provide a Fisher infor-
mation point of view on the LQR lower bound of [14]. On the
other hand, this could help describe necessary and sufficient
side information for logarithmic regret, [11]. Such situations
can be covered by our method by adapting the parametrization
of the problem which would result in a different (constrained)
Fisher information. To this end, [12] shows that under an
identifiability condition, logarithmic regret is attainable for
LQR and it would be very interesting to compare this notion
to uninformativeness. It would also be interesting to relax or
replace the assumption of (1/2)-unbiasedness in Theorem V.2
for the full Ω(

√
T )-lower bound. Another potential direction

is to take a more directly information-theoretic route toward
lower bounds as in [24] and as is traditional for bandits [20].
This was recently done for system identification in [25].
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[23] T. Lattimore and C. Szepesvári, “Bandit algorithms,” preprint,
2018.

[24] M. Raginsky, “Divergence-based characterization of funda-
mental limitations of adaptive dynamical systems,” in 2010
48th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), IEEE, 2010, pp. 107–114.

[25] Y. Jedra and A. Proutiere, “Sample complexity lower bounds
for linear system identification,” 2019 IEEE Conference on
Decision and Control (CDC), 2019.

APPENDIX

We use Wedin’s sin Θ Theorem, [18], [19]:
Consider matrices M and M̃ = M +T for some perturba-

tion T , with singular value decompositions M = V1Γ1W
>
1 +

V2Γ2W
>
2 , M̃ = Ṽ1Γ̃1W̃

>
1 + Ṽ2Γ̃2W̃

>
2 . If for δ > 0, η ≥ 0,

σmin(Γ̃1) ≥ η + δ and σmax(Γ2) ≤ η then

max
P
‖Ṽ2P − V2‖∞ = O(‖T‖∞)

where the maximization is over the orthogonal group.
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