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On a Phase Transition of Regret in Linear Quadratic Control:
The Memoryless Case

Ingvar Ziemann, Henrik Sandberg

Abstract— We consider an idealized version of adaptive control
of a MIMO system without state. We demonstrate how rank defi-
cient Fisher information in this simple memoryless problem leads
to the impossibility of logarithmic rates of regret. This speaks to
an open issue concerning the attainability of logarithmic regret
rates in linear quadratic adaptive control. Our analysis rests on
a version of the Cramér-Rao inequality that takes into account
possible ill-conditioning of Fisher information and a pertubation
result on the corresponding singular subspaces. This is used to
define a sufficient condition, which we term uniformativeness,
for regret to be at least order square root in the samples.

I. INTRODUCTION

Recently, there has been a revitilization of interest in the
adaptive linear quadratic regulator (LQR) as it serves as good
theoretically tractable example of reinforcement learning in
continuous state and action spaces, [1]. Much progress has
been made toward analyzing the statistical convergence rate,
the regret incurred, of adaptive algorithms. Several works over
the past decade, [2], [3] and [4], have been able to prove
upper bounds on the regret at a rate of approximately

√
T

in the time horizon. However, in some special cases, [5],
[6] [7] and [8], the authors have actually been able to prove
regret to scale at a rate of log T , ensuring considerably faster
convergence. In particular, [6] and [7] show that, suitably
modified, the Åström-Wittenmark self-tuning regulator [9] for
SISO tracking problems converges at the rate log T . Given
these two very different rates, it is thus natural to ask whether
regret undergoes a phase transition in its asymptotic scaling.
Here, we consider a simplified, and memoryless, version of the
linear quadratic problem to verify that such a phenomenon
indeed occurs. The point of such an analysis, as presented
here, is to isolate the essence of this phase transition. With
this in mind, Our goal is to identify and give conditions for
when the lower bound changes from order log T to

√
T .

A. Contribution

As hinted above, the main contribution of this note is to
establish a sufficient condition, uninformativeness, for regret
to necessarily scale on the order

√
T , Definition 4.4 and

Theorem 5.2. We will see that this phase transition depends
both on the rank of the optimal linear feedback matrix and
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on the excitation of the reference signal. In the uninforma-
tive regime, there is an asymptotically non-neglible trade-off
between exploration and exploitation. These results partially
answer an unresolved question in the literature [10], [11], as
to precisely when logarithmic rates are attainable for linear
quadratic problems by showing when they are not. On the
theoretical side, the method of analysis to provide lower
bounds here is novel and rests on comparing the Fisher
information of any policy to the Fisher information of the
optimal policy having knowledge of the system’s parameters.
This clarifies some connections between regret and parameter
estimation ([10], [12]) via the spectral properties of the
Fisher information (matrix). We believe this proof strategy to
potentially be of general interest. Moreover, we are among the
first to record a

√
T lower bound for linear quadratic adaptive

control problems.

B. Recent Related Work

Indeed, we were only after the initial submission of this
manuscript made aware of the results by [13] and [14] which
independently arrive at

√
T lower bounds for similar problems.

It is particularly interesting to compare our work to [13] which,
as our work, contains an instance specific bound. There, it is
shown that regret for an unknown LQR scales as dim(state)×
dim(inputs)2 ×

√
T . By contrast, we consider a memoryless

tracking problem where dim(state) = 0 and the above results
are not applicable. In particular, when there is a reference
signal to track, we show that regret can be of order

√
T even

if the dimension of the state is zero. We also remark that our
proof is very different from those in [13] and [14] and has
the appealing property of generating lower bounds directly
depending on an Information quantity, Fisher information.

C. Notation

We use � (and �) for (strict) inequality in the matrix
positive definite partial order. By ‖ · ‖ we denote the standard
2-norm and by ‖ · ‖∞ the matrix operator norm. Moreover,
⊗, vec and † are used to denote the Kroenecker product,
vectorization (mapping a matrix into a column vector), and
Moore-penrose pseudoinverse, respectively. For two functions
f, g, lim sup |f(t)/g(t)| = 0, for some norm | · |, is written as
f = o(g). If instead lim sup |f(t)/g(t)| ≤ C,C > 0, we write
f = O(g). For asymptotic lower bounds we write f = Ω(g)
which means that lim inf f(t)/g(t) ≥ c, c > 0. In general,
these limits will be for large times, usually indexed by t or T .
We also write E for the expectation operator. We use ∇ for
gradient or Jacobian. All vectors, including gradients, in this
paper are column-vectors.



II. PROBLEM FORMULATION

We consider the memoryless adaptive control problem{
min(ut)

∑T
t=1 E‖rt − yt‖2 + λE‖ut‖2,

s. t. yt = But + wt,
(1)

where yt, rt, wt ∈ Rn, ut ∈ Rm and λ > 0. B ∈ Rn×m
is assumed unknown in advance. Note that since λ > 0, a
unique solution to (1) of the form ut = Krt always exists,
K = (B>B + λI)−1B> ∈ Rm×n. Our goal is to investigate
whether depending on the parametrization, there may be phase
transition in the regret – learning-based performance – any
algorithm can attain. We are able to prove that there are two
regimes for regret (defined below): one in which regret scales
like log T and one in which it scales like

√
T . To this end,

our Theorem 5.2 gives regret lower bounds for (1) and a
sufficient condition for the

√
T -scaling limit to occur. This is

then contrasted with Theorem 5.4 which gives a logarithmic
lower bound valid in both regimes.

To qualify this, some further assumptions are necessary. We
suppose B has rank at least 1. We write K = K(B, λ) ∈
Rm×n for the optimal linear feedback law and its Jacobian is
G = ∇B vecK(B, λ). The reference signal, rt, is assumed to
be known in advance and we will make a standard persistence
of excitation assumption, namely that

∑t
k=1 rkr

>
k � tcI +

o(t) and that ‖rt‖ > c′ for some c, c′ > 0 and sufficiently
large t. The noise wt ∈ Rn is assumed to be mean zero,
indepedent and identically distributed, and have density q(w),
which admits Fisher information1. The control ut ∈ Rm is
constrained to depend on only past inputs and outputs and is
in particular oblivious of the parameter B – it is adaptive. To
compare adaptive laws to the optimal law, one introduces the
regret.

Definition 2.1: The regret of ut, RT = RT ({ut}) is

RT =

T∑
t=1

E‖rt −But‖2 −
T∑
t=1

E‖rt −BKrt‖2

+ λE

T∑
t=1

‖ut‖2 − λE
T∑
t=1

‖Krt‖2. (2)

This measures the cumulative difference between the cost
incurred by the adaptive law (ut) and the optimal law Krt
which uses knowledge of B.

Example 2.2: Consider a scalar system yt = but + wt of
with variance 1 of wt. Suppose that rt is sufficiently rich, say
rt = 1 for all time and that λ = 0. This case is then covered
by [6] and [7] (by setting all lag parameters of y to zero),
where it is shown that

RT = O(log T )

for a policy based on least squares and certainty equivalence.

1The density of wt needs to satisfy certain absolute continuity and mean
square differentiability conditions. We prefer not to go into these details and
simply assume existence, see Definition 4.1 and consult [15] for details.

III. REGRET DECOMPOSITION

The following result is key, as it directly relates regret to
an estimation error.

Lemma 3.1: For any linear policy ut = K̂trt, we have

RT =

T∑
t=1

E tr
[(

(I⊗rtr>t )+λ(I⊗B)>(I⊗rtr>t )(I⊗B)
)

× vec(K̂t −K)(vec(K̂t −K))>
]
. (3)

Proof: Setting ut = K̂trt, we see that K also is for each
t the minimizer of

‖rt −BK̂trt‖2 − ‖rt −BKrt‖2 + λ
(
‖K̂trt‖2 − ‖Krt‖2

)
.

Vectorizing, we observe that this is a quadratic expression
in vec K̂t, minimized at vecK, where its value is zero.
A straightforward computation shows that the Hessian in
vectorized variables is

2(I ⊗ rtr>t ) + 2λ(I ⊗B)>(I ⊗ rtr>t )(I ⊗B)

Since there are no higher order terms, Taylor expansion around
the minimum ~K gives

‖rt−BK̂trt‖2−‖rt−BKrt‖2 +λ
(
‖K̂trt‖2 − ‖Krt‖2

)
= tr

[(
(I ⊗ rtr>t ) + λ(I ⊗B)>(I ⊗ rtr>t )(I ⊗B)

)
× vec(K̂t −K)(vec(K̂t −K))>

]
.

The result follows by summation and expectation.
This shows that regret is linear in the estimation error,
vec(K̂t−K)(vec(K̂t−K))>. To relate this to any particular
policy, we make the following definitions.

Definition 3.2: The control sequence (ut) is α-fast conver-
gent if for all B, ut = Krt + vt with vt = o(t−α) in L2.
In particular, this prohibits constant strategies such as selecting
K which is optimal for one parametrization but sub-optimal
for others. Note also that this definition relies implicitly on
the uniqueness of the solution to (1).

Lemma 3.3: Any α-fast convergent policy can be written as
ut = K̂trt, for some sequence of matrices K̂t = K+ o(t−α).

Proof: Since by assumption ‖rt‖ > c′ uniformly in time
for large t and some constant c′, there exists a linear trans-
formation Vt such that vt = Vtrt and ‖Vt‖ = o(t−α)/‖rt‖ =
o(t−α). Take K̂t = K + Vt.

Lemma 3.3 shows that for α-fast convergent policies, it
suffices to consider linear representations. In the subsequent
analysis, we will also need some asymptotic control of the
gradient of these linear representations, with respect to the
parameter, B.

Definition 3.4: An α-fast convergent policy, ut = K̂trt is
regular if ∇BE vec K̂t = ∇B vecK + o(1).

IV. INFORMATION

As indicated by the regret decomposition, Lemma 3.1, our
regret analysis will essentially be estimation-theoretic. The
following notion is key in the Cramér-Rao bound we will use.



Definition 4.1: For a parametrized family probability den-
sities {pθ, θ ∈ Θ}, Θ ⊂ Rd, Fisher information Iθ is

Iθ =

∫
∇θ log pθ(x) [∇θ log pθ(x)]

>
pθ(x)dx

whenever the integral exists.
Since the density, q(w), of the noise in 1 was assumed

sufficiently regular, for the parameter θ = B, the location
model induced by yk = Buk+wk, k = 1, . . . , t admits Fisher
information, It,B . Let J =

∫
q(w)[∇wq(w)][∇wq(w)]>dw,

then one has that

It,B =

t∑
k=1

∫
q(y −But)

×∇B log q(y −Buk) [∇B log q(y −Buk)]
>
dy

=

t∑
k=1

uku
>
k ⊗ J, (4)

by the chain rule for Fisher information and change of
variables. We note in passing that J is often called Fisher
information about location parameter for q. If in addition ut
is α-fast convergent (4) becomes

It,B =

t∑
k=1

E
(
Krkr

>
k K

> + vkv
>
k

)
⊗ J

=

t∑
k=1

E
[
Krkr

>
k K

> ⊗ J
]

︸ ︷︷ ︸
I∗t,B

+

t∑
k=1

Evkv
>
k ⊗ J. (5)

where vk = o(k−α) due to α-fast convergence. Above, one
recognizes I∗t,B as the Fisher information generated by the
optimal trajectory, where vk ≡ 0 and the optimal law is
always applied. Observe that unless K has rank m, I∗t,B ,
is degenerate for all t. A degenerate Fisher information has
bleak implications for model identifiability. Following the
analysis of [16], no finite variance estimator with a given bias
exists except for very special circumstances for K if It,K is
degenerate. Fortunately, the term

∑t
k=1 Evkv

>
k ⊗ J may be

chosen to complete rank-deficiency. However, all is not won,
since the requirement that ut is α-fast convergence entails that
this term is small.

A. A Multi-Scale Cramér-Rao Bound

We now repeat the general Cramér-Rao analysis of [16]. As
we require a minor modification of their result, we state the
result and proof in full.

Theorem 4.2 (cf. [16]): Let {pθ, θ ∈ Θ ⊂ Rd}, be a family
of densities with Fisher information Iθ. Suppose that α =
α(θ) ∈ Rd′ is a vector-valued function of θ and let α̂ be any
estimate of α. Let Iθ have singular value decomposition

Iθ = ZSZ> =
[
Z1 Z2

] [S1 0
0 S2

] [
Z>1
Z>2

]
.

Suppose A = ∇θEα̂ exists and set
[
A1 A2

]
= A

[
Z1 Z2

]
.

Then one has that

E[(α̂− α)(α̂− α)>] � A1S
†
1A
>
1 +A2S

†
2A
>
2 . (6)

Moreover, if A 6= AIθI
†
θ , the trace of the left hand side in (6)

can be made arbitrarily large.
Proof: Let ∆ = ∇θ log pθ(Y ) where Y ∼ pθ,

W ∈ Rd×d′ and define[
W1

W2

]
=

[
Z>1
Z>2

]
W.

Let also C = E[(α̂− α)(α̂− α)>]. We have that

E
[(
α̂− α)−W>∆

) (
α̂− α)−W>∆

)>]
= C −AW −W>A+W>IθW � 0 (7)

since the score, ∆, has mean zero. We now partition Iθ,W
and A as assumed. Substituting this decomposition into (7)
yields

C � AW +W>A−W>It,BW
= (A1W1 +A2W2) + (A1W1 +A2W2)>

− (W>1 S1W1)− (W>2 S2W2)

= A1S
†
1A1 − (W1 − S†1A>1 )>Λ1(W1 − S†1A>1 )

+A2S
†
2A2 − (W2 − S†2A>2 )>S2(W2 − S†2A>2 ). (8)

Choosing Wi = S†iA
>
i , i = 1, 2 gives

C � A1S
†
1A
>
1 +A2S

†
2A
>
2

which was the first part our claim.
Now, if A 6= AIθI

†
θ , it is clear that Iθ is rank-deficient,

and we may take S2 = 0, and Z2 to be the basis of the
corresponding kernel. Further, one may choose W2 = σA>2 ,
for arbitrary σ > 0. In this case,

trC ≥ tr
(
A1S

†
1A
>
1 + σA2A

>
2

)
which can be arbitrarily large by increasing σ.
For our model (1), the following consequence is immediate.

Corollary 4.3: Let K̂t be any estimator of the optimal
policy K of (1) such that H = ∇B vec K̂t(B, λ) exists.
Decompose Fisher information It,B (5) and define H1, H2 via

It,B = UΛU> =
[
U1 U2

] [Λ1 0
0 Λ2

] [
U>1
U>2

]
(9)[

H1 H2

]
= H

[
U1 U2

]
(10)

Then

E vec(K̂t −K)(vec(K̂t −K))>

� H1Λ−1
1 H>1 +H2Λ†2H

>
2 . (11)

The notation (9-10) is fixed throughout the rest of the paper.

B. Uninformative Optimal Policies
Observe that the regret decomposition (3) shows that regret

depends fundamentally on

= tr
((
I ⊗ rtr>t

)
E vec(K̂t −K)(vec(K̂t −K))>

)
.

Since the estimation error is lower-bounded by (11), degener-
acy of Fisher information should be a factor in regret if for
the small block, say Λ2,

tr
((
I ⊗ rtr>t

)
H2Λ†2H

>
2

)
6= 0. (12)



Now, the Fisher-information, It,B , of an α-fast convergent
policy one imagines is close to that of the optimal policy, I∗t,B .
Apply now instead the Spectral theorem to I∗t,B and assume
B does not have full column rank. That is, let

I∗t,B = OΛ′O> =
[
O1 O2

] [Λ′1 0
0 0

] [
O>1
O>2

]
. (13)

Recall that G = ∇B vecK(B, λ). This is the Jacobian of the
optimal policy with respect to the parameter B. Define G2 =
GO2. We expect regret to scale differently in the following
regime.

Definition 4.4: The pair (rt, B) is said to be γ-
uninformative if B does not have full column rank and

tr
((
I ⊗ rtr>t

)
G2G

>
2

)
≥ γ (14)

for γ > 0, G2 = GO2 where G = ∇B vecK(B, λ) and O2

defined through (13).
This definition is meaningful when I∗t,B of (5) does not have

full rank and is best understood as a quantitative observability-
type condition; the kernel of the optimal policy’s information
matrix should be visible through the cost (regret). Note also
the implicit dependence on B, via G2 which depends both
on the subspace ker I∗t,B and on the optimal policy K.
Geometrically, γ-uninformativeness means that ker I∗t,B (5),
which is spanned by O2 and G2 = GO2, is γ-separated from
being perpendicular to the reference signal’s power, rtr>t , in
the geometry of symmetric matrices. A rank drop in I∗t,B of
(5) can occur when rankK = rankB < m. Note that [5]
establishes logarithmic rates for a related problem precisely
when B is invertible, i.e. full rank. We now give an example
illustrating this.

Example 4.5: Suppose that yt is a scalar given by yt =
b>ut + wt with b, ut ∈ Rm and b given by the first standard
Euclidean basis vector

b> =
[
1 0 . . . 0

]
.

In this case the optimal policy is given by brt and so differen-
tiating EK̂t = b+o(1) with respect to b yields H = I+o(1).

Let us also assume that the variance of wt is 1 and choose
rt such that

t∑
k=1

rkr
>
k = tI + o(1),

This happens if rk is a sequence of standard Euclidean
basis vector ei cyclically repeating themselves, so that r1 =
e1, . . . rm = em, rm+1 = e1, . . . and so on. In this case

I∗t,B = t

[
1 01×m−1

0m−1×1 0m−1×m−1

]
+ o(1)

and for large t /∈ {t : rt = e1} we have, since G = I , that

tr(rtr
>
t G2G

>
2 ) = tr

(
rtr
>
t

[
0 01×m−1

0m−1×1 Im−1×m−1

])
+o(1)

= 1 + o(1).

C. Spectral Information Comparison

The main reason for using G2 (13) instead of H2 (10), in
Definition 4.4 is that we wish to study how the parametrization
of (1) impacts regret. If we had defined uninformativeness in
terms of the H2, which depends on the choice of algorithm
through H = ∇B vec K̂t(B, λ), it would be hard to claim that
a phase transition occurs through the parametrization and our
lower bound would not be algorithm indepedent. Of course,
this entails that we need to control the gap between the system
quantity (14) and the algorithm-dependent quantity (12). To
this end, we perform a perturbation analysis of the subspace
spanned by G2, to relate it to H2.

Lemma 4.6: Let H2 be as in (10) and G2 be as in (13).
Then for any regular and α-fast convergent policy K̂t, one
has that

H2Pt = G2 + o(1)

for some sequence of orthonormal matrices (Pt).
Proof: The proof relies on Wedin’s sin Θ Theorem [17]

(quoted in the appendix) which describes the perturbation
theory of range and nullspace in the singular value decom-
position. By (5) it follows that

1

t
It,B =

1

t
I∗t,B + o(t−2α log t)

using α-fast convergence2. Moreover, it is clear that rescaling
Fisher informations does not change the singular value de-
composition except for rescaled singular values. This gives
control of the residuals (1.8) in [17] and for sufficiently
large t the separation conditions there are satisfied since
(1/t)Λ2 = o(1). We recall also from Lemma 1 of [18] that
the sin Θ Theorem provides an upper bound on the distance,
d(U2, O2) = minP ‖U2P − O2‖∞, where P is optimized
over the orthogonal group. Apply now Wedin’s Theorem in
combination with Lemma 1 of [18] to conclude that

U2Pt = O2 + o(t−2α)

where Pt optimizes d(U2, O2). Finally, by regularity H =
G+ o(1), and therefore H2Pt → G2.

Remark 4.7: The matrix Pt is necessary to account for the
possibly arbitrary ordering of the singular vectors correspond-
ing to ker I∗t,B . It exists by continuity and compactness of the
orthogonal group in the standard matrix topology.

V. FUNDAMENTAL LIMITATIONS

We need one more lemma which relates regret to the
spectral properties of It,B and I∗t,B .

Lemma 5.1: For any γ-uninformative pair (rt, B), and reg-
ular and α-fast convergent policy K̂t with Λ2 as in (9) and
H2 as in (10), one has that

tr
((
I ⊗ rtr>t

)
H2Λ†2H

>
2

)
≥ γσmin(Λ†2)× (1 + o(1)).

2the appearance of the logarithmic factor is due to the case α = 1/2, since∫
t−1 ∼ log t 6= O(1).



Proof: The trace cyclic property and Lemma 4.6 yields

tr
((
I ⊗ rtr>t

)
H2H

>
2

)
= tr

((
I ⊗ rtr>t

)
H2PtP

>
t H

>
2

)
= tr

(
P>t H

>
2

(
I ⊗ rtr>t

)
H2Pt

)
= tr

(
G>2

(
I ⊗ rtr>t

)
G2

)
+ o(1)

using that Pt from Lemma 4.6 is orthonormal and where G2

is as in (13). Multiplication by Λ†2 � 0 rescales the bound by
σmin(Λ†2).

We are now in position to state our main result.
Theorem 5.2: Consider the model (1) and suppose that

(rt, B) is γ-uninformative for at least a constant fraction of
indices t ∈ N, for some γ > 0. Then for any α > 0,
any regular α-fast convergent policy has regret asymptotically
lower bounded as

RT = Ω(
√
T ). (15)

The central idea of the following proof is to balance the ill-
conditioning of Fisher information with the convergence rate,
t−α, of the estimated policy K̂t.

Proof: According to Lemma 3.3 we may restrict our
attention to linear policies. Let Λ2 as in (9) and to emphasize
its time-dependence, we now write Λ2 = Λ2(t). Let also H2

be as in (10). Combining the results that we have established
this far offers

RT ≥
T∑
t=1

E tr
[(
I⊗rtr>t

)
vec(K̂t−K)(vec(K̂t−K))>

]
≥

T∑
t=1

[
tr
((
I ⊗ rtr>t

)
H2Λ†2(t)H>2

)]

≥
T ′(T )∑
j=1

[
γσmin(Λ†2(tj))(1 + o(1))

]

≥
dcTe∑
j=1

[
γσmin(Λ†2(tj))(1 + o(1))

]
(16)

This merits some explanation: The first inequality in (16)
above is obtained by dropping the part pertaining to B, in
(3). The second inequality is Corollary 4.3 to the Cramér-
Rao bound, Theorem 4.2. In the third inequality, we use the
assumption that a subsequence {tj} of time {t} is uninfor-
mative, and apply Lemma 5.1. Fourth, we observe that the
length of this subsequence by assumption is proportional to
T , T ′(T ) ≥ cT for some c ∈ (0, 1]. Moreover, we may
assume that σmin(Λ2(tj)) > 0 for all tj of this subsequence,
for otherwise the second part of Theorem 4.2 implies infinite
variance, and thus infinite regret, and the result holds trivially.

Now, since the policy is α-fast convergent, it clear from
(5) that σmax(Λ2(t)) = o(t1−2α) and hence σmax(Λ†2(t)) =
Ω(t2α−1). From this, we gather that

T∑
t=1

[
γσmin(Λ†2(t))(1 + o(1))

]
= Ω(T 2α).

On the other hand, if the policy is not α-fast convergent, one
has that

T∑
t=1

tr

(I ⊗ rtr>t )E

vec(K̂t −K)(vec(K̂t −K))>︸ ︷︷ ︸
Ω(t−2α)





= Ω(T 1−2α). (17)

Optimizing these terms by setting α = 1/4 finishes the proof
of the Theorem.

Remark 5.3: If (14) is streghthened to

tr
((
I ⊗Brtr>t B>

)
G2G

>
2

)
> γ

the first term of the regret decomposition in Lemma 3.1 can
also be lower-bounded by the same arguments and the theorem
extends to the case λ = 0 in this way.

Let us now put Theorem 5.2 into perspective by comparing
with what kind of lower bound we can prove if Fisher
information has full rank.

Theorem 5.4: Suppose that σmin(I∗t,B) ≥ δt + o(t), δ >
0 and assume the additional regularity condition H =
∇B vec K̂t(B) = Ω(1). Then for any α > 0 and any regular
α-fast convergent policy, (1) satisfies the regret lower bound

RT = Ω(log T ). (18)
In this regime, there is only very little trade-off between

exploration and exploitation. Essentially, an optimal policy
which has full rank, and thus full rank Fisher information,
will already excite all directions of B and so there is little to
be gained by adding extra excitation.

Proof: Write, using (3), and the Cramér-Rao bound,
Theorem 4.2, with second block of dimension zero,

RT ≥
T∑
t=1

E tr
[(

(I⊗rtr>t )
)

vec(K̂t−K)(vec(K̂t−K))>
]

≥
T∑
t=1

E tr
[(
I ⊗ rtr>t

)
HI†t,BH

>︸ ︷︷ ︸
=Ω(δ/(t+o(t))

]
.

The result is now immediate since
∑T
t=1 δ/(t + o(t)) scales

like log T .
Theorems 5.2 and 5.4 together provide strong evidence that
a phase transition occurs. We now return to Example 2.2 to
understand why logarithmic rates are feasible in [7].

Example 5.5: Let us revisit the scalar system yt = but+wt.
Here Fisher information is given by I∗t,b =

∑t
k=1 r

2
kb

2 = tb2,
for rt = 1, which, in particular, has no nullspace. Hence the
optimal policy is not uninformative for any constant and the
singular value condition of Theorem 5.4 is satisfied. Indeed,
the lower bound Ω(log T ) presented above matches (in order)
the upper bound due to [7] discussed in Example 2.2.

VI. DISCUSSION

Our analysis here is similar spirit to [12]. The largest
difference is that we take a closer look at the Cramér-Rao
bound when the information matrix is near degenerate. In this
regime learning becomes difficult. Similarly, the proof strategy
is here also based on comparing the information “collected”



by any algorithm and that of the optimal algorithm. However,
degeneracy makes this comparison more difficult and we need
to resort to singular space perturbation theory, [17]. It is this
difference that allows us to demonstrate the

√
T -rate.

Using this, we show that if the optimal policy to (1) gives
degenerate information in a certain sense, then regret must
be super-logarithmic. In this regime, one is forced to intro-
duce supplementary excitation beyond the randomness already
present in the algorithm. It is also interesting to note that
the lower bound strongly suggests that a certainty equivalent
controller perturbed by noise with full rank covariance of order
1/
√
t is a good idea since this corresponds closely to the case

for which the lower bound is optimized to Ω(
√
T ). Indeed,

this was the strategy pursued by [10] attaining regret of order√
T for the full LQR.
We also wish to mention that the concept of α-fast con-

vergence is much inspired by the notion of uniformly fast
convergence for the related bandit problems, see [19] and
[20]. Indeed, what we have considered here can also be seen
as a stochastic contextual bandit with side information yt and
context decided by rt, see also [21] for an overview of bandits.

A. Directions for Future Work
We remark that our method of proving lower bounds has po-

tential to be of general interest. Essentially, the key ingredients
are a representation of regret in terms of an estimation error
(a Taylor expansion of a convex potential) and an analysis of
the rank of the Fisher information corresponding to the data
collected by the optimal policy. If one is able to establish
such a representation and asymptotically compare this Fisher
information to that of any reasonable policy, our method
carries through. In particular, it would be very desirable
to extend the present results to dynamic models, such as
LQR, and there, establish conditions which ensure a similar
phase transition as observed here. In particular, this could
help describe necessary and sufficient side information for
logarithmic regret, [10]. To this end, [11] shows that under
an identifiability condition, logarithmic regret is attainable for
LQR and it would be very interesting to compare this notion
to uninformativeness.

Another potential direction is to take a more information-
theoretic route toward lower bounds as in [22] and as is
traditional for bandits [19]. This was recently done for system
identification in [23].
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[9] K. J. Åström and B. Wittenmark, “On self tuning regulators,”
Automatica, vol. 9, no. 2, pp. 185–199, 1973.

[10] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “On
adaptive linear–quadratic regulators,” Automatica, vol. 117,
2020.

[11] ——, “Input perturbations for adaptive control and learning,”
Automatica, vol. 117, 2020.

[12] I. Ziemann and H. Sandberg, “Regret lower bounds for un-
biased adaptive control of linear quadratic regulators,” IEEE
Control Systems Letters, forthcoming, 2020.

[13] M. Simchowitz and D. J. Foster, “Naive exploration is optimal
for online lqr,” arXiv preprint arXiv:2001.09576, 2020.

[14] A. Cassel, A. Cohen, and T. Koren, “Logarithmic regret for
learning linear quadratic regulators efficiently,” arXiv preprint
arXiv:2002.08095, 2020.

[15] A. W. Van der Vaart, Asymptotic statistics. Cambridge univer-
sity press, 2000, vol. 3.

[16] P. Stoica and T. L. Marzetta, “Parameter estimation problems
with singular information matrices,” IEEE Transactions on
Signal Processing, vol. 49, no. 1, pp. 87–90, 2001.
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APPENDIX

We require the following version of Wedin’s sin Θ Theorem:
Consider matrices M and M̃ = M +T for some perturba-

tion T , with singular value decompositions M = V1Γ1W
>
1 +

V2Γ2W
>
2 , M̃ = Ṽ1Γ̃1W̃

>
1 + Ṽ2Γ̃2W̃

>
2 . If for δ > 0, η ≥ 0,

σmin(Γ̃1) ≥ η + δ and σmax(Γ2) ≤ η then

max
P
‖Ṽ2P − V2‖∞ = O(‖T‖∞)

where the maximization is over the orthogonal group.
The result is due to Wedin [17]. The formulation of the

sin Θ distance as an optimization over the norm ‖·‖∞ appears
for instance in [18].
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