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On a Phase Transition of Regret in Linear Quadratic Control:
The Memoryless Case

Ingvar Ziemann, Henrik Sandberg

Abstract— We consider an idealized version of adaptive control
of a MIMO system without state. We demonstrate how rank
deficient Fisher information in this simple memoryless problem
leads to the impossibility of logarithmic rates of regret. This to
some extent resolves an open issue concerning the attainability
of logarithmic regret rates in linear quadratic adaptive control.
Our analysis rests on a version of the Cramér-Rao inequality
that takes into account possible ill-conditioning of Fisher infor-
mation and a pertubation result on the corresponding singular
subspaces. This is used to define a sufficient condition, which we
term uniformativeness, for regret to be at least order square root
in the samples.

I. INTRODUCTION

Recently, there has been a revitilization of interest in the
adaptive linear quadratic regulator (LQR) as it serves as good
theoretically tractable example of reinforcement learning in
continuous state and action spaces. Much progress has been
made toward analyzing the statistical convergence rate, the
regret incurred, of adaptive algorithms. Several works over
the past decade, [1], [2] and [3], have been able to prove
upper bounds on the regret at a rate of approximately

√
T in

the time horizon. There is a strong feeling that this should
be order optimal even though no matching lower bound exist.
However, in some special cases, [4], [5] and [6], the authors
have actually been able to prove regret to scale at a rate of
log T , ensuring considerably faster convergence. In particular,
[5] showed that the Åström-Wittenmark self-tuning regulator
[7] for SISO tracking problems converges at the rate log T .

Under an unbiasedness assumption, we gave a lower bound
in [8] applicable to the general LQR and matching the special
cases of [4] and [5] up to constants in the first order. However,
as mentioned, no lower bound in the

√
T regime is known.

See also [9] for an interesting discussion of this apparent
dichotomy. Given these two very different rates, it is thus
natural to ask whether regret undergoes a phase transition in
its asymptotic scaling. Here, we consider a simplified, and
memoryless, version of the linear quadratic problem to verify
that such a phenomenon indeed occurs. The point of such an
analysis, as presented here, is to isolate the essence of this
phase transition.

The contribution of this note is thus to provide lower bounds
on regret which capture this phase transition. In particular,
we shall prove that when a certain informativeness condition
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is not met by the optimal policy, logarithmic rates of regret
are impossible for a certain class of policies we call α-fast
convergent. We will see that this phase transition depends
both on the rank of the optimal linear feedback matrix and on
the excitation of the reference signal. In this regime, there is
an asymptotically non-neglible trade-off between exploration
and exploitation. Our results partially answer an unresolved
question in the literature [9], as to whether logarithmic rates
are attainable in general or not for linear quadratic problems.
As such, this work constitutes the first super-logarithmic lower
bound available in the literature for linear quadratic stochastic
adaptive control problems.

A. Notation

We use � (and �) for (strict) inequality in the matrix
positive definite partial order. By ‖ · ‖ we denote the standard
2-norm and by ‖ · ‖∞ the matrix operator norm. Moreover,
⊗, vec and † are used to denote the Kroenecker product,
vectorization, and Moore-penrose pseudoinverse, respectively.
For two functions f, g, lim sup |f(t)/g(t)| = 0, for some norm
| · |, is written as f = o(g). If instead lim sup |f(t)/g(t)| ≤
C,C > 0, we write f = O(g). For asymptotic lower bounds
we write f = Ω(g) which means that lim inf f(t)/g(t) ≥
c, c > 0. In general, these limits will be for large times, usually
indexed by t or T . We also write E for the expectation operator
and V for the covariance operator. We use ∇ for gradient or
Jacobian.

II. PROBLEM FORMULATION

We consider the memoryless adaptive control problem{
min(ut)

∑T
t=1 E‖rt − yt‖2 + λE‖ut‖2,

s. t. yt = But + wt,
(1)

where yt, rt, wt ∈ Rn, ut ∈ Rm and λ ≥ 0. B ∈ Rn×m
is assumed unknown in advance. Our goal is to investigate
whether depending on the parametrization, there may be phase
transition in the regret – learning-based performance – any
algorithm can attain. We are able to prove that there are two
regimes for regret (defined below): one in which regret scales
like log T and one in which it scales like

√
T . To this end,

our Theorem 5.2 gives regret lower bounds for (1) and a
sufficient condition for the

√
T -scaling limit to occur. This is

then contrasted with Theorem 5.4 which gives a logarithmic
lower bound valid in both regimes.

To qualify this, some further assumptions are necessary. We
suppose B has rank at least 1 and that that a unique optimal
control policy to (1) exists (either B is invertible or λ > 0)
and is linear in rt. We write K = K(B, λ) ∈ Rm×n for



this optimal linear feedback law and its Jacobian is G =
∇B vecK(B, λ). The reference signal, rt, is assumed to be
known in advance and we will make a standard persistence of
excitation assumption, namely that

∑t
k=1 rkr

>
k � tcI + o(t)

and that ‖rt‖ > c′ for some c, c′ > 0 and sufficiently large t.
The noise wt ∈ Rn is assumed to be mean zero, indepedent
and identically distributed and admit Fisher information1 (Def-
inition 2.6). The control ut ∈ Rm is constrained to depend on
only past inputs and outputs and is in particular oblivious of
the parameter B – it is adaptive. We will pose some restrictions
on the possible rates of convergence an adaptive controller can
have.

Definition 2.1: The control sequence (ut) is α-fast conver-
gent if for all B, ut = Krt + vt with vt = o(t−α) in L2.
In particular, this prohibits constant strategies such as selecting
K which is optimal for one parametrization but sub-optimal
for others. Note also that this definition relies implicitly on
the uniqueness of the solution to (1). A weaker condition than
α-fast convergence, key to us, is introduced below.

Definition 2.2: The control sequence (ut) is β-unbiased if
for all B ut = Ftrt + vt with vt = o(t−β) and EFt = K
where Ft depends only on past observations and inputs.
This assumption is weaker than ut being α-fast convergent
since then ut = Krt + o(t−α) and the latter condition is
verified with Ft = K and β = α. We also remark that for
β-unbiased ut, it is without loss of generality to write ut =
(Ft + Lt)rt since ‖rt‖ > c′ > 0 implies that there exists a
transformation Lt ∈ Rm×n such that vt = Ltrt with Lt =
o(t−β). The quantity Lt is referred to as the bias of the policy.
We will thus, without loss of generality, write ut = K̂trt
with K̂t = Ft +Lt for β-unbiased policies. In the subsequent
analysis, we will also need some (relatively little) control of
the gradient of Lt.

Definition 2.3: A β-unbiased policy with bias Lt is called
regular if ∇BLt = o(1).

To compare adaptive laws to the optimal law, one introduces
the regret.

Definition 2.4: The regret RT of a control law ut is

RT =

T∑
t=1

E‖rt −But‖2 −
T∑
t=1

E‖rt −BKrt‖2

+ λE

T∑
t=1

‖ut‖2 − λE
T∑
t=1

‖Krt‖2. (2)

This measures the cumulative difference between the cost
incurred by the adaptive law (ut) and the optimal law Krt
which uses knowledge of B.

Example 2.5: Consider a scalar system yt = but + wt of
with variance 1 of wt. Suppose that rt is sufficiently rich, say
rt = 1 for all time and that λ = 0. This case is then covered
by [5] (by setting all lag parameters of y to zero), where it is
shown that

RT = O(log T )

1The density of wt needs to satisfy certain absolute continuity and mean
square differentiability conditions. However, we prefer not to go into these
details and simply assume existence.

for a policy based on least squares and certainty equivalence.
We will be more concerned with finding lower bounds. Our

regret analysis will essentially be estimation-theoretic, and a
key quantity that features there is the Fisher information.

Definition 2.6: For a parametrized family probability den-
sities {pθ, θ ∈ Θ} the Fisher information Iθ is

Iθ =

∫
∇θ log pθ(x) [∇θ log pθ(x)]

>
pθ(x)dx

whenever the integral exists.
The quantity ∆ = ∇θ log pθ(X), X ∼ pθ above is referred
to as the score vector. For a family of densities of the form
pθ(w) = p(w+θ), we write J = Jθ(p) for Fisher information.
This is called Fisher information about location parameter.
This has special significance to us, since for one observation
yt under the model (1) with known input ut, one has that

IB(yt|ut)

=

∫
[∇B log pB(y −But)]2p(y −But)dy

= utu
>
t ⊗ J (3)

by change of variables and where we write [∇B log pB(y −
But)]

2 = ∇B log pB(y − But) [∇B log pB(y −But)]>.
Above p and J denote the density and Fisher information
about location parameter for wt respectively.

Example 2.7: If wt ∼ N(0,Σ) then for Σ � 0, J = Σ−1;
for Gaussians, information is inversely proportional to noise.

III. REGRET DECOMPOSITION

Lemma 3.1: For any β-unbiased policy ut = K̂trt, we have

RT =

T∑
t=1

tr
(
B>rtr

>
t BE(K − K̂t)(K − K̂t)

>
)

+ λ

T∑
t=1

tr
(
rtr
>
t E(K − K̂t)(K − K̂t)

>
)

+ o(T 1−β) (4)

where for β = 1, o(T 1−β) is replaced with o(log T ).
Proof: We analyze the first line of (2) and expand the

squares as inner products to find

E‖rt −But‖2 = E
[
〈rt −BK̂trt, rt −BK̂trt〉

]
= E‖rt‖2 −E〈BK̂trt, rt〉

−E〈rt, BK̂trt〉+ E‖BK̂trt‖2 (5)

and

E‖rt −BKrt‖2 = E [〈rt −BKrt, rt −BKrt〉]
= E‖rt‖2 −E〈BKrt, rt〉 −E〈rt, BKrt〉+ E‖BKrt‖2.

(6)

Moreover note that

tr
(
rtr
>
t BE

[
(K − K̂t)(K − K̂t)

>
]
B>
)

= tr
(
rtr
>
t BE

[
KK> + K̂tK̂

>
t −KK̂>t − K̂tK

>
]
B>
)

= tr
(
rtr
>
t BE

[
K̂tK̂

>
t −KK>

]
B>
)

+ o(t−β)

= E‖BK̂trt‖2 −E‖BKrt‖2 + o(t−β).



Subtracting (6) from (5) thus yields

E‖rt −But‖2 −E‖rt −BKrt‖2

= E‖BK̂trt‖2 − ‖BKrt‖2 + o(t−β)

= tr
(
rtr
>
t BE

[
(K − K̂t)(K − K̂t)

>
]
B>
)

+ o(t−β).

The first term is thus found after summation and application
of the trace cyclic property. The analysis of the second term
is similar.
Since α-fast convergent policies are in particular α-
unbiased, the critical problem dependent quantity is thus
E
[
(K − K̂t)(K − K̂t)

>
]
.

IV. INFORMATION

The significance of the regret analysis above is of course
that if K̂t is an unbiased estimate of K, then by Cramér-Rao

E
[
vec(K − K̂t) vec(K − K̂t)

>
]
� I†t,K (7)

where It,K is the information about K after t samples. Since
K̂t is not exactly unbiased, (7) is only asymptotically true,
but this will be sufficient to carry out our analysis. For the
Gaussian location model induced by yk = Buk + wk, k =
1, . . . , t, Fisher information becomes by (3) and the chain rule

It,B =

t∑
k=1

Euku
>
k ⊗ J

I†t,K : = [∇B vec(K̂t)]I
†
t,B [∇B vec(K̂t)]

>

If in addition ut is α-fast convergent one has that

It,B =

t∑
k=1

E
(
Krkr

>
k K

> + vkv
>
k

)
⊗ J

=

t∑
k=1

E
[
Krkr

>
k K

> ⊗ J
]

︸ ︷︷ ︸
I∗t,B

+

t∑
k=1

Evkv
>
k ⊗ J. (8)

where vk = o(k−α) due to α-fast convergence. Above, one
recognizes I∗t,B as the Fisher information generated by the
optimal trajectory, where vk ≡ 0.

Observe that unless K has full rank, I∗t,B , is degenerate
for all t. A degenerate Fisher information has bleak impli-
cations for model identifiability. Following the analysis of
[10], no unbiased estimator exists except for very special
circumstances for K if It,K is degenerate. Fortunately, the
term

∑t
k=1 Evkv

>
k ⊗ J may be chosen to complete rank-

deficiency. However, all is not won, since the requirement that
ut is α-fast convergence entails that this term is small.

A. A Multi-Scale Cramér-Rao Bound

We now repeat the analysis of [10] with the modification
that we partition the information matrix into a positive definite
block, and one positive semi-definite block2.

We now fix the following notation which holds throughout
the rest of the paper. Denote ~K = vecK, ~Kt = vec K̂t,

2In their article, positive semi-definite corresponds to 0, however their
analysis easily extends to our case of interest.

C = V ~Kt and H = ∇B vecEK̂t. Further, we spectrally
decompose Fisher information as

It,B = UΛU> =
[
U1 U2

] [Λ1 0
0 Λ2

] [
U>1
U>2

]
and for an arbitrary appropriately dimensioned matrix W[

W1

W2

]
=

[
U>1
U>2

]
W,

[
H1 H2

]
= H

[
U1 U2

]
.

Remark 4.1: Of course, the quantities above all depend on
time, t. However, for the moment, we supress this dependence
to simplify notation.

Theorem 4.2 (cf. [10]): With notation as just introduced

C � H1Λ−1
1 H>1 +H2Λ†2H

>
2 .

Proof: Let W be an arbitrary matrix of dimension mn×
mn. We have that

E

[(
~Kt − ~K)−W>∆

)(
~Kt − ~K)−W>∆

)>]
= C −HW −W>H +W>It,BW � 0 (9)

since the score has mean zero. We now partition It,B ,W and
H as assumed. Substituting this decomposition into (9) yields

C � HW +W>H −W>It,BW
= (H1W1 +H2W2) + (H1W1 +H2W2)>

− (W>1 Λ1W1)− (W>2 Λ2W2)

= H1Λ−1
1 H1 − (W1 − Λ−1

1 H>1 )>Λ1(W1 − Λ−1
1 H>1 )

+H2Λ†2H2 − (W2 − Λ†2H
>
2 )>Λ2(W2 − Λ†2H

>
2 ). (10)

Choosing Wi = Λ†iH
>
i , i = 1, 2 gives

C � H1Λ−1
1 H>1 +H2Λ†2H

>
2

which was our claim.
This is the Cramér-Rao inequality with an extra term H2Λ†2H2

yielding extra variance for ill-conditioned Fisher information.

B. Uninformative Optimal Policies

Observe that for any α-fast convergent policy, (4) shows
that regret depends fundamentally on

tr
(
rtr
>
t E

[
(K − K̂t)(K − K̂t)

>
])

= tr
((
I ⊗ rtr>t

)
C
)

with C, the vectorized covariance, as defined above. Since

C � H1Λ−1
1 H>1 +H2Λ†2H

>
2 ,

the degeneracy of Fisher information should be a factor in
regret if for the small block Λ2

tr
((
I ⊗ rtr>t

)
H2Λ†2H

>
2

)
6= 0. (11)

Now, the Fisher-information, It,B , of an α-fast convergent
policy one imagines is close to that of the optimal policy, I∗t,B .
Apply now instead the Spectral theorem to I∗t,B and assume
B does not have full column rank. That is, let

I∗t,B = OΛ′O> =
[
O1 O2

] [Λ′1 0
0 0

] [
O>1
O>2

]
.



Recall that G = ∇B vecK(B, λ), and define G2 = GO2. We
expect regret to scale differently in the following regime.

Definition 4.3: The pair (rt, B) is said to be γ-
uninformative if B does not have full column rank and

tr
((
I ⊗ rtr>t

)
G2G

>
2

)
> γ (12)

for γ > 0.
This is best understood as a quantitative observability-

type condition; the kernel of the optimal policy’s information
matrix should be visible through the cost (regret). Note also
the implicit dependence on B, via G2 which depends both on
the subspace ker I∗t,B and on the optimal policy K(B). Ge-
ometrically, γ-uninformativeness means that ker I∗t,B (which
is spanned by O2 and recall G2 = GO2) is γ-separated from
being perpendicular to the reference signal’s power, rtr>t , in a
weighted (by G = ∇K) geometry of symmetric matrices. We
now give an example of when this condition becomes relevant.

Example 4.4: Suppose that yt is a scalar given by yt =
b>ut + wt with b, ut ∈ Rm and b given by the first standard
Euclidean basis vector

b> =
[
1 0 . . . 0

]
.

In this case the optimal policy is given by brt and so differen-
tiating EK̂t = b+o(1) with respect to b yields H = I+o(1).

Let us also assume that the variance of wt is 1 and choose
rt such that

t∑
k=1

rkr
>
k = tI + o(1),

This happens if rk is a sequence of standard Euclidean
basis vector ei cyclically repeating themselves, so that r1 =
e1, . . . rm = em, rm+1 = e1, . . . and so on. In this case

I∗t,B = t

[
1 01×m−1

0m−1×1 0m−1×m−1

]
+ o(1)

and for large t /∈ {t : rt = e1} we have, since G = I , that

tr(rtr
>
t G2G

>
2 ) = tr

(
rtr
>
t

[
0 01×m−1

0m−1×1 Im−1×m−1

])
+o(1)

= 1 + o(1).

C. Spectral Information Comparison

The main reason for replacing the matrix H2 with G2 is
that we wish to study how the parametrization of (1) impacts
regret. If we had defined uninformativeness in terms of the H2,
which depends on the choice of algorithm through the gradient
of the bias, it would be hard to claim that a phase transition
occurs through the parametrization and our lower bound would
not be algorithm indepedent. Of course, this entails that we
need to control the gap between the system quantity (12) and
the algorithm-dependent quantity (11). To this end, we perform
a perturbation analysis of the subspace spanned by G2.

Lemma 4.5: Suppose that (rt, B) is γ-uninformative. Then
for any regular and α-fast convergent policy K̂t, one has that

H2Pt = G2 + o(1)

for some orthonormal matrix Pt.

Proof: The proof relies on Wedin’s sin Θ Theorem [11]
(quoted in the appendix) which describes the perturbation
theory of range and nullspace in the singular value decom-
position. By (8) it follows that

1

t
It,B =

1

t
I∗t,B + o(t−2α log t)

using α-fast convergence3. Moreover, it is clear that rescaling
Fisher informations does not change the singular value de-
composition except for rescaled singular values. This gives
control of the residuals (1.8) in [11] and for sufficiently
large t the separation conditions there are satisfied since
(1/t)Λ2 = o(1). We recall also from Lemma 1 of [12] that
the sin Θ Theorem provides an upper bound on the distance,
d(U2, O2) = minP ‖U2P − O2‖∞, where P is optimized
over the orthogonal group. Apply now Wedin’s Theorem in
combination with Lemma 1 of [12] to conclude that

U2Pt = O2 + o(t−2α)

where Pt optimizes d(U2, O2). Finally, by regularity H =
G+ o(1), and therefore H2Pt → G2.

Remark 4.6: The matrix Pt is necessary to account for the
possibly arbitrary ordering of the singular vectors correspond-
ing to ker I∗t,B . It exists by continuity and compactness of the
orthogonal group in the standard matrix topology.

V. FUNDAMENTAL LIMITATIONS

Before proving our main result, we need one more lemma
which relates regret to the spectral properties of It,B and I∗t,B .

Lemma 5.1: For any γ-uninformative pair (rt, B), and reg-
ular and α-fast convergent policy K̂t, one has that

tr
((
I ⊗ rtr>t

)
H2Λ†2H

>
2

)
≥ γσmin(Λ†2)× (1 + o(1)).

Proof: The trace cyclic property and Lemma 4.5 yields

tr
((
I ⊗ rtr>t

)
H2H

>
2

)
= tr

((
I ⊗ rtr>t

)
H2PtP

>
t H

>
2

)
= tr

(
P>t H

>
2

(
I ⊗ rtr>t

)
H2Pt

)
= tr

(
G>2

(
I ⊗ rtr>t

)
G2

)
+ o(1)

using that Pt from Lemma 4.5 is orthonormal. Multiplication
by Λ†2 � 0 rescales the bound by σmin(Λ†2).

Theorem 5.2: Suppose that (rt, B) is γ-uninformative for
at least a constant fraction of time for some γ > 0 and that
λ > 0. Then any regular α-fast convergent policy with α ≥
1/3, (1) has regret asymptotically lower bounded as

RT = Ω(T 2/3). (13)

Moreover, under the additonal hypothesis of β-unbiasedness
with β ≥ min(1− 2α, 1/2), then for α < 1/3 it holds that

RT = Ω(
√
T ). (14)

Before proceeding with the proof, some remarks are in
order. We see that the result splits into two cases, α ≥ 1/3
and α < 1/3. In the first regime, ill-conditioning of Fisher
information translates into bad estimation; trying to converge

3the appearance of the logarithmic factor is due to the case α = 1/2, since∫
t−1 ∼ log t 6= O(1).



too fast convergence implies too much exploitation and too lite
exploration. Indeed, the analysis shows that it is impossible for
any adaptive control law K̂t to converge at a rate faster than
t−1/3 in the class of uninformative instances. In the second
regime, convergence is slower and there is a trade-off between
exploration and exploitation, but as α → 0 the input signal
simply becomes too different from the optimal input to be
efficient.

Moreover, at α = 1/3, there is a noise barrier in our analysis
if we do not provide further control on the bias. It is also clear
that the lower bound (14) holds uniformly for all α if one
assumes β ≥ 1/2. This assumption is not particularly strong,
since for instance maximum likelihood estimation typically4

has a bias of of order 1/T , [13], which is thus covered.
Note that this restriction is also in some sense optimal, since
otherwise one could interpolate between some algorithm and
random guessing of one particular parameter and the inter-
polating algorithm would achieve locally, at that parameter,
better performance (and the lower bound does not depend on
the parameter other than through uninformativeness).

Proof: To emphasize that Λ†2 depends on t, we now write
Λ†2(t). Combining the regret decomposition, Lemma 3.1, with
Theorem 4.2 and Lemma 5.1 offers

RT

≥ λ
T∑
t=1

[
tr
(
rtr
>
t E

[
(K − K̂t)(K − K̂t)

>
])]

+ o(T 1−β)

≥ λ
T∑
t=1

[
tr
((
I ⊗ rtr>t

)
H2Λ†2(t)H>2

)]
+ o(T 1−β)

≥ λ
T∑
t=1

[
εσmin(Λ†2(t))(1 + o(1))

]
+ o(T 1−β), (15)

where we simply discarded the first nonnegative term of
Lemma 3.1 and where automatically β ≥ α (the bias decays
at least as fast as the overall convergence rate).

Now, since the policy is α-fast convergent, it clear from
(8) that σmax(Λ2(t)) = o(t1−2α) and hence σmax(Λ†2(t)) =
Ω(t2α−1). From this, we gather that

T∑
t=1

[
εσmin(Λ†2(t))(1 + o(1))

]
= Ω(T 2α).

The result now follows by optimizing the trade-off between
Ω(T 2α) and o(T 1−β), β ≥ α. In particular, if α ≥ 1/3 we
always have at least RT = Ω(T 2/3).

Suppose instead that α < 1/3. Just above we may then
conclude that RT = Ω(T 2α) which can be made small.
However, note that if the policy is not α′-fast convergent, one
has that

λ

T∑
t=1

tr

rtr>t E
(K − K̂t)(K − K̂t)

>︸ ︷︷ ︸
Ω(t−2α′ )





= Ω(T 1−2α′). (16)

4Assume for instance that the inputs are bounded away from zero asymp-
totically.

Further optimization thus yields for α ∈ [0, 1/3)

RT = Ω(min(T 2α, T 1−2α)) = Ω(
√
T ),

which is attained at α = 1/4. If β ≥ min(1 − 2α, 1/2) this
term dominates the term o(T 1−β).

Remark 5.3: If (12) is streghthened to

tr
((
I ⊗Brtr>t B>

)
G2G

>
2

)
> γ (17)

the first term of the regret decomposition in Lemma 3.1 can
also be lower-bounded by the same arguments and the theorem
extends to the case λ = 0 in this way.

Let us now put Theorem 5.2 into perspective by comparing
with what kind of lower bound we can prove if Fisher
information has full rank.

Theorem 5.4: Suppose that σmin(I∗t,B) ≥ δt + o(t), δ > 0
and that λ > 0. Then for any regular α-fast convergent policy,
which is also β-unbiased β ≥ 1, (1) satisfies the regret lower
bound

RT = Ω(log T ). (18)
In this regime, there is only very little trade-off between

exploration and exploitation. Essentially, an optimal policy
which has full rank, and thus full rank Fisher information,
will already excite all directions of B and so there is little to
be gained by adding extra excitation.

Proof: Applying Cramér-Rao and comparing the lower
bound I†t,K to a suitable average gives

E
[
vec(K − K̂t) vec(K − K̂t)

>
]
� I†t,K

= [∇B vec(K̂t)]I
†
t,B [∇B vec(K̂t)]

>

= [∇B vecK+o(1)](I∗t,B+o(t1−2α))[∇B vecK+o(1)]>.

We may assume α ≥ 1/3 for otherwise (16) still holds.
Hence, for C = E

[
vec(K − K̂t) vec(K − K̂t)

>
]
, and h =

[∇B vecK + o(1)], we have that

RT ≥ λ
T∑
t=1

[
tr
((
I ⊗ rtr>t

)
C
)]

+ o(log T )

≥ λ
T∑
t=1

[
tr
((
I ⊗ rtr>t

)
h (δtI + o(t))

†
)
h>
]

+ o(log T )

= Ω(log T )

since
∑T
t=1 δ/(t+ o(t)) scales like log T .

Theorems 5.2 and 5.4 together provide strong evidence that
a phase transition occurs. We now return to Example 2.5 to
understand why logarithmic rates are feasible in [5].

Example 5.5: Let us revisit the scalar system yt = but+wt.
Here Fisher information is given by I∗t,b =

∑t
k=1 r

2
kb

2 = tb2,
for rt = 1, which, in particular, has no nullspace. Hence the
optimal policy is not uninformative for any constant and the
singular value condition of Theorem 5.4 is satisfied. Indeed,
the lower bound Ω(log T ) presented above matches (in order)
the upper bound due to [5] discussed in Example 2.5.



VI. DISCUSSION

Our analysis here is similar spirit to [8]. The largest
difference is that we take a closer look at the Cramér-Rao
bound when the information matrix is near degenerate. In this
regime learning becomes difficult. Similarly, the proof strategy
is here also based on comparing the information “collected”
by any algorithm and that of the optimal algorithm. However,
degeneracy makes this comparison more difficult and we need
to resort to singular space perturbation theory, [11]. It is this
difference that allows us to demonstrate the

√
T -rate.

Using this, we show that if the optimal policy to (1) gives
degenerate information in a certain sense, then regret must
be super-logarithmic. In this regime, one is forced to intro-
duce supplementary excitation beyond the randomness already
present in the algorithm. It is also interesting to note that
the lower bound strongly suggests that a certainty equivalent
controller perturbed by noise with full rank covariance of order
1/
√
t is a good idea since this corresponds closely to the case

for which the lower bound is optimized to Ω(
√
T ). Indeed,

this was the strategy pursued by [9] attaining regret of order√
T for the full LQR. This should be contrasted with the

SISO setting in Guo [5] elegantely proving the attainability
of logarithmic rates in that case.

We also wish to mention that the concept of α-fast con-
vergence is much inspired by the notion of uniformly fast
convergence for the related bandit problems, see [14] and
[15]. Indeed, what we have considered here can also be seen
as a stochastic contextual bandit with side information yt and
context decided by rt, see also [16] for an overview of bandits.

A. Future Work

It would be very desirable to extend the present results to
the full dynamic LQR and in particular, there, find conditions
which ensure a similar phase transition as observed here. This
would fully resolve the attainability issue concerning log T
versus

√
T regret, which we here have only begun to inves-

tigate. Moreover, we remark that the (1 − 2α)-unbiasedness
condition needed to prove the final part of Theorem 5.2 is
not the most elegant condition. However unlikely it might
seem that a policy which does not converge “fast” – say
faster than α ≥ 1/3 – has any chance of attaining logarithmic
regret in general, it would be satisfying to tighten the regime
α < 1/3. An interesting direction suggested in [8] is to make
use of concepts from asymptotic statistics [17], such as local
asymptotic normality theory. Another potential direction is to
take a more information-theoretic route toward lower bounds
as in [18] and as is traditional for bandits [14]. This was
recently done for system identification in [19]. Finally, we
note that our work opens up an interesting line of research:
Is it possible to construct an algorithm which adaptively
and without prior knowledge, attains a rate of

√
T in the

uninformative case and log T else?
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APPENDIX

We require the following version of Wedin’s sin Θ Theorem:
Consider matrices M and M̃ = M +T for some perturba-

tion T , with singular value decompositions M = V1Γ1W
>
1 +

V2Γ2W
>
2 , M̃ = Ṽ1Γ̃1W̃

>
1 + Ṽ2Γ̃2W̃

>
2 . If for δ > 0, η ≥ 0,

σmin(Γ̃1) ≥ η + δ and σmax(Γ2) ≤ η then

max
P
‖Ṽ2P − V2‖∞ = O(‖T‖∞)

where the maximization is over the orthogonal group.
The result is due to Wedin [11]. The formulation of the

sin Θ distance as an optimization over the norm ‖·‖∞ appears
for instance in [12].
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