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Abstract—Because of its multi-disciplinary nature,
the development of a mechatronic system requires a
collaborative effort of a variety of design teams from
different disciplines. As a consequence, a variety of
modeling languages, formalisms and tools are needed
during the design process.

On the other hand, the communication issues and
poor interdisciplinary understanding limit the ex-
change of information among these teams. The main
consequence is a high risk of inconsistency between the
different views (or models) of the same system.

In this paper, we propose a model synchronization
methodology to detect inconsistencies between the dif-
ferent models of a mechatronic system. The proposed
method is composed of three phases: first, the entry
models are abstracted into a common representation;
second a comparison process of the abstracted models
allows to identify potential inconsistencies, and finally
the concretization phase acts to solve the detected
inconsistencies.

This approach is illustrated on a case study from
the automotive industry to validate its adequacy in
enhancing collaboration among design teams during
the design process.

Index Terms—Multi-view modeling, SysML, Model-
ica, Altarica, Consistency management.

I. Introduction
Developing mechatronic systems requires the consoli-

dation of models from a variety of disciplines such as
mechanics, electronics, software engineering among others.
Various designers having different perspectives on the
overall system usually create these models using diverse
formalisms. As they are performed by different actors
these models may present some inconsistencies. To ensure
consistency between different models of a mechatronic
system, this work proposes a methodology to detect the
potential differences between these models and then check
whether they are inconsistencies, i.e. one or more designers
omitted or added some parts, or just differences due to

the specificities of the used modeling formalisms or to the
purposes of the considered models.

The contribution of this paper is to provide a first step
towards consistency management of heterogeneous models
involved in the development of mechatronic systems, using
a cooperative process to support the exchange between
different designers.

The methodology allows multi-disciplinary interactions
between multiple designers at an early stage of the devel-
opment process that improve competitiveness and reduce
development time and cost.

Although this work was driven by the interaction is-
sue between three specific domains (i.e. system engi-
neering, dynamic simulation and safety engineering), the
proposed methodology is independent of the studied dis-
ciplines.Therefore, it could be used for further multi-
disciplinary interactions.

Also, the methodology is constructed in such a way
that experts do not need to understand other expertise’s
formalism. Since, they will manipulate more abstract rep-
resentations based on graphs that add more flexibility and
easier understanding of the overall design system without
complete knowledge of the underlining formal systems.

The remainder of the paper is organized as follows.
Section II depicts similar works that deal with assuring
consistency between models. Section III gives a presen-
tation of the proposed methodology. Section IV presents
the case study of the Electronic Throttle Body (ETB).
In section V, we discuss the outcomes of applying our
methodology. Finally, the conclusion is given in the last
section.

II. RELATED WORK
The use of models is a key part of developing and

managing complex systems, relying on Model Driven
Engineering (MDE) approach. This approach allows to



involve a multitude of engineers as well as heterogeneous
formalisms, modeling languages and tools.

To improve the collaboration between different
discipline engineers during complex systems development
process, three types of approaches are typically used:

(1) Integration approaches that incorporate the
different disciplines-specific views in a single model. For
example, to integrate safety analysis in system engineering
process, Mauborgne et al. in [1], [2] proposed to incorpo-
rate safety properties on system architectures viewpoints.

Moreover, CATIA V6 is presented as a commercial
application which proposes a single tool with multiple
views in [3]. The RFLP process corresponds to the
different steps of the conceptual design ( Requirement,
Functional, Logical, Physical). This approach allows
different disciplines to be integrated and be managed in
a collaborative manner.

(2) Model transformation approaches that provide
a mapping from one discipline to another. In this category,
we distinguish two technologies:
First, the use of profiles or SysML (System Modeling
Language) extensions to enrich SysML, transforming sys-
tem models into another language as Modelica Language,
the two well-known profiles are SysML4Modelica [4] and
ModelicaML [5] link SysML to Modelica.

SafeSysE profile [6] which extend system model with
some safety properties such as adding failure modes to
functions and components. The system models are then
used to generate some safety artifacts that will be used by
safety experts.

Second, based on language transformation such as
Triple Graph Grammar, Adourian et al. in [7] had built
a meta-model of the relation between geometric (CAD)
models of a mechanical system and the corresponding
dynamic simulation models to assure consistency between
the two views.

(3) Federative approaches [8] that aim at defining
relationships between model elements with different
concerns. In [9] a framework proposed to implement the
federative approach using the powerful and rich semantics
of the SysML language.

While these approaches allow consistency management
between domain-specific models, they have several practi-
cal limitations. For one, the integration approaches require
that designers must be adaptative in order to design their
model with a single tool, i.e. designers are dependent on
a single tool.

Although, model transformation approaches allow a
diversity of expert tools for design. These approaches
consider oriented relations encoded in the transformation
rules. As a consequence, certain model transformation do
not guarantee consistency between each model developed

(e.g. a SysML model can be transformed into a Modelica
model, while the modification made to the Modelica model
may not be automatically transferred back to the SysML
model).

Also, federative approaches can be criticized by the fact
that the development of such technology must be capable
of managing vast quantitites of data since it manipulates
a database that contains information on each version of
each component of a complex system.

Finally, some works proposed approaches focusing
exclusively on managing inconsistencies.

(4) Inconsistency management approaches
Gausemeier et al. in [10] synchronized domain-specific

models with a cross-domain system specification based
on model transformation. By that, domain-specific models
could be derived initially and changes in one model could
be propagated via the cross-domain specification.

This approach is challenging due to the big number of
modeling languages that can be used for multi-disciplinary
systems. It requires huge effort of encoding large amounts
of knowledge and information in the transformation.

The contribution in this paper is to provide a first step
towards effectively managing inconsistencies in heteroge-
neous models, using a cooperative application to support
dialog between engineering actors.

In this paper, we have selected three particular but rep-
resentative modeling languages for illustrating our cooper-
ative approach: SysML for systems engineering, Modelica
for dynamic simulation and Altarica for safety engineering.

III. METHODOLOGY
To provide a first step towards model synchronization of

mechatronic systems, a conceptual approach is proposed
in this section.

The suggested approach allows to manipulate models,
builds abstracted models and interacts with domain ex-
perts (i.e. designers) using interfaces. It enables to read
models, to extract information from experts viewpoints
(i.e. source viewpoints). It distinguishes and identifies
differences in the information extracted from the source
viewpoints. It enables an “interface” expert to propose
solutions to the detected inconsistencies and to restore
these proposals to manage inconsistencies between differ-
ent experts viewpoints.

This approach, illustrated in Fig. 1, consists in iden-
tifying, classifying and managing differences and incon-
sistencies in the MDE process. In this work, we consider
three different domain-specific models (v0.1, v0.2 and v0.3)
to evaluate the consistency between them. The model
synchronization approach is based on three phases:

Model synchronization
=

Abstraction+ Comparison+ Concretization.



These phases will be described in the following.

Fig. 1: Model Synchronization approach.

A. Abstraction
The first phase consists in defining a common represen-

tational formalism for models to extract knowledge and
information encoded in various models at a same level of
abstraction.

Therefore, we consider directed graph as a generic for-
malism to represent any model consisting in interrelated
elements. A directed graph [11] is formed by vertices
connected by directed edges.

For each entry model, we transform the elements into
vertices and the relationships among elements into edges.
“Model-to-Model” (M2M) transformation [12] is used to
automatically generate abstracted models.

Table I presents an overview of structural constructs
of some modeling languages such as SysML, Modelica
and Altarica and shows how these constructs can be
transformed into a directed graph.

TABLE I: Mapping between SysML, Modelica, Altarica
and directed graph

SysML
(IBD)

Modelica Altarica Directed
graph

Part Class Block/Class Vertex
Port Connector Flow variable Vertex
Connector Connection equation Assertion Edge
item flow causal connection Causal asser-

tion Edge
directionBinding

connector
acausal connection acausal asser-

tion

• Part is the basic element within an Internal Block
Diagram (IBD) that describes blocks in the context of
an owning block. A part can be compared respectively
to a class in Modelica model and to a block or a class
in Altarica model. These elements are associated with
vertices in a directed graph.

• Ports provide a way for parts to interact and come in
two types: “standard ports” and “flow ports”. Ports

can be roughly equivalent to connectors in Modelica
model and to flow variables in Altarica model. These
elements are transformed into vertices in a directed
graph. To simplify the abstracted models, only ex-
ternal elements (i.e. external ports, connectors or
flow variables) are represented via vertices. However,
the internal elements (i.e. ports, connectors or flow
variables connected to components) are omitted. The
input and output direction of these elements are used
to indicate direction edges in a directed graph.

• Connectors in SysML represent connections between
parts via its ports through which energy or informa-
tion is exchanged. They can be compared to connec-
tion equations in Modelica model and to assertions
in Altarica model. They are mapped to edges in a
directed graph to indicate the relationships between
elements.

• item flows indicate the flow direction exchanged be-
tween parts in an IBD model. They can be compared
to causal connections in Modelica model and causal
assertions in Altarica model. The interaction between
components is formalized in terms of input and out-
puts variables. These elements are transformed into
unidirectional edges.

• Binding connectors in SysML model can be compared
to acausal connections in Modelica model and acausal
assertions in Altarica model. Modelica and Altarica
allow acausal modeling, i.e the model is described
by equations and the input-output causality between
components is not fixed to promote model reuse.
These elements are mapped to bidirectional edges in
a directed graph.

Thus, it appears that a comparison can be made be-
tween some of SysML, Modelica and Altarica constructs.

As represented in Fig. 1, the abstraction phase permits
obtaining three abstracted models (v′0.1, v′0.2 and v′0.3) from
entry models, represented in a common formalism using
directed graphs to allow the comparison between models.

B. Comparison
Once the entry models are abstracted in a unique

formalism, they can be compared.
Graph and subgraph isomorphisms [13] are usually

applied to perform a comparison between two different
graphs. Graph isomorphism is used to check whether two
structures are similar and subgraph isomorphism is used to
find whether an input graph is contained in a main graph.

In our study, we are convinced that the structure of dif-
ferent models cannot be the same due to the specification
of different modeling languages. For that reason, we will
use subgraph isomorphism in order to identify differences
and inconsistencies between abstracted models.

Finding subgraph isomorphisms is an important prob-
lem in many applications like bioinformatics, chemistry
and software engineering. Consequently, many algorithms
have been proposed to solve this problem such as Ullmann



[14], Messemer and Bunke algorithm [15], VF2 [16], BB-
Graph [17] and more.

For our comparison, we use NetworkX [18], “a python
package for the creation, manipulation, and study of
structure, dynamics, and functions of complex networks,
to implement the comparison process”. Since a number of
graph algorithms are provided with NetworkX as VF2 for
(sub)graph isomorphism.

Our program uses graph algorithms proposed by Net-
workX to find:
• Possible isomorphism between graphs.
• Common subgraphs between abstracted models.
• Missing nodes in a graph compared to another.
• Missing edges in a graph compared to another.

The result of our program should be analyzed by an
“interface” expert and a report should be created where
differences and inconsistencies are identified and classified
between the abstracted models.

The differences are authorized because they represent
the specification of different modeling languages, while
the inconsistencies should be analyzed and solved by the
“interface” expert and then validated by the designers.
Consequently, we need to update our entry models during
the concretization phase.

As shown in Fig. 1, we consider the system engineering
model as a reference model since system engineering pro-
vides an interdisciplinary approach and a framework for
translating the stakeholders requirements into the defini-
tion of systems that enable the realization of successful
systems. Systems engineering applies over the entire life
cycle of complex systems, from concept development to
final disposal.

Moreover, SysML is defined as a general modeling lan-
guage for systems engineering applications and it supports
the entire design life cycle as specification, analysis, design,
verification and validation of complex systems.

This phase allows to carry out a consistency verification
between multi-domain models created for the development
of a mechatronic system.

C. Concretization
The last phase allows annotating the source models

with the necessary corrections proposed by the “interface”
expert considering the detected inconsistencies from the
previous phase. If the corrective actions proposed by the
“interface” expert are validated by designers, a transfor-
mation is executed to update entry models. The updated
models are represented in their specific languages.

This phase is considered as the opposite process of
the abstraction phase, where our goal is to refine the
entry models based on the corrections proposed during the
comparison phase. It will be implemented using a model-
to-model transformation technique in future works.

The methodology presents many merits compared to
other approaches described in the literature.

First, the suggested methodology applied the model
synchronization approach to propose an automated and
continuous strategy for consistency management that adds
significant value to verification and validation process dur-
ing mechatronic systems development, without encoding
large amounts of transformation knowledge and informa-
tion as suggested in the work focused on the inconsistency
management in the related work.

Second, our methodology allows consistency manage-
ment between diverse viewpoints of a complex system,
meanwhile preserving the sources models of any undesir-
able information from other domains and respecting the
specifications of each language used in the design process.

Also, This work enables the interaction between several
designers at an adapted abstraction level while ensuring
the separation of concerns (i.e. each designer use their own
tool, modeling language and formalism. Furthermore, it
allows the exchange between actors to identify and resolve
possible inconsistencies at an early stage of development.

Moreover, the methodology is independent from the
studied disciplines, which allow the possibility to apply
the methodology in other multi-disciplinary interactions.

Finally, our methodology is better applied for inconsis-
tency management in mechatronic systems, since graphs
provide an extensible and flexible common representations
to process and interpret heterogeneous models without a
complete knowledge of the underlying formal languages.

IV. Case study

The studied system is an Electronic Throttle Body
(ETB) from the automotive industry. An ETB is an
actuator which controls the air supply to the engine to vary
its output torque. This system improves vehicle emissions
and drivability.

The system consists of a DC motor, a gearbox, a failsafe
system with two springs and a position sensor for the
Electronic Controller Unit (ECU) as shown in Fig. 2 [19].

Fig. 2: Electronic Throttle Body architecture.



A. Design models of the ETB
During design process, various views of the system are

established. In our scenario, we consider three different
domain-specific models of the ETB system created during
the engineering process:

A SysML model is developed for outlining the physi-
cal architecture design of the case study using an IBD
diagram. A Modelica model is used to perform dynamic
analyses to predict the system performances.

Finally, an Altarica model that assesses the dysfonc-
tional behavior of the system.

In the following, these models are introduced in more
details.

Fig. 3: Decomposition of the ETB (SysML Internal Block
Diagram).

1) System Engineering Perspective (SysML):
SysML [20] supports the practice of Model-Based Sys-

tems Engineering (MBSE) [21] used to develop system
solutions in response to complex and technological con-
straints.

SysML is a general-purpose graphical modeling lan-
guage specified by OMG that supports the analysis, spec-
ification, design, verification, and validation of complex
systems including hardware, software, data, procedure
among others.

The SysML model is used for the purpose of formally
capturing requirements, specifying the physical decompo-
sition and describing the behavior of the system.

An IBD diagram represents the internal structure de-
composition of a system and models the interconnections
between components. Fig. 3 gives an overview of the the
internal structure of the system via an IBD diagram. The
main function of the ETB is to regulate the air of the
combustion engine. This function is achieved by modifying
the throttle plate angle in a given range [θmin, θmax]. This

angle is controlled by a throttle drive assembly which is
composed of a DC motor, a gearbox and a Limp-Home
assembly. It is measured by a position sensor.

2) Dynamic simulation analysis (Modelica):
Modelica [22] is an object-oriented equation-based mod-

eling language primarily aimed at physical systems. The
language allows defining models in a declarative manner
and supports modular and hierarchical modeling.

It also enables modeling large, complex and heteroge-
neous physical systems containing sub-components from
multiple engineering domains (e.g. electrical, hydraulic,
thermal, mechanical, etc.).

The Modelica language is standardized by the Modelica
Association [22] and is supported by many commercial and
open-source modeling tools.

To predict the performance of our case study, we mod-
eled the ETB in an open loop system in Fig. 4.

Fig. 4: Overview on the ETB simulation model (Modelica).

The Modelica model of the ETB is composed of essen-
tial components as a DC motor, a mechanical inertia, a
gearbox, a valve, a failsafe system with two springs and
other components depend on the study performance we
conduct (e.g. the Stop spring that limits the rotation of
the valve between 0◦ and 90◦ and the friction that induces
the non-linearity of the system). In this way, we can test
many architectures in an early stage.

3) System safety engineering (Altarica):
Altarica [23] is a high-level formal modeling language

dedicated to safety analysis. Altarica semantics are defined
using Guarded Transition Systems (GTS) [24], and for the
structure aspect, Altarica is based on a System Structure
Modeling Language (S2ML) [25] as a structural paradigm
of models.

Once a system model is specified in the Altarica lan-
guage, it can be compiled into a lower-level formalism
such as fault trees, stochastic Petri Nets and other safety
assessments can be performed.

In Fig. 5, we represent the global model of the ETB sys-
tem in Altarica. It is composed of a DC motor, a gearbox, a
Limp-Home Assembly, a sensor and a valve. The assertion
represents the connections between components which
represent the equalities between flow variables. Observers
are defined to calculate the reliability indicators (e.g. the
observer “topEvent” failed when the system cannot supply
air to the valve).



Fig. 5: Safety analysis of the ETB (Altarica).

B. Abstraction
The source viewpoints of system engineering, dynamic

simulation and safety engineering of the ETB system
are subject to a model transformation to obtain three
abstracted views, retracing the structure of different mod-
els. As discussed in the previous section, we propose to
transform our entry models into directed graph represen-
tations, a graphical representation of these abstractions
are represented in Fig. 6.

We define by light blue vertices components belonging to
the studied system and by gray vertices external elements
of the system.

In our case study, the abstracted views of our entry
models are composed of 13 vertices and 16 edges to
represent the SysML model, 17 vertices and 33 edges to
represent the Modelica model and 9 vertices and 8 edges
to represent the Altarica model.

According to graph theory, we can prove that our
abstracted models are not isomorphic since isomorphic
graphs must have the same number of vertices and edges.

Hence, we should execute the comparison phase to
evaluate the consistency between entry models.

C. Comparison
We compare entry models using their directed graph

representations. The comparison is a semi-automatic and
an iterative process.

In our case study, five iterations were sufficient to
evaluate the consistency between the abstracted models
using the comparison process as described in the following:

The first iteration demonstrates just the node “DC
motor” is identical between the three directed graph repre-
sentations. A primary activity that the “interface” expert
should handle is to find label correspondences between the
abstracted models. This activity allows to obtain the Table
II that summarizes the correspondences of component
labels and defines common labels between the different
abstracted models.

Based on the new labeling, the second iteration is
performed. This iteration indicates that in the SysML
and Altarica abstracted models the “DC motor” and
the “Gearbox” are connected although in the Modelica
abstracted model these elements are not connected. The

(a) SysML-IBD directed graph.

(b) Modelica directed graph.

(c) Altarica directed graph.

Fig. 6: Abstraction phase.

TABLE II: Label verification between abstracted models

SysML Modelica Altarica Action
Gearbox Gear Gearbox Gearbox
Position
sensor

- sensor Position
sensor

Instructions - calculator calculator
Main
Spring

LH spring1 Limp
Home
Assembly

Main
Spring

Limp
Home
Spring

LH spring2 Limp
Home
Assembly

Limp
Home
Spring

electric
power

time table electric en-
ergy

Input

Valve valve valve valve

“interface” expert evaluates this difference as an incon-
sistency between models due to a wrong decomposition
of “DC motor” in the Modelica model. To solve this



inconsistency, the “DC motor” and the mechanical inertia
“Jm” should be grouped in the Modelica abstracted model.

Implementing the third iteration, another difference is
detected involving the abstracted models. The “Position
sensor” is represented in SysML model and Altarica model,
but it is not represented in the Modelica model. This differ-
ence is considered as an inconsistency because the target of
modeling an ETB system is to evaluate the air regulation
of the combustion engine. Therefore, The corrective action
proposed by the “interface” expert consists on introducing
the “Position sensor” in the Modelica abstracted model to
simulate the opening degree of the valve.

The fourth iteration emphasizes another difference be-
tween models where the “Limp Home Spring” and the
“Main Spring” are connected to different elements. In
SysML abstacted model, they are connected to the “Gear-
box”. In Modelica abstracted model, they are connected
to the “friction”. Whereas, in Altarica abstracted model,
a “Limp Home Assembly” is connected to the “valve”.
This difference is considered as an inconsistency between
models. The “interface” expert suggests that the “Limp
Home Spring” and the “Main Spring” should be connected
to the valve in the different abstracted models and that the
“Limp Home Assembly” should be decomposed in Altarica
model.

After solving the detected inconsistencies between the
abstracted models, the fifth iteration is executed and the
“interface” expert evaluates that the remaining differences
are due to the specificities of the used modeling formalisms
or to the purposes of the considered models.

We represent in Table III and IV the results of the com-
parison process respectively between SysML and Modelica
abstracted models and then between SysML and Altarica
abstracted models.

This case study allows detecting architectural differ-
ences between the various abstracted models such as: A
different decomposition of the system components can be
proposed, depending on the specific aim of each view.
Specificities of different formalisms and concerns of differ-
ent designers require to include new elements or to remove
others from viewpoints.

Whereas, the inconsistencies can be the result of a
wrong decomposition of the system elements or different
interactions between components compared to the various
models which represent contradictory information among
models.

To conclude, during the comparison process the “inter-
face” specialist can operate different actions to evaluate
the consistency between abstracted models as follows:
• Add new elements (vertices and (or) edges) in an

abstracted model.
• Delete elements (vertices and (or) edges) in an ab-

stracted model.
• Change the element labels (vertices and (or) edges)

in an abstracted model.

• move elements (vertices and (or) edges) in an ab-
stracted model.

• Group or decompose elements (vertices and edges) in
an abstracted model.

The final step in the comparison phase is annotating the
abstracted models with corrections proposed by the “inter-
face” expert in red vertices and (or) edges as represented
in Fig. 7.

(a) SysML-IBD directed graph (Refined).

(b) Modelica directed graph (Refined).

(c) Altarica directed graph (Refined).

Fig. 7: Annotate abstracted models.

D. Concretization
After verification and validation of corrective actions by

designers, the results of the comparison process driven by
the “interface” expert can be applied on models in the
concretization phase.

This phase allows updating entry models with chosen
compromises between the different designers and the “in-
terface” expert.



We represent in Fig. 8 the entry models refined based
on model transformation. We obtained three models (i.e.
SysML, Modelica and Altarica models) updated and rep-
resented in their specific modeling languages.

These models include consistent information to design
the ETB system. Although, the specificities of each mod-
eling language is guaranteed (e.g. in Modelica Model, the
Stop spring and the aerodynamic torque are kept since
they specify other aspects of the system).

(a) SysML-IBD model (Updated).

(b) Modelica model (Updated).

(c) Altarica model (Updated).

Fig. 8: Concretization phase.

V. Discussion
The methodology proposed provides a first step towards

the implementation of an effective consistency manage-
ment framework.

In this paper, we focused as a first step only on
structural aspects of mechatronic systems. The behavioral
part of models is considered to be purpose-dependent.
Therefore, we are convinced that the main way to compare

models is to compare their structures as the structure of
models reflects the structure of the system in a limited
extend. Moreover, we have suggested the methods for
ensuring consistency between architectural models, but
these methods can also be used in further works to manage
consistency between behavioral models.

In the following, we generalize the various categories of
differences considered in this paper. Firstly, we enumerate
the different types of differences captured from the exam-
ple application.
• Unconventional naming Models use different

terms to refer to the same concept in the distinct
domains, since each designer uses very specific vocab-
ulary to represent his model. The fact that designers
use distinct vocabulary can generate differences be-
tween models that have minor impacts on the system
design. To bridge the gap between different domain
models, a common terminology is required and thus
allows automatic definition of interconnections be-
tween the modelled information.

• Level of abstraction Designers can model their
views at different level of abstractions. As a conse-
quence, the design information can be decomposed in
different ways among the different views. For instance,
the valve is decomposed in three sub-components
in SysML model, but in the Modelica and Altarica
models is considered as an atomic component. This
difference is considered to have a minor impact in
the design process as no contradictions are generated
between models.

• Specific design concerns The multi-disciplinary
modeling allows designers to concentrate on specific
design concerns, and the various modeling languages
used provides different packages that can be used to
define specific concerns. For instance, the designer
added some components to evaluate the non-linearity
of the system in Modelica model.

Then, the various types of inconsistencies identified in
our work are shown bellow.
• Conflicting information This type of inconsisten-

cies can have severe impacts in the overall system
design since it provides contradictory information
between the different viewpoints. As an instance, the
main spring and the limp home spring are linked to
different components among the different models in
our case study. This error is due to the separation of
concerns and a misunderstanding and miscommuni-
cation between designers.

• Level of abstraction This type of differences can
also be considered as inconsistencies if it produce
severe impact in the systems development process.
For example, in Modelica model the DC motor is
decomposed into two parts that contradict the SysML
and Altarica model where the DC motor is considered
as an atomic component.



TABLE III: Results of the comparison between SysML and Modelica models (Comp1)

Comparison 1
SysML Modelica Differences Inconsistencies

electric power Time table Labeling -
Main Spring LH spring1 Labeling Connection

Limp Home Spring LH spring2 Labeling Connection
Gearbox Gear Labeling -

DC motor DC motor - Decomposition- Jm -
Valve valve Labeling/Decomposition -

- fixed Language specification -
- fixed2 Language specification -

Position sensor - - Concern
Instructions & Feedback - - Concern

fluid input - Concern -
fluid output - Concern -

- Stop spring Concern -
- aerodynamic torque Concern -
- friction Concern -

TABLE IV: Results of the comparison between SysML and Altarica models (Comp2)

Comparison 2
SysML Altarica Differences Inconsistencies

electric power electric energy Labeling -
Position sensor sensor Labeling -

Instructions & Feedback calculator Labeling -
Main Spring Limp Home Assembly Labeling/Decomposition Connection

Limp Home Spring Limp Home Assembly Labeling/Decomposition Connection
Valve valve Labeling/Decomposition -

fluid input - Concern -
fluid output - Concern -

- engine Concern -
- potential energy Concern -

• The omission of essential elements in the sys-
tem design In this case, the inconsistency may lead
from human errors and a miscommunication between
designers. For example, the simulation designer did
not present the sensor in his model, however the study
conducted consists of controlling the air entered into
the combustion engine so the sensor is considered as
an essential element to predict the performance of our
system.

The set of inconsistencies and differences types is very
preliminary and restricted, since a small system was used
as a case study. To expand the list of differences detected
between various models, a larger case study needs to be
employed that incorporates additional views and models
common to designing mechatonic systems, allowing for
further types of inconsistencies and differences to be iden-
tified.

Our methodology provides a first step towards imple-
menting an efficient framework for managing consistency.
Using the simple case study of the ETB designed through
three models, we were able to demonstrate that models
can be represented by graphs to allow the comparison
of models at the same level of abstraction and then
differences and inconsistencies are identified using graph
comparison algorithms.

However, there are a number of challenges still to be ad-
dressed in the future works, when creating a general frame-
work for consistency management in a multi-disciplinary
design process . First, we should extend our methodology
techniques to evaluate the consistency between behavioral
models. Also, we intend to build a shared repository for
different designers integrated in the design process to pro-
vide a common vocabulary used by the various disciplines
to reduce the iterative cycles of the comparison process.
Finally, we will automate the process of inconsistencies
resolutions to reduce the dependence of this activity to
the “interface” expert actions.

VI. Conclusion
Traditionally, system engineering, dynamic simulation

and safety engineering aspects are described in different
modeling languages (e.g. SysML, Modelica and Altarica).
As a result, the system engineering model is decoupled
from dynamic simulation and safety engineering models
therefore the risk of inconsistencies is high. A complex
system can fail due to miscommunication among engineers
and resulting in wrong decisions taken during design pro-
cess.

In this paper, we propose a methodology to evaluate
consistency in multi-view modeling approach for complex



systems. We show how the proposed approach covers all
phases of an early detection of inconsistency problems in
mechatronic systems design between different views such
as system engineering view, dynamic simulation view and
safety engineering view for safety assessment.

The first phase transforms the different views of a sys-
tem in a common representation based on directed graphs.
The second phase allows to define a mapping of elements
between models by comparing the system structures of
these models and evaluate differences and inconsistencies
detected between abstracted models. The final phase con-
sists of managing differences and inconsistencies in order
to provide consistent information between designers of the
different viewpoints.

Using the methodology described in this paper, en-
gineers will be capable of managing system consistency
through defining a mapping between structuring con-
structs of modeling languages at a higher level of abstrac-
tion while still maintaining the benefits of preserving the
sources models of any undesirable information from other
domains and accept the specification of each language used
in the design process. Moreover, the proposed approach
combines the benefits of synchronizing modeling languages
and the ease of communication between experts during the
design life cycle.

In order to consolidate our work, a case study on the
Electronic Throttle Body (ETB) was given.

Future works should focus on two aspects: 1) proving
the technical viability and practicality, and measuring the
effectiveness of the methodology by implementing a set of
supporting tools and 2) investigate the possibility of ap-
plying our conceptual approach to evaluate the behaviour
consistency of a complex system.
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