
HAL Id: hal-02546655
https://hal.science/hal-02546655

Submitted on 18 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study on SysML and Altarica Model Synchronization
Aroua Berriche, Faïda Mhenni, Abdelfattah Mlika3, Jean-Yves Choley

To cite this version:
Aroua Berriche, Faïda Mhenni, Abdelfattah Mlika3, Jean-Yves Choley. A Study on SysML and
Altarica Model Synchronization. IC3M, Dec 2019, Sousse, Tunisia. �hal-02546655�

https://hal.science/hal-02546655
https://hal.archives-ouvertes.fr

A Study on SysML and Altarica Model

Synchronization

Aroua Berriche1, Faïda Mhenni2, Abdelfattah Mlika³, Jean Yves Choley⁴

1 LMS Laboratory & Quartz Laboratory, Supmeca, 93400 Saint-Ouen, France,

aroua.berriche@supmeca.fr

2 Quartz Laboratory, Supmeca, 93400 Saint-Ouen, France,

Faida.mhenni@supmeca.fr

³ LMS Laboratory, ENISo, 4054 Sousse, Tunisie,

Abdelfattah.mlika@gmail.com

⁴ Quartz Laboratory, Supmeca, 93400 Saint-Ouen, France,

jean.yves.choley@supmeca.fr

Abstract. The development of a mechatronic system involves the use of multiple

models from a variety of domains. These models are created by different actors

using a variety of modeling languages, formalisms, and tools for addressing spe-

cific concerns and are used for representing different views on the same system.

The separation of concerns is considered as a good practice to develop every mod-

el independently from other disciplines. However, a complete separation is impos-

sible. The integration process can produce communication issues and poor under-

standing between various actors. The main consequence is a high risk of

inconsistency between the different models of the same system. In this paper, we

apply a model synchronization methodology to detect inconsistencies between the

different models of a mechatronic system. The proposed method is composed of

three phases: first, the entry models are abstracted into a common representation;

second, a comparison between the abstracted models is carried out to identify po-

tential inconsistencies among various models, and finally, the concretization phase

acts to solve the detected inconsistencies.

Keywords: System engineering, Safety analysis, SysML, Altarica, Consistency

management.

mailto:aroua.berriche@supmeca.fr
mailto:Faida.mhenni@supmeca.fr
mailto:Abdelfattah.mlika@gmail.com
mailto:jean.yves.choley@supmeca.fr

2 Berriche, Mhenni, Mlika, Choley

1 Introduction

Because of its multi-disciplinary nature, the development of a mechatronic sys-

tem requires the consolidation of models from a variety of disciplines such as me-

chanics, electronics, and software engineering among others. Various designers

having different perspectives on the overall system usually create these models us-

ing diverse formalisms. As different actors perform these models, they may pre-

sent some inconsistencies.

The contribution of this paper is to provide a first step towards consistency

management of heterogeneous models involved in the development of mechatron-

ic systems, using a cooperative process to support the exchange between different

designers. The methodology allows multi-disciplinary interactions between multi-

ple designers at an early stage of the development process that improves competi-

tiveness and reduces development time and cost.

The remainder of the paper is organized as follows. Section 2 depicts similar

works that deal with assuring consistency between models. Section 3 gives a

presentation of the proposed methodology. In section 4, the methodology is illus-

trated in a case study from the aircraft industry. Finally, the conclusion is given in

the last section.

2 Related work

To improve the collaboration between various designers integrated into the de-

sign process of a complex system, four types of approaches are typically used:

2.1 Integration approach

This approach proposed to incorporate the different disciplines-specific views

in a single model. For example, to integrate safety analysis in the system engineer-

ing process, Mauborgne et al. (Mauborgne et al., 2015) proposed to incorporate

safety properties on system architectures’ viewpoints. Moreover, CATIA V6

(Kleiner and Kramer, 2013) is presented as a commercial application, which pro-

poses a single tool with multiple views. This approach allows different disciplines

to be integrated and be managed in a collaborative manner.

2.2 Model transformation approach

This approach provides a mapping from one discipline to another. Two tech-

nologies are used to apply this approach:

Firstly, the use of profiles or SysML (System Modeling Language) extensions

to enrich SysML models, transforming system models into another language as

A Study on SysML and Altarica Model Synchronization 3

Modelica Language, the two well-known profiles are SysML4Modelica (Paredis

et al., 2010) and ModelicaML (Schamai et al., 2009) linking SysML to Modelica.

Secondly, based on language transformation such as Triple Graph Grammar,

Adourian et al. (Adourian and Vangheluwe, 2007) had built a meta-model of the

relation between geometric (CAD) models of a mechanical system and the corre-

sponding dynamic simulation models to assure consistency between the two

views.

2.3 Federative approach

Guychard et al. (Guychard et al., 2013) proposed the federative approach that

aims to build a unique database to store all the model data and then execute a par-

tial projection to generate the models for each tool.

Thramboulidis (Thramboulidis, 2013) proposed a framework to implement the

federative approach using the powerful and rich semantics of the SysML lan-

guage.

2.4 Inconsistency management approach

This approach proposed to focus exclusively on managing inconsistencies.

Gausemeier (Gausemeier, 2009) synchronized domain-specific models with a

cross-domain system specification based on model transformation. By that, do-

main-specific models could be derived initially, and changes in one model could

be propagated via the cross-domain specification.

While these approaches allow consistency management between domain-

specific models, they have several practical limitations. For one, the integration

approach requires that designers must be adaptive in order to design their model

with a single tool. Since the model transformation approach considers oriented re-

lations encoded in the transformation rules. Therefore, certain model transfor-

mation does not guarantee consistency between each model developed. Moreover,

the federative approach and the inconsistency management approach can be criti-

cized by the fact that the development of such technologies requires huge effort of

encoding large amounts of knowledge and information to manage consistency be-

tween models.

Therefore, the contribution of this paper is to provide a first step towards effec-

tive managing inconsistencies in heterogeneous models, using a cooperative

method to support dialog between various actors. In this paper, we have selected

two particular but representative modeling languages for illustrating our coopera-

tive approach: SysML for systems engineering and Altarica for safety engineering.

4 Berriche, Mhenni, Mlika, Choley

3 Methodology

To provide a first step towards model synchronization of mechatronic systems,

a conceptual approach is proposed in this section.

The suggested approach consists of identifying, detecting and managing differ-

ences and inconsistencies during the process of design mechatronic systems. This

approach, illustrated in Fig. 1, is based on three phases: abstraction, comparison,

and concretization. These three phases will be described in the following.

Fig. 1 Model synchronization approach

3.1 Abstraction

The first phase includes the representation of entry models (SysML, Altarica)

in a common formalism using graph theory (Ruohonen, 2013). We assume that the

abstraction applies to model-to-model transformation (Mens and Van Gorp, 2006).

Table 1. presents an overview of structural constructs of the modeling languages

SysML and Altarica and shows how these constructs can be transformed into a di-

rected graph.

Table 1. Mapping between SysML, Altarica and directed graph constructs

SysML (IBD) Altarica Directed graphs

Part Block/Class Vertex

Port Flow variable Vertex

Connector Assertion Edge

Each part in an IBD model is transformed into a block or a class in Altarica model

and into a vertex in a directed graph. In addition, each port in an IBD model can

be transformed respectively into a flow variable and vertex in Altarica and di-

rected graph models. Connectors in an IBD model represent connections between

parts via its ports through which energy or information is exchanged. They can be

mapped to assertions in Altarica model and to edges in a directed graph.

A Study on SysML and Altarica Model Synchronization 5

3.2 Comparison

In order to identify differences and inconsistencies between abstracted models,

a subgraph isomorphism algorithm is developed. This algorithm executes three

principal activities:

- Search for possible isomorphism between graphs.

- Search common subgraphs between abstracted models.

- Detect missing nodes and edges in a graph compared to another.

An “interface” expert generates a report that classifies the differences and incon-

sistencies between the abstracted models according to the comparison algorithm

results. The differences are authorized because they represent the specification of

different modeling languages, while the inconsistencies should be analyzed and

solved by the “interface” expert and then validated by designers.

3.3 Concretization

The last phase allows updating the source models using abstracted models. This

latter will be annotated with the necessary corrections proposed by the “interface”

expert according to the detected inconsistencies from the previous phase. This

phase will be implemented using the model-to-model transformation technique.

As a result, we obtain consistent information between the different views of a

global system.

4 Case study

The studied system is an Electro-Mechanical Actuator (EMA) onboard an air-

craft. An EMA is composed of three interconnected equipment, as shown in

Fig. 2. An electric motor, a mechanical transmission and an electronic and soft-

ware part composed of a calculator that controls the system.

Fig. 2 Electro-Mechanical Actuator architecture

6 Berriche, Mhenni, Mlika, Choley

In our scenario, we consider two different domain-specific models of the EMA

system during the engineering process.

A SysML model is developed for outlining the physical architecture design of our

case study using an IBD diagram. An Altarica model that assesses the dysfunc-

tional behavior of the system.

In the following, these models are represented in more detail.

4.1 System Engineering Perspective (SysML)

SysML (OMG, 2012) is a general-purpose graphical modeling language speci-

fied by OMG that supports the analysis, specification, design, verification, and

validation of complex systems including hardware, software, data, procedure

among others. The SysML model is used for the purpose of formally capturing re-

quirements, specifying the physical decomposition and describing the behavior of

the system. An IBD diagram represents the internal architecture of a system and

models the interconnections between components.

Fig. 3 gives an overview of the internal structure of the EMA system using an

IBD diagram. The main function of the EMA is to control the aileron angle of an

aircraft. This function is achieved by three components: the MCU that controls the

system, the geared motor that provides the electric power to the system and the

mechanical transmission that transforms the electric energy into mechanical power

to actuate the aileron of the aircraft.

Fig. 3 Decomposition of the EMA system (IBD diagram)

A Study on SysML and Altarica Model Synchronization 7

4.2 System Safety Engineering (Altarica)

Altarica (Altarica Association, 2017) is a formal modeling language dedicated

to safety analysis. Altarica semantic is defined using Guarded Transition Systems

(GTS) and as a structural paradigm, it is based on a System Structure Modeling

Language (S2ML) as discussed by Prosvirnova (Prosvirnova, 2014). Models,

specified using the Altarica language, can be compiled into a lower-level formal-

ism such as fault trees and other safety assessments can be performed.

In Fig. 4, we represent the global model of the EMA system in Altarica. It is

composed of a gear motor, a screw-nut assembly, and a carter. The assertion rep-

resents the connections between components, and observers are defined to calcu-

late the reliability indicators.

Fig. 4 Safety analysis of the EMA (Altarica)

4.3 Methodology application

We illustrate in the following, the different phases of our methodology based

on the EMA case study.

 Abstraction

The source viewpoints of system engineering and safety engineering of the

EMA system are subject to a model transformation to obtain two abstracted views,

retracing the structure of different models. As discussed in the previous section,

we propose to transform our entry models into directed graph representations, a

8 Berriche, Mhenni, Mlika, Choley

graphical representation of SysML model and Altarica model are represented in

Fig. 5.

We define by light blue vertices components belonging to the studied system

and by gray vertices representing the external elements of the system.

(a) SysML-IBD directed graph model (b) Altarica directed graph model

Fig. 5 Abstraction phase

 Comparison

We compare our entry models using their directed graph representations. The

comparison is a semi-automatic and an iterative process.

We represent in Table 2. the results of the comparison process between SysML

and Altarica abstracted models.

Table 2. Results of the comparison between SysML and Altarica models

SysML Altarica Differences Inconsistencies

Geared Motor gearmotor Labeling -

Mechanical

transmission

Screw-nut Labeling -

Mechanical Pow-

er

mech-m Labeling -

ElectricPower electrical power Labeling connector corre-

sponding to block

Embedded MCU - - Concern

- carter - adding an element

Mechanical pow-

er to Aileron

- - deleting an ele-

ment

This case study allows detecting architectural differences between the different

abstracted models.

 Concretization

An “interface” expert analyzes the differences detected in the comparison

phase in order to propose a list of corrections that will be annotated in abstracted

models. The Fig. 6 represents the different corrections proposed by the “interface”

A Study on SysML and Altarica Model Synchronization 9

expert in the SysML and Altarica directed graph models. The annotations are rep-

resented in red vertices and (or) edges.

 (a) SysML-IBD directed graph model (b) Altarica directed graph model

Fig. 6 The annotation of abstracted models

After verification and validation of corrective actions proposed by the “inter-

face” expert, a model transformation will be executed on the annotated abstracted

models to update entry models. The concretization phase allows updating entry

models with chosen compromises between the different designers and the “inter-

face” expert.

As a result, we ensure that the different models include consistent information

to design the EMA system. Meanwhile, the specificities of each modeling lan-

guage are guaranteed.

5 Conclusion

Traditionally, system engineering and safety engineering aspects are described

in different modeling languages (e.g. SysML and Altarica). As a result, the sys-

tem-engineering model is decoupled from the safety engineering models. There-

fore, the risk of inconsistencies is high. A complex system can fail due to mis-

communication among designers and resulting in wrong decisions taken during

the design process. In this paper, we propose a methodology to evaluate the con-

sistency of mechatronic systems through the multi-view modeling process. We

showed how the proposed approach covers all phases of early detection of incon-

sistency problems in mechatronic systems design between different views such as

system engineering view and safety engineering view for safety assessment. As

future works, we will investigate the possibility of applying our conceptual ap-

proach to evaluate the behavior consistency of a complex system.

10 Berriche, Mhenni, Mlika, Choley

References

Adourian, C., and Vangheluwe, H. (2007). Consistency between geometric and dynamic

views of a mechanical system.

Altarica Association (2017). AltaRica 3.0 Language Specification Version 1.1.

Gausemeier, J. (2009). Management of cross-domain model consistency during the devel-

opment of advanced mechatronic systems.

Guychard, C., Guerin, S., Koudri, A., Beugnard, A., and Dagnat, F. (2013). Conceptual in-

teroperability through Models Federation. 23.

Kleiner, S., and Kramer, C. (2013). Model Based Design with Systems Engineering Based

on RFLP Using V6. In Smart Product Engineering, M. Abramovici, and R. Stark, eds. (Ber-

lin, Heidelberg: Springer Berlin Heidelberg), pp. 93–102.

Mauborgne, P., Deniaud, S., Levrat, E., Bonjour, E., Micaëlli, J.-P., and Loise, D. (2015).

Preliminary Hazard Analysis Generation Integrated with Operational Architecture - Appli-

cation to Automobile. In Complex Systems Design & Management, F. Boulanger, D. Krob,

G. Morel, and J.-C. Roussel, eds. (Cham: Springer International Publishing), pp. 297–309.

Mens, T., and Van Gorp, P. (2006). A Taxonomy of Model Transformation. Electron.

Notes Theor. Comput. Sci. 152, 125–142.

OMG (2012). OMG Systems Modeling Language (OMG SysMLTM).

Paredis, C.J., Bernard, Y., Burkhart, R.M., Koning, H.-P., Friedenthal, S., Fritzson, P.,

Rouquette, N.F., and Schamai, W. (2010). 5.5. 1 An Overview of the SysML-Modelica

Transformation Specification. In INCOSE International Symposium, (Wiley Online Li-

brary), pp. 709–722.

Prosvirnova, T. (2014). AltaRica 3.0: a Model-Based approach for Safety Analyses.

Ruohonen, K. (2013). Graph Theory.

Schamai, W., Fritzson, P., Paredis, C., and Pop, A. (2009). Towards Unified System Mod-

eling and Simulation with ModelicaML: Modeling of Executable Behavior Using Graphical

Notations. pp. 612–621.

Thramboulidis, K. (2013). Overcoming mechatronic design challenges: the 3+ 1 SysML-

view model. Comput. Sci. Technol. Int. J. 1, 6–14.

