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SURFACE WAVES IN A CHANNEL WITH THIN TUNNELS AND WELLS

AT THE BOTTOM: NON-REFLECTING UNDERWATER TOPOGRAPHY

LUCAS CHESNEL, SERGEI A. NAZAROV, AND JARI TASKINEN

Abstract. We consider the propagation of surface water waves in a straight planar channel
perturbed at the bottom by several thin curved tunnels and wells. We propose a method
to construct non reflecting underwater topographies of this type at an arbitrary prescribed
wave number. To proceed, we compute asymptotic expansions of the diffraction solutions
with respect to the small parameter of the geometry taking into account the existence of
boundary layer phenomena. We establish error estimates to validate the expansions using
advances techniques of weighted spaces with detached asymptotics. In the process, we show
the absence of trapped surface waves for perturbations small enough. This analysis furnishes
asymptotic formulas for the scattering matrix and we use them to determine underwater
topographies which are non-reflecting. Theoretical and numerical examples are given.

Key words. Linear water-wave problem, asymptotic analysis, invisibility, scattering matrix,
weighted spaces with detached asymptotics.

1. Introduction.

1.1. Non-reflecting and invisible obstacles in waveguides. We investigate the propagation of
surface water-waves in a planar channel in time-harmonic regime. We assume that the channel coincides,
outside a region where the bottom is geometrically perturbed, with the reference straight channel. We
consider a situation where an incident wave propagates through the channel, hits the geometrical defect
and gives birth to a scattered field. One commonly denotes by R the reflection coefficient, which
corresponds to the amplitude of the backscattered farfield, and by T the transmission coefficient, which
corresponds to the amplitude of the transmitted farfield. Due to conservation of energy, these two
complex numbers satisfy the relation

(1.1) |R|2 + |T |2 = 1.

The scattering coefficients R, T depend on the geometry and satisfy R = 0, T = 1 in the reference
straight channel. In this context, a question of growing interest is to find situations where one has good
transmission properties (see in particular the literature concerning so-called Perfect Transmission Reso-
nances (PTRs) [43, 42, 26, 46, 29]). In particular, one can wish to have perfect transmission in energy,
that is |T | = 1. Due to (1.1), this is equivalent to have R = 0. In this case, following the terminology
introduced in [6], we shall say that the perturbation of the bottom is non reflecting. Note that in this
situation, the transmitted wave in general exhibits a phase shift with respect to the incident field. One
can be more demanding and look for channels where R = 0 and T = 1. In this case, we shall speak of
perfect invisibility.

Usually R and T depend analytically on the geometric parameters defining the channel/waveguide.
As a consequence, non reflecting and invisibility situations are unstable: a small change of the setting
may ruin them. Eigenvalues embedded into the continuous spectrum behave in a similar way, see for
example [2]. In [35, 37], the notion of enforced stability of eigenvalues was introduced and the method
of fine-tuning the geometric parameters to maintain the eigenvalues in the continuous spectrum while
perturbing the problem was developed and rigorously substantiated. To summarize, this method boils
down to mimic the proof of the implicit functions theorem considering a certain indicator of existence
of eigenvalues as a function of the parameters of the problem (geometry of the waveguide, physical
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coefficient in the equation, ...). It was adapted in [6] to the problem of invisibility. More precisely, in
[6] the authors study an acoustic problem in a waveguide with locally gently sloping walls (Fig. 1.1, a))
and propose a method to construct non reflecting perturbations of the reference straight geometry. We
emphasize that the approach of [6] does not allow one to control the phase shift between the incident
field and the transmitted field to impose T = 1. As a consequence, in general the distortion of the wall
is not perfectly invisible.

The method of [6] was then adapted in [7] to the water-wave problem in a planar channel with a
gently sloping bottom (see again Fig. 1.1, a)). In [7], it is shown that for the water-wave problem, the
above technique does not only allow one to find non straight channels where R = 0, |T | = 1 but also
geometries where R = 0, T = 1 (without phase shift between the incident and the transmitted fields). In
other words, it allows one to construct perfectly invisible perturbations of the bottom. To be exhaustive,
we must mention however that the technique does not apply for the particular case where, with the
notation below, a2 6= 2k2 or equivalently, λ 6=

√
2k tanh(

√
2kd).

a) b)

Figure 1.1. a) Gently sloping bottom. b) Bottom with wells.

In order to obtain perfect invisibility (R = 0, T = 1) for the acoustic problem considered in [6], another
way to perturb the reference straight geometry was studied in [5]. It consists in working with waveguides
with several thin rectangles perpendicular to the wall, see Fig. 1.1, b). This singular perturbation gives
a different differential of the scattering coefficients with respect to the geometry (have in mind the proof
of the implicit functions theorem mentioned above) and in [5], it is proved that it allows one to achieve
perfect invisibility in monomode regime by choosing the dispositions and lengths of the rectangles prop-
erly.

In the present work, we adapt the approach of [5] to the water-wave problem (2.4)–(2.6) in the much
more tangled geometry with curved thin tunnels. We will show that the approach of [5] can be used
to get R = 0 for all k ≥ 0 and λ > λ†(k) (again see the notation below) without the above restriction
a2 6= 2k2 which appears when considering smooth perturbations (Fig. 1.1, a)) of the geometry. We will
also prove that this manner of deforming the bottom does not allow one to get T = 1. In most of the
article, we will perturb the reference straight channel by digging thin tunnels. We emphasize that the
results of this article cover the more simple case of rectangular well shaped perturbations, see Fig. 1.1, b)
and §3.3.

1.2. Junctions of domains with different limit dimensions. Invisibility questions are one motiva-
tion of the present article. The technique that we will propose to get R = 0 relies heavily on asymptotic
analysis in junctions of massive domains with thin ligaments and developing new results in this field is
another goal of the paper. The dumbbell (see Fig. 1.2, a)), namely two massive domains Ω± connected by
a thin cylinder Qε with a cross-section of diameter ε, is a classical object in asymptotic analysis. There
are many studies of the Neumann Laplacian showing that its spectrum

0 = λε1 < λε2 ≤ λε3 ≤ . . . ≤ λεn ≤ . . .→ +∞(1.2)

has the following distinguishing feature: the limit set

{λ0
n = lim

ε→0+
λεn }(1.3)

is the union of three spectra, namely the spectra of the Neumann Laplacian in Ω± and the Dirichlet
problem for the operator −∂2

z on the axis of Qε. After the pioneering works [4, 1], this problem has
been investigated in many papers in the original, Fig. 1.2, a), and modified, Fig. 1.2, b), formulations



INVISIBLE TOPOGRAPHY 3

with different methods and goals, see e.g. [11, 22, 30, 31, 40, 12, 34, 16, 17, 18, 3]. In particular, com-
plete asymptotic expansions of eigenvalues and eigenfunctions were constructed in [12] by the methods
of matched asymptotic expansions. Expansions for the solutions to stationary mixed boundary-value
problems were found in [22, 30, 31] by the method of compound asymptotic expansions in dimensions
d ≥ 3 and d = 2.

a) b)

Figure 1.2. a) Dumbbell. b) Junction of a massive body and thin rods.

It is remarkable that convergence theorems for the spectra (1.2) and (1.3) have been obtained for do-
mains Ω± with arbitrary shapes (see e.g. [4]), but the applications of asymptotic analysis have only
been made under additional simplifying assumptions that the boundaries ∂Ω± are flat near the junc-
tions and that the ligaments Qε are perpendicular to them. The main asymptotic terms are the same
for curved surfaces, but the higher-order terms are influenced by the curvature (cf. [30, 31]). Besides,
the derivation of asymptotically sharp estimates becomes much more complicated in the curved case, see
[40, 3] for details. However, the ligaments connecting massive domains are always assumed to be straight.

In this work, we diverge from the traditional formulation for junction problems by, first, considering
curved tunnels (2.2) with variable widths (treating the straight wells Fig. 1.1, b) as a special case in
Section 3.3) and, second, allowing the mid-line of the tunnels to meet the bottom non perpendicularly.
On the other hand, to simplify the treatment of the boundary layers, we make the assumption that the
boundary of the geometry consists of straight segments near the junction zones.

The first asymptotic terms, which are needed in the fine-tuning procedure to find geometries where
R = 0, are constructed by means of the method of matched asymptotic expansions. However, we em-
phasize that if one wishes to construct infinite asymptotic series, it is better to apply the method of
compound expansions which crucially simplifies the iterative process (cf. [22, 30, 31] and others). The
reason is that the limit problems are solved in the same function spaces, whereas the method of matched
asymptotic expansions requires for the solutions with singularities of ever growing orders. In order to
shorten the article, we decide not to present the construction of infinite asymptotic series. But this can
be done.

The very novelty of the asymptotic analysis in this paper lies in the justification scheme in Section
6. First, we will work with the traditional weighted spaces with detached asymptotics, the norms of
which contain the moduli of the scattering coefficients. Consequently, proving error estimates with these
norms directly implies the justification of the asymptotics of the scattering matrix. Second, we will
consider a Sobolev space endowed with a rather exotic norm, which is defined as the infimum of the
norms of several components related to the structure of the junctions (see Section 6). On this occasion,
it is worth to mention that the Sobolev and Hölder norms, even their weighted variants with diversified
weights on functions themselves and their derivatives in different directions, cannot properly reflect en-
tangled composite asymptotic structures of solutions in junctions of thin and massive domains, especially
in the vectorial case, like in elasticity. In this way, our innovative trick allows us to take into account
miscellaneous contributions of all geometric parts of the junctions in the norm. This approach is entirely
new and is certainly expected to be helpful in examining other boundary value problems with singular
perturbations for example in hybrid domains [27, 30, 33, 38] and for elastic junctions [23, 21, 34, 36]
where reactions of thin fragments on longitudinal and transversal loadings are very discrepant.



4 L. CHESNEL, S. A. NAZAROV, AND J. TASKINEN

1.3. Outline of the paper. We start in Section 2 by presenting the setting of the problem. In Section
3, first we give the main terms appearing in the asymptotic expansions of the scattering coefficients R,
T . Then we present the fine-tuning procedure introduced in [6, 7, 5] which allows us to construct non-
reflecting underwater topographies for surface waves at any prescribed k ≥ 0 and λ > λ†(k). In Section
4, we explain how to implement the method numerically and give several examples of non reflecting
channels. Section 5 is dedicated to the formal asymptotic expansion of the scattering solutions. This
provides us in a rather direct way the main asymptotic terms in the decomposition of the scattering
coefficients Rε−, T ε (with the notation below). The most technical part, Section 6, contains the operator
formulation of the problem (2.4)–(2.6) and the derivation of asymptotically sharp estimates for the
solutions with respect to the norms of weighted spaces with detached asymptotics. We emphasize that
these norms are closely connected with the asymptotic structures derived in Section 5, which makes it
quite easy to obtain error estimates. In this part, we also prove the absence of trapped modes in the
channel Πε for ε > 0 small enough. We end the article with some concluding remarks. The main results
of this article are Theorem 3.1 (non-reflecting geometries) and the approach of Section 6 to prove error
estimates for asymptotic expansions using well-chosen norms.

2. Setting of the water-wave problem.

2.1. Notation. Let Π := {x = (y, z) ∈ R × (−d; 0)} be a straight two-dimensional channel. Let Lj ,
j = 1, . . . , J with J ∈ N := {0, 1, . . . }, be a simple smooth curve inside the lower half-plane {x : z < −d},
connecting the points

P−j = (y−j ,−d) and P+
j = (y+

j ,−d) with y+
j−1 < y−j < y+

j < y−j+1,(2.1)

see Fig. 2.1, a). The length of Lj is 2`j > 0. In a neighbourhood of Lj we introduce the local coordinates
(nj , sj) where sj ∈ (−`j ; `j) is the arc length and nj is the oriented distance to Lj . We assume that
Lj intersects the bottom Γd := R × {−d} of the channel at the angles α±j ∈ (0;π) (with the line

(y±j ; +∞)×{−d}) and denote by L̂j a smooth extension of Lj inside Π for the values s ∈ [−`j−δj ; `j+δj ]
for some small δj > 0. We define the domain

T εj :=
{
x : sj ∈ (−`j − δj ; `j + δj), −εH−j (sj) < nj < εH+

j (sj)
}

(2.2)

entering the channel Π (see Fig. 2.1, b)) and set the thin curved strip (tunnel) $ε
j := T εj \ Π. Here

H±j ∈ C∞[−`j − δj ; `j + δj ] are smooth profile functions such that Hj := H+
j +H−j > 0 and ε > 0 is a

small parameter.

y -
2

y -
1

y+
1

y+
2

n
s

-

j

a) b)

s=-l- s=l+

Ξ

Figure 2.1. a) Straight channel Π and defining curves Lj . b) Tunnel defined by a curve.

1 3a) 1- 2- 3-b)

Figure 2.2. a) Tunnels and b) wells in the water domain Πε.
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We consider the channel

Πε := Π ∪$ε
1 ∪ . . . ∪$ε

J(2.3)

with several thin curved tunnels under the bottom, see Fig. 2.2, a). We denote Γ0 := R × {0} the free
surface of Πε. We study the water-wave problem consisting of the Helmholtz equation

−∆uε + k2uε = 0 in Πε,(2.4)

the Neumann (no penetration) boundary condition

∂νu
ε = 0 on ∂Πε \ Γ0,(2.5)

and the (kinematic) Steklov condition on the free surface

∂νu
ε = λuε on Γ0.(2.6)

Here, uε is the velocity potential, ∆ is the Laplace operator and ∂ν stands for the outward normal
derivative so that ∂ν = ∂z on Γ0. Moreover k ≥ 0 is the wave number in the direction perpendicular to
the plane R2 3 x while λ = g−1ω2 is the spectral parameter, ω > 0 being the frequency of time-harmonic
oscillations and g > 0 the acceleration of gravity. Note that in §3.3, we will consider wells as drawn in
Fig. 2.2 , b). In this case, we impose the Neumann condition (2.5) at the ends of the wells.

2.2. Surface waves and scattering matrix. It is known, see e.g. [13, 24], that the continuous
spectrum of the problem (2.4)–(2.6) coincides with the closed semi-axis [λ†; +∞), where the cut-off
value is given by

λ† = λ†(k) := k tanh(kd) = k
ekd − e−kd

ekd + e−kd
.

Note in particular that for k = 0, we have λ† = 0. For any λ > λ†, introduce the functions w± such that

w±(y, z) = e±iy
√
a2−k2(ea(z+d) + e−a(z+d)

)
,(2.7)

where the exponent a = a(λ) > 0 solves the equation

a tanh(ad) = λ.

Observe that w± satisfy the Helmholtz equation (2.4), the Neumann condition (2.5) on the bottom Γd of
the straight channel and the Steklov condition on the free surface Γ0. They correspond to surface waves
propagating along the channel Π from ∓∞ to ±∞ (with a convention of a time-harmonic regime in e−iωt).

Now we focus our attention on the scattering of the waves w± in the singularly perturbed channel Πε.
To describe separately the behaviours at +∞ and −∞, first we introduce two smooth cut-off functions
χ± ∈ C∞(R) such that 0 ≤ χ± ≤ 1,

(2.8) χ± = 1 for ± y ≥ 2`0 and χ± = 0 for ± y ≤ `0.
The parameter `0 > 0 is chosen such that the tunnels (2.2) are all contained in the region {x : |y| < `0}
(in particular, we have −`0 < y−1 < y+

1 < . . . < y−J < y+
J < `0). In the following, we shall say that a

function u satisfying (2.4)–(2.6) is outgoing if it admits the expansion

(2.9) u = χ−Aw
− + χ+Bw

+ + ũ

for some coefficients A, B ∈ C and some remainder ũ which decays exponentially for |y| ≥ `0. More

precisely, one can prove that necessarily ũ decays with the rate O(e−
√
b2+k2|y|), where b is the root of the

transcendental equation

(2.10) − b tan(bd) = λ

in (π/(2d), 3π/(2d)). One can show that the problem (2.4)–(2.6) in Πε admits a solution uε− (resp. uε+)
such that uε− − w+ (resp. uε+ − w−) is outgoing. Due to (2.9), we have the representations

(2.11)
uε− = χ− (w+ +Rε−w

−) + χ+ T
ε
−w

+ + ũε−

uε+ = χ+ (w− +Rε+w
+) + χ− T

ε
+w

− + ũε+,
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where Rε∓, T ε∓ ∈ C and ũε∓ decay exponentially for |x| ≥ `0. The function uε∓ represents the total field
associated with the incident field w± incoming from ∓∞. Uniqueness for uε∓ occurs if and only if trapped
modes are absent. We remind the reader that trapped modes are solutions to (2.4)–(2.6) (without source
term nor incident field) which decay exponentially for |x| ≥ `0. They can appear only for a discrete
set of wavenumbers k (see e.g. [10]). In what follows (see Theorem 6.6), we shall prove that trapped
modes do not exist for ε small enough so that uε∓ are well-defined. In (2.11), Rε∓ and T ε∓ are usually
called reflection and transmission coefficients. It is known that T ε− = T ε+ and to simplify we shall denote
T ε = T ε− = T ε+. The scattering matrix

(2.12) Sε :=

(
Rε− T ε

T ε Rε+

)
is uniquely defined, symmetric and unitary. In particular, we have

(2.13) |Rε−|2 + |T ε|2 = 1 and |Rε+|2 + |T ε|2 = 1 (conservation of energy).

When Rε− = 0, the backscattered field associated with uε− (see (2.11)) is evanescent. Note that in this
situation, due to (2.13), we also have Rε+ = 0, |T ε| = 1 and as mentioned in the introduction, we say
that the family of tunnels $ε

1, . . . , $
ε
J is non-reflecting.

3. Non-reflecting topographies

Below we will compute asymptotic expansions of the functions uε± defined in (2.11) with respect to
ε. Then we will derive expansions of the scattering coefficients of the matrix Sε. Since the procedure
is a bit long, we first give the main results and explain how to use them to construct non-reflecting
topographies, that is to obtain Rε− = 0. For the construction of the asymptotics and the proof of error
estimates, we refer the reader to Sections 5 and 6 respectively.

3.1. Asymptotics of the scattering coefficients. In what follows, for the reflection and transmission
coefficients we shall consider the expansions:

(3.1) Rε− = R0
− + εR

′
− + εR̃ε−; T ε = T 0 + εT

′
+ εT̃ ε.

Here R0
−, R

′
−, T 0, T

′
are complex constants which are independent of ε and R̃ε−, T̃ ε correspond to some

abstract remainders. First we will show that R0
− = 0 and T 0 = 1. This is natural because when ε→ 0,

the thin tunnels disappear and the incident wave w+ propagates in Π without being perturbed. Next
for the correction terms in (3.1), we will establish the following important formulas

(3.2) R′− =
− i

2N
√
a2 − k2

J∑
j=1

∫ `j

−`j
Hj(s)

((
dv0
j

ds
(s)

)2

+ k2(v0
j (s))

2

)
ds

(3.3) and T ′ =
− i

2N
√
a2 − k2

J∑
j=1

∫ `j

−`j
Hj(s)

(∣∣∣∣dv0
j

ds
(s)

∣∣∣∣2 + k2|v0
j (s)|2

)
ds.

Here N := (2a)−1 (e2ad − e−2ad) + 2d is a normalisation factor and Hj(s) = H+
j (s) + H−j (s) > 0

corresponds to the rescaled thickness of the curved strip $ε
j . Moreover, the functions v0

j are defined as
the solutions to the problems

(3.4)
−
d

ds

(
Hj(s)

dv0
j

ds
(s)
)

+ k2Hj(s)v
0
j (s) = 0 for s ∈ (−`j ; `j)

v0
j (±`j) = w+(y±j ,−d).

In §4.1, we will give explicit examples of setting where the geometrical parameters are such that R′− = 0.
In this case, the family of tunnels is almost non-reflecting. More precisely, in this situation a perturbation
of the straight channel Π of order ε produces a reflection of order ε2 only. However, due to the presence

of the remainder R̃ε− in the representation (3.1), the identity R′− = 0 does not yet suffice to guarantee
the non-reflectability. Therefore, we have to refine our strategy.
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3.2. The fine-tuning procedure. Let us fix once for all a family of geometrical parameters

y±j , Lj , `j , H
±
j , j = 1, . . . , J,(3.5)

such that R′− = 0. Now we shift two tunnels along the abscissa axis. More precisely, for h = (h1, h2)> ∈
R2 we assume that $ε

1, $ε
2 (reindex the tunnels if necessary) are changed into $ε

1(h), $ε
2(h) with

$ε
j (h) := {x = (y, z) : (y − hj , z) ∈ $ε

j}, j = 1, 2.(3.6)

We regard h = (h1, h2)> ∈ R2 as small parameters which are independent of ε. We denote respectively
Rε−(h) and T ε(h) the reflection and transmission coefficients in the geometry

(3.7) Πε(h) := Π ∪$ε
1(h) ∪$ε

2(h) ∪$ε
3 ∪ . . . ∪$ε

J .

Similarly to (3.1), we have the expansion

(3.8) Rε−(h) = 0 + εR′−(h) + εR̃ε−(h).

Here R′−(h) is given by (3.2) with, for j = 1, 2, v0
j defined as the solution to (3.4) with a data w+(y±j ,−d)

replaced by w+(y±j + hj ,−d). One observes that the map h 7→ R′−(h) is analytic. Therefore, we have
the expansion

(3.9) R′−(h) = R′−(0, 0) + h1
∂R′−
∂h1

(0, 0) + h2
∂R′−
∂h2

(0, 0) + R̃′−(h)

where R̃′−(h) is an abstract remainder. Using that R′−(0, 0) = 0 (this results from the particular choice
of the geometrical parameters (3.5)), we find that there holds Rε−(h) = 0 if and only h ∈ R2 solves the
following system of transcendental equations

(3.10)

0 = ε−1<eRε−(h) = h1<e
∂R′−
∂h1

(0, 0) + h2<e
∂R′−
∂h2

(0, 0) + <e R̃′−(h) + <e R̃ε−(h),

0 = ε−1=mRε−(h) = h1=m
∂R′−
∂h1

(0, 0) + h2=m
∂R′−
∂h2

(0, 0) + =mR̃′−(h) + =mR̃ε−(h).

This is equivalent to have

(3.11) Mh = Gε(h) with Gε(h) :=

(
−<e R̃′−(h)−<e R̃ε−(h)

−=mR̃′−(h)−=mR̃ε−(h)

)

(3.12) and M :=


<e

∂R′−
∂h1

(0, 0) <e
∂R′−
∂h2

(0, 0)

=m
∂R′−
∂h1

(0, 0) =m
∂R′−
∂h2

(0, 0)

 ∈ R2×2.

To continue the procedure, we have to assume that the geometrical parameters y±j , Lj , `j , H
±
j are also

such that the matrix M is invertible (again, see §4.1 for examples where this assumption is satisfied).
Then h solves (3.11) if and only if it is a solution to the problem

(3.13)
Find h ∈ R2 such that

h = G ε(h)

with G ε(h) := M−1Gε(h). Thus we obtain a fixed point equation. Let us prove that for a given % > 0
small enough, G ε(·) is a contraction in the closed ball B% := {h ∈ R2 : |h| ≤ %} for all ε ∈ (0; ε0(%)].
First, since h 7→ R′−(h) is analytic, we have

(3.14) |R̃′−(h)| ≤ c |h|2 and |R̃′−(h(1))− R̃′−(h(2))| ≤ c |h(1) + h(2)| |h(1)− h(2)|, ∀h, h(1), h(2) ∈ B%.
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We emphasize that c in (3.14) and in the estimates below is independent of % small enough. Moreover,

we will prove that h 7→ Rε−(h) is smooth. We will deduce that the remainder h 7→ R̃ε−(h) in (3.8) is also
smooth. More precisely, we will show (see Theorem 5.2 and §6.6) the estimates, for all δ ∈ (0; 1/2),

(3.15) |R̃ε−(h)| ≤ c ε1/2−δ and |R̃ε−(h(1))− R̃ε−(h(2))| ≤ c ε1/2−δ |h(1) − h(2)|, ∀h, h(1), h(2) ∈ B%.

This allows us to write, using also the invertibility of M,

|G ε(h)| ≤ c |Gε(h)| ≤ c
(
|h|2 + ε1/2−δ)

and guarantees that G ε(·) maps B% to B% for % small enough and all ε ∈ (0; ε0(%)]. On the other hand,

for h(1), h(2) ∈ B%, we have

(3.16)
|G ε(h(1))− G ε(h(2))| ≤ c

(∣∣R̃′−(h(1))− R̃′−(h(2))
∣∣+
∣∣R̃ε−(h(1))− R̃ε−(h(2))

∣∣)
≤ c

(
|h(1)|+ |h(2)|+ ε1/2−δ) |h(1) − h(2)|,

which ensures that G ε(·) is a contraction for % small enough and all ε ∈ (0; ε0(%)]. Now the Banach
contraction mapping principle proves the existence of a unique solution hsol to (3.13) in B%. Moreover,
we have the estimate

|hsol
1 |+ |hsol

2 | ≤ c0 ε
1/2−δ.(3.17)

This leads us to the announced assertion on non-reflectability.

Theorem 3.1. Let k ≥ 0 and λ > λ† be fixed. Assume that the geometrical parameters y±j , Lj , `j , H
±
j ,

j = 1, . . . , J are such that the coefficient R′− in (3.2) satisfies R′− = 0 and the matrix M in (3.12) is
invertible. Then, there exist ε0 > 0 and c0 > 0 such that, for all ε ∈ (0; ε0] the problem (3.13) has a
solution hsol = (hsol

1 , hsol
2 ) which satisfies the estimate (3.17). Then we have Rε−(hsol) = 0, i.e. in the

channel Πε(hsol), the wave w+ passes the family of tunnels without reflection.

Note that according to formula (3.3), we have =mT ′(hsol) ≤ 0. And there holds =mT ′(hsol) < 0
as soon as the parameters are not such that [k = 0 and w+(y−j ,−d) = w+(y+

j ,−d), ∀j = 1, . . . , J ].

When =mT ′(hsol) < 0, at least for ε small enough, the transmission coefficient T ε(hsol) has a negative
imaginary part: =mT ε(hsol) < 0. This means that after passing the tunnels the wave w+ certainly gets
a phase shift, although it is of the order ε only.

Remark 3.2. To achieve non-reflectability we have only varied the positions of the tunnels, although
the other geometric parameters (3.5) could evidently be varied as well. However, doing so, the smooth
dependence of the reflection coefficient Rε−(h) on the perturbation parameter h would require other
arguments, which would possibly be more involved than the simple change of coordinates in (6.68). �

3.3. The case of wells. We mainly keep the notation of Section 2.1 but replaced the tunnels $ε
j by

the wells

$ε
j− := {x ∈ $ε

j : sj < 0}, j = 1, . . . , J.

Then we set Πε = Π ∪ $ε
1− ∪ . . . $ε

J− (see Fig. 2.2, b)) and consider the original water-wave problem
(2.4)–(2.6) in the new channel Πε. Then adapting the approach below, we find that the reflection and
transmission coefficients for the scattering solution uε− (see (2.11)) admits the asymptotic expansions

(3.18) Rε− = 0 + εR
′
− + . . . ; T ε = 1 + εT

′
+ . . . .

with R′− =
− i

2N
√
a2 − k2

J∑
j=1

∫ 0

−`j
Hj(s)

((
dv0
j

ds
(s)

)2

+ k2(v0
j (s))

2

)
ds

and T ′ =
− i

2N
√
a2 − k2

J∑
j=1

∫ 0

−`j
Hj(s)

(∣∣∣∣dv0
j

ds
(s)

∣∣∣∣2 + k2|v0
j (s)|2

)
ds.
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Here again N = (2a)−1 (e2ad− e−2ad) + 2d and Hj(s) = H+
j (s) +H−j (s) > 0 corresponds to the rescaled

thickness of the strip $ε
j−. Moreover, the functions v0

j are defined as the solutions to the problems

(3.19)
−
d

ds

(
Hj(s)

dv0
j

ds
(s)
)

+ k2Hj(s)v
0
j (s) = 0 for s ∈ (−`j ; 0)

v0
j (−`j) = w+(y−j ,−d), ∂sv

0
j (0) = 0.

Note that the last Neumann condition originates from the no-penetration condition ∂νu
ε(x) = 0 on the

end face {x ∈ $ε
j : sj = 0} of the curved well $ε

j−. The mixed boundary-value problem (3.19) is still
uniquely solvable. The justification of asymptotics in this case is completely similar to the case of tunnels
below. As a consequence, the fine-tuning scheme of §3.2 still works and provides examples of families of
non-reflecting wells.

4. Numerical experiments.

In this section, we implement numerically the approach leading to the Theorem 3.1 above.

4.1. Preliminaries calculus. The first step in the procedure presented in the previous section consists
in finding geometrical parameters y±j , Lj , `j , H

±
j , j = 1, . . . , J, such that the coefficient R′− in (3.2) sat-

isfies R′− = 0 and the matrix M in (3.12) is invertible. To proceed, we divide the analysis according to
the value of k.

? Case k = 0. When k = 0, the solution of problem (3.4) satisfies Hj(s)dsv
0
j (s) = constant for

s ∈ (−`j ; `j). Using the boundary conditions, we deduce that

v0
j (s) = w+(y−j ,−d) +

(
w+(y+

j ,−d)− w+(y−j ,−d)
)( ∫ `j

−`j

1

Hj(s)
ds
)−1(∫ s

−`j

1

Hj(s)
ds
)
.

Set Hj :=
(∫ `j

−`j

1

Hj(s)
ds
)−1

. We have dsv
0
j (s) = (w+(y+

j ,−d) − w+(y−j ,−d))Hj/Hj(s). Inserting the

latter relation in (3.2) and using that w+(y±j ,−d) = 2eiy
±
j

√
a2−k2 , we obtain

(4.1) R′− =
− i

2Na

J∑
j=1

Hj(w+(y+
j ,−d)− w+(y−j ,−d))2 =

− 2i

Na

J∑
j=1

Hj(eiy
+
j a − eiy

−
j a)2.

Take J = 3, Hj = H, `j = `, j = 1, 2, 3 so that Hj = H, j = 1, 2, 3. In other words, we consider a
situation with three similar tunnels. Then set

(4.2) y−1 = −
π

3a
; y−2 = 0; y−3 =

π

3a
; and y+

j = y−j +
η

a
with η ∈ (0;

π

3
).

In this case, according to (4.1), we have

R′− =
− 2i

Na
H

3∑
j=1

(eiη − 1)2 e2iy−j a =
− 2i

Na
H (eiη − 1)2(e−2iπ/3 + 1 + e2iπ/3) = 0.

Then, when we translate the position of the tunnels 1 and 2 respectively by h1 and h2, according to

(4.1), we find R′−(h1, h2) = −2iH(Na)−1 (eiη − 1)2 (e2i(y−1 +h1)a + e2i(y−2 +h2)a + e2iy−3 a). We deduce

∂R′−
∂h1

(0, 0) =
4

N
H (eiη − 1)2 e2iy−1 a and

∂R′−
∂h2

(0, 0) =
4

N
H (eiη − 1)2 e2iy−2 a.

Thus the matrix M in (3.12) is invertible if and only if the ratio e2iy−2 a/e2iy−1 a = e2iπ/3 is not a real
number, which is indeed the case.
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? Case k > 0. When k > 0, to simplify the presentation, we assume that Hj(s) = H0
j does not

depend on s (the width of the tunnels is constant). Then the function v0
j satisfies

−
d2v0

j

ds2
(s) + k2v0

j (s) = 0 for s ∈ (−`j ; `j)

v0
j (±`j) = w+(y±j ,−d).

We deduce that v0
j is given by

v0
j (s) = w+(y−j ,−d) cosh(k(s+ `j)) +

(
w+(y+

j ,−d)− w+(y−j ,−d) cosh(2k`j)
) sinh(k(s+ `j))

sinh(2k`j)
.

We can also write v0
j (s) = Aj e

ks +Bj e
−ks with

Aj =
ek`jeiy

+
j

√
a2−k2 − e−k`jeiy

−
j

√
a2−k2

sinh(2k`j)
and Bj =

− e−k`jeiy
+
j

√
a2−k2 + ek`jeiy

−
j

√
a2−k2

sinh(2k`j)
.

Then we have ∫ `j

−`j

(
dv0
j

ds
(s)

)2

+ k2(v0
j (s))

2 ds = 2k(A2
j +B2

j ) sinh(2k`j).

Using in particular that Hj = 2`jHj , we deduce

(4.3)

R′− =
− i

2N
√
a2 − k2

J∑
j=1

∫ `j

−`j
Hj

((dv0
j

ds
(s)
)2

+ k2(v0
j (s))

2

)
ds

=
− ik

N
√
a2 − k2

J∑
j=1

Hj(A
2
j +B2

j ) sinh(2k`j)

=
− 2i

N
√
a2 − k2

J∑
j=1

Hj
(
Aj (e2iy−j

√
a2−k2 + e2iy+j

√
a2−k2)− 2Bj ei(y

−
j +y+j )

√
a2−k2

)
with

Aj = 2k`j
e2k`j + e−2k`j

e2k`j − e−2k`j
and Bj =

4k`j

e2k`j − e−2k`j
.

Note that one can verify that taking the limit k → 0 in (4.5), we get back the relation (4.1) obtained
for k = 0. In order to have R′− = 0, we take J = 3, Hj = H, `j = `, j = 1, 2, 3 so that Aj = A, Bj =
B, Hj = H, j = 1, 2, 3. In other words, again we consider three similar tunnels. Then we set

(4.4)

y−1 = −19

12

π√
a2 − k2

, y−2 =
3

4

π√
a2 − k2

, y−3 =
25

12

π√
a2 − k2

,

y+
1 = −13

12

π√
a2 − k2

, y+
2 =

5

4

π√
a2 − k2

, y+
3 =

31

12

π√
a2 − k2

.

Using that y+
j − y

−
j = π/(2

√
a2 − k2), we find

(4.5) R′− =
− 2i

N
√
a2 − k2

H
(
− 2B(e−2iπ/3 + 0 + e2iπ/3) +

3∑
j=1

A e2iy−j
√
a2−k2 (1− 1)

)
= 0.

Now translating the position of the tunnels 1 and 2 respectively by h1 and h2, according to (4.1), we
find

R′−(h1, h2) =
− 2i

N
√
a2 − k2

H
3∑
j=1

(
A (e2i(y−j +hj)

√
a2−k2 + e2i(y+j +hj)

√
a2−k2)

−2B ei((y
−
j +hj)+(y+j +hj))

√
a2−k2

)
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with h3 = 0. Then for j = 1, 2, we obtain

∂R′−
∂hj

(h1, h2) =
4

N
H
(
A (e2i(y−j +hj)

√
a2−k2 + e2i(y+j +hj)

√
a2−k2)− 2B ei((y

−
j +hj)+(y+j +hj))

√
a2−k2

)
and so

∂R′−
∂hj

(0, 0) =
4

N
H
(
A (e2iy−j

√
a2−k2 + e2iy+j

√
a2−k2)− 2B ei(y

−
j +y+j )

√
a2−k2

)
.

Thus for our choice (4.4) of the positions of the tunnels, we obtain

∂R′−
∂h1

(0, 0) = −
8

N
HB e−2iπ/3 and

∂S′−
∂h2

(0, 0) = −
8

N
HB .

As a consequence, the matrix M is indeed invertible.

Remark 4.1. If J = 2, which corresponds to the case of only two tunnels, the matrix M is always non
invertible because |Rε−| is invariant with respect to the coordinate change (y, z) 7→ (y − h0, z). In this
case we would only have the real parameter h2 − h1 instead of the couple (h1, h2) which is not enough
to cancel one complex coefficient. �

Above we presented two examples. Of course, the list can be enlarged readily.

4.2. Numerical procedure. Numerically, we solve the fixed point problem (3.13) using an iterative
procedure. More precisely, we start from some arbitrary h0 := (h0

1, h
0
2)> ∈ R2 whose norm is not “too

large” and then, for a given hn ∈ R2, we set

(4.6) hn+1 := G ε(hn) ⇔ Mhn+1 = Gε(hn) =

(
−<e R̃′−(hn)−<e R̃ε−(hn)

−=mR̃′−(hn)−=mR̃ε−(hn)

)
.

Let us explain how to compute the right hand side in (4.6). Using (3.9) in (3.8), we get

Rε−(hn) = ε

(
hn1
∂R′−
∂h1

(0, 0) + hn2
∂R′−
∂h2

(0, 0) + R̃′−(hn) + R̃ε−(hn)

)
.

Extracting the real and imaginary parts, we deduce from the definition of Gε(hn) (see (4.6)) that there
holds

Gε(hn) = Mhn − ε−1

(
<eRε−(hn)
=mRε−(hn)

)
.

Using the latter relation in (4.6), we see that hn+1 is related to hn by the simple formula

(4.7) hn+1 := hn − ε−1M−1

(
<eRε−(hn)
=mRε−(hn)

)
.

In (4.7), the coefficient Rε−(hn) is computed at each step n ≥ 0 solving the scattering problem

(4.8)

Find uε−(hn) such that uε−(hn)− w+ is outgoing and

−∆uε−(hn) + k2uε−(hn) = 0 in Πε(hn)

∂νu
ε
−(hn) = 0 on ∂Πε(hn) \ Γ0

∂νu
ε
−(hn) = λuε−(hn) on Γ0.

Note that the geometry of the channel Πε(hn) depends on the step n ≥ 0. Then according to the
representation (2.11), the coefficient Rε−(hn) is given by

(4.9) Rε−(hn) = N−1

∫
{−2`0}×(−d;0)

(uε−(hn)− w+)w+ dσ,

where N = (2a)−1 (e2ad− e−2ad) + 2d (see after (3.3)). At each step n ≥ 0, we approximate the solution
of problem (4.8) with a P2 finite element method in Πε

11(hn) := {x = (y, z) ∈ Πε(hn) | |y| < 11}. We
emphasize in particular that at each step, it is necessary to mesh the domain. At y = ±11, a truncated
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Dirichlet-to-Neumann map with 10 terms serves as a transparent boundary condition. Computations
are implemented with FreeFem++1 while results are displayed with Paraview 2.

4.3. Results. The results we obtain are displayed in Figures 4.1–4.3. We start with h0 = (0, 0)> and
set ε = 0.2. For the Figure 4.1, we take k = 0, λ = 1 and we fix the geometrical parameters as in (4.2)
with y−1 = −π/(3a) − 2π/a, y−2 = 0, y−3 = π/(3a) + 2π/a and y+

j = y−j + π/2. For the Figure 4.2, we
set the parameters as in Figure 4.2 except for the definition of the third tunnel. Here $ε

3 is constructed
from the half circle passing through P±3 = (y±3 ,−d) with y−3 = π/(3a) + π/a and y+

3 = y−3 + 3π/4 (we
enlarge the radius of the third tunnel to break the symmetry). We emphasize that in this setting we
do not have R′−(0, 0) = 0. However, this is not a problem and one can prove that the sequence (hn)

constructed via the recursive relation (4.7) converges to some hsol ∈ R2 such that Rε−(hsol) = 0. Finally,
for the Figure 4.3, we take k = 0.5, λ = 1 and the geometrical parameters as in (4.4). For each setting,
we represent the real parts of uε−(hn) (top), w+ (middle) and uε−(hn)−w+ (bottom) after 15 iterations
(n = 15). As expected, we observe that the amplitude of the scattered field uε−(hn)− w+ is very small
in the incident direction (no reflection). Interestingly, the fixed point procedure converges though the
parameter ε (the width of the tunnels) is not very small (here ε = 0.2). As predicted by the theory, one
can also observe a small phase shift between the incident and the transmitted fields.

Figure 4.1. Real parts of uε−(hn) (top), w+ (middle) and uε−(hn)− w+ (bottom) after

15 iterations. Here k = 0 and λ = 1. We obtain Rε− ≈ (0.17 + 1.87i) 10−6 and hsol ≈
(−0.18,−0.09)>.

5. Derivation of the asymptotic expansions

In this section, we compute an asymptotic expansion of the function uε− defined in (2.11) with respect
to ε. In the straight channel Π, at least “far” from the junctions with the tunnels, we make the ansatz

(5.1) uε− = u0 + εu′ + . . . .

Here and in what follows, the dots stand for inessential higher-order terms. Our goal is to identify the
functions u0, u′. This will allow us to compute the terms in the ansatz for the reflection and transmission
coefficients

Rε− = R0
− +R′− + . . . ; T ε = T 0 + T ′ + . . . .

The justification of the expansions with the proof of error estimates will be given in Section 6.

1FreeFem++, http://www.freefem.org/ff++/.
2Paraview, http://www.paraview.org/.

http://www.freefem.org/ff++/
http://www.paraview.org/
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Figure 4.2. Real parts of uε−(hn) (top), w+ (middle) and uε−(hn)− w+ (bottom) after

15 iterations. Here k = 0 and λ = 1. We obtain Rε− ≈ (2.65 − 0.04i) 10−7 and hsol ≈
(0.2, 0.31)>.

Figure 4.3. Real parts of uε−(hn) (top), w+ (middle) and uε−(hn)− w+ (bottom) after

15 iterations. Here k = 0.5 and λ = 1. We obtain Rε− ≈ (1.21 + 0.6i) 10−6 and hsol ≈
(−0.23,−0.11)>.

5.1. Main asymptotic terms. In Π, as a first approximation of uε−, it is natural to take w+ because
when ε tends to zero, the tunnels disappear and then the incident wave does not suffer from scattering.
Therefore we set u0 = w+.

Now let us focus our attention on the approximation of uε− in the thin tunnels $ε
j . To simplify the

notation, we omit the index j. As usual, we stretch the transversal section of the tunnel considering the
change of variables

n 7→ ζ = ε−1n ∈ Υ(s) := (−H−(s);H+(s) )(5.2)

while keeping the longitudinal coordinate s unchanged. The Laplace operator in the local coordinates

∆x = A(n, s)−1∂n(A(n, s)∂n ) +A(n, s)−1∂s(A(n, s)−1∂s )(5.3)

admits the decomposition

∆x = ε−2∂2
ζ + ε−1κ(s)∂ζ + ∂2

s − κ(s)2ζ∂ζ + . . . .(5.4)
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In (5.3), ∂n = ∂/∂n and so on, A(n, s) = 1+κ(s)n and κ(s) is the curvature of L at the point s ∈ (−`; `).
The unit outward normal vector νε± on the lateral sides of the tunnel $ε is as follows:

νε±(s) =
(
1 + ε2A(±εH±(s), s)−2|∂sH±(s)|2

)−1/2
(
± 1,−

ε∂sH
±(s)

A(±εH±(s), s)

)
.

Notice that this vector is written in the local coordinate system (n, s) and therefore

∂νε± = νε±(s) ·
(
∂n, A(n, s)−1∂s

)
= ±ε−1∂ζ − ε∂sH±(s)∂s + . . . .(5.5)

Following the standard dimension reduction procedure in thin domains, see e.g. [28, Chap. 15], in $ε,
we consider the ansatz

uε(x) = v0(s) + εv′(ζ, s) + ε2v′′(ζ, s) + . . .(5.6)

where the functions v0, v′ and v′′ have to be determined. Inserting (5.6) into the initial problem (2.4)–
(2.6) restricted to $ε, using (5.4), (5.5) and collecting the terms of order ε−1, we arrive at

−∂2
ζ v
′(ζ, s) = 0, ζ ∈ Υ(s),

±∂ζv′(±H±(s), s) = 0.

Since the problem is homogeneous, we have to set v′(ζ, s) = v′(s). Now collecting the terms at order
ε0 = 1 when inserting (5.6) in (2.4)–(2.6) restricted to $ε, we obtain

(5.7)
−∂2

ζ v
′′(ζ, s) = ∂2

sv
0(s)− k2v0(s), ζ ∈ Υ(s),

±∂ζv′′(±H±(s), s) = ∂sH
±(s)∂sv

0(s).

The compatibility condition for (5.7) writes

(5.8)

∫
Υ(s)

∂2
sv

0(s)− k2v0(s) dζ + ∂sH
+(s)∂sv

0(s) + ∂sH
−(s)∂sv

0(s) = 0.

Since the length of Υ(s) is equal to H(s) = H+(s) + H−(s) > 0 (the rescaled thickness of the curved
strip $ε), (5.8) turns into the ordinary differential equation

−
d

ds

(
H(s)

dv0

ds
(s)
)

+ k2H(s)v0(s) = 0 for s ∈ (−`; `).(5.9)

In order to close problem (5.9), we have to impose boundary conditions. To proceed, we match the value
of v0 with the one of uε−|Π at order ε0 = 1 at the junction points P±. This gives us

v0(±`) = w+(y±,−d).(5.10)

Thus (5.9)-(5.10) form the resultant problem on the arc L introduced in (3.4).

5.2. Correction terms. For the moment, we have formally derived an expansion at order ε0 = 1 of uε−
in Πε. Now, we wish to get a better approximation at order ε. In particular, we want to identify the
term u′ in the ansatz uε− = w+ + εu′ + . . . in Π (see (5.1)). Inserting this expansion in (2.4)-(2.6) and
making ε→ 0, we find that u′ must satisfy

(5.11)

−∆u′ + ku′ = 0 in Π,

∂νu
′ = 0 on Γd \

⋃
±

J⋃
j=1

P±j

∂νu
′ = λu′ on Γ0.

In order to define completely (uniquely) u′, we have to impose conditions at the junction points P±j . To

proceed, we will employ the method of matched asymptotic expansions, cf. [44, 15], which consists in
matching the behaviour of uε− in a neighbourhood of P±j with the behaviour of a inner expansion of uε−
at infinity. Note that to obtain a non zero corrector u′, we have to allow singular behaviours at the P±j .
In the following, to simplify notation, again we omit the index j.
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2

±

±

±

Figure 5.1. Junction of the massive body and of the thin inclined tunnel.

In the junction zone near the endpoints P± of the curve L, we anticipate the existence of a bound-
ary layer phenomenon. To capture it, in this region the asymptotic behaviour of uε− will be described in
the stretched coordinates

ξ± = (ξ±1 , ξ
±
2 ) = ε−1(y − y±, z + d) = ε−1(x− P±j ).(5.12)

To simplify the proofs, especially the justification procedure in Section 6, cf. Remark 5.1, we assume that
the profile functions H± in (2.2) are constants and that the curve L is straight for s ∈ (−`−δ;−`+ρ) and
s ∈ (`−ρ; `+ δ) for some ρ > 0. Thus, we see that changing the coordinate x 7→ ξ± and setting formally
ε = 0 transform the domain Πε into the union of the upper half-plane R2

+ := {ξ = (ξ1, ξ2) : ξ2 > 0} and
the rotated strip

θ± := {ξ : (η±, ζ±) := (ξ1 cosα± − ξ2 sinα±, ξ1 sinα± + ξ2 cosα±) ∈ R×Υ(±`)}(5.13)

(see Figure 5.1). In the vicinity of the point P±, we introduce the inner expansion of uε−:

uε−(x) = U0±(ξ±) + εU ′±(ξ±) + . . . .(5.14)

Since ∆x − k2 = ε−2(∆ξ± − ε2k), the Laplacian is the main asymptotic part of the Helmholtz operator

in the variables ξ±. Furthermore, on the boundary ∂Πε near P±, the normal derivative ∂ν(x) is nothing

but ε−1∂ν(ξ±), where ν(ξ±) is the outward normal on the boundary of the junction Θ± := R2
+ ∪ θ±.

Therefore, we deduce that the functions U0±, U ′± must satisfy

−∆ξU
0± = 0 in Θ±

∂νU
0± = 0 on ∂Θ±

−∆ξU
′± = 0 in Θ±

∂νU
′± = 0 on ∂Θ±.

(5.15)

According to the conditions one imposes at infinity in Θ±, Problems (5.15) can admit non zero solutions.
Clearly Y0(ξ) = 1 is one of them. One can also show (see Proposition 6.7 below) that there are some

functions Y1±, Y2± ∈ H1
loc(Θ

±) satisfying (5.15) such that when |ξ| → +∞,

(5.16) Y1±(ξ) =


1

π
ln

1

|ξ|
+O(|ξ|−1) in R2

+

η±

H(±`)
+K1± +O(e−πη

±/H(±`)) in θ± \ R2
+
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and

(5.17) Y2±(ξ) =

{
ξ1 +O(|ξ|−1) in R2

+

K2± +O(e−πη
±/H(±`)) in θ± \ R2

+.

Here, K1±, K2± are constants depending on the width and the tilt angle of the strip θ±. Moreover
H1

loc(Θ
±) denotes the set of functions whose H1 norm is finite in any bounded subdomain of Θ±. We

will look for U0±, U1± as combinations of the Y0, Y1±, Y2±. One could add other solutions of (5.15) in
the expansions but this is not needed for the calculus of the first two terms.

Now we match the behaviours of the two outer expansions of uε− in Π and in $ε with the behaviour of
the inner expansion of uε− in an intermediate region where |x − P±| → 0 and |ξ±| → +∞. Using the
stretched coordinates (5.12), a Taylor expansion at the point P± yields

(5.18)
w+(y, z) = w+(y±,−d) + (y − y±)∂yw

+(y±,−d) + (z + d)∂zw
+(y±,−d) +O((r±)2)

= w+(y±,−d) + εξ±1 ∂yw
+(y±,−d) +O(ε2).

Here, we took into account that ∂zw
+(y±,−d) = 0 and set r± := |x − P±| = (|y − y±|2 + |z + d|2)1/2.

On the other hand, in the vicinity of P± we also have

(5.19)
v0(s) = v0(±`) + s∂sv

0(±`) +O(s2)

= v0(±`)∓ εη±∂sv0(±`) +O(ε2).

Identifying the powers in ε0 = 1, first, we obtain

U0±(ξ±) = w+(y±,−d)Y0(ξ±) = w+(y±,−d) = v0(±`j).(5.20)

In the inner expansion uε−(x) = U0±(ξ±) + εU ′±(ξ±) + . . ., let us look for U ′± as

U ′±(ξ±) = c0±Y0(ξ±) + c1±Y1±(ξ±) + c2±Y2±(ξ±).(5.21)

When |ξ±| → +∞, we have

(5.22) uε−(x) =


w+(y±,−d) + ε (c0± +

c1±

π
ln

1

|ξ|
+ c2±ξ±1 +O(|ξ|−1)) + . . . in R2

+

v0(±`) + ε (c0± + c1±(
η±

H(±`)
+K1±) + c2±K2± +O(e−πη

±/H(±`))) + . . . in θ± \ R2
+.

Comparing (5.18), (5.19) and (5.22), we deduce that we ought to take

c1± = ∓H(±`)∂sv0(±`) and c2± = ∂yw
+(y±,−d).(5.23)

Note that the constants c0± in (5.21) still remain unfixed. Moreover, according to (5.22), the represen-
tation of uε−(x) for ξ± ∈ R2

+ such that |ξ±| → +∞ includes the logarithmic term

∓εH(±`)
π

ln
1

|ξ±|
∂sv

0(±`).(5.24)

Therefore, we will impose that the correction term in the outer expansion uε− = w+ + εu′− + . . . in Π
solves (5.11) and behaves as

u′(x) = ∓H(±`)
π

ln
1

r±
∂sv

0(±`) + const.(5.25)

as r± → 0+. One can prove the existence of a unique outgoing solution of this problem. We denote
ũ′(P±) the corresponding constant in (5.25). According to the definition of outgoing solutions (see (2.9)),
we have the decomposition

u′ = χ−R
′
−w

− + χ+ T
′w+ + . . .(5.26)
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where the dots correspond to some term which is exponentially decaying at infinity in Π. Once u′ has
been fixed, one obtains that the constants c0± in (5.21) are given by

c0± = ũ′(P±)± H(±`)
π

∂sv
0(±`) ln ε.(5.27)

Note that the term ln ε appears because of the change of variable ξ± 7→ x in (5.24). Continuing the
matching procedure, one would write a problem similar to (5.9)–(5.10) for the correction term εv′(s, ln ε)
in the outer expansion in the strip $ε and regard (5.27) as the data in this problem. This term depends
linearly on ln ε, but it is not important in the sequel.

Remark 5.1. Note that considering the stretching (5.12) in the strip $ε leads for the variables (s, n)
to the transformation

(s, n) 7→ ε−1(s∓ l, n).

Omitting the above assumption that L is straight in a neighbourhood of P± would lead to a much more
complicated change of variables

(s, n) 7→ ε−1
(
s∓ `, 1

H(s)

(
H+(±`)(n+ εH−(s)) +H−(±`)(n− εH+(s))

))
.(5.28)

The Laplacian is still the main asymptotic part of the Helmholtz operator in the new variables (5.28),
but the remainder is a second order differential operator with degenerating coefficients at the point P±.
This would make the estimation of the discrepancies in Section 6 much more cumbersome, cf. [3]. �

5.3. Computing the scattering coefficients. Once the singular solution u′− has been found, it is
straightforward to compute the coefficients R′−, T ′ in (5.26). To this end, first we observe that the
quantities

(5.29) I± =
∑
±
±
∫ 0

−d

(
w+(±D, z)∂zu′−(±D, z)− u′−(±D, z)∂zw+(±D, z)

)
dz

are independent of D > `0 (to show this property, integrate by parts and use that u′−, w± satisfy the
homogeneous Helmholtz equation in Π). Inserting the representation (5.26) in (5.29) and taking the
limit as D → +∞, we obtain

(5.30) I− = 2i
√
a2 − k2N R′− and I+ = 2i

√
a2 − k2N T ′.

Here N is the same as in (3.3), such that

N = ‖w±(y, ·);L2(−d; 0)‖2 = (2a)−1 (e2ad − e−2ad) + 2d > 0.

For D > `0, δ > 0, define the domain

Πδ(D) := Π(D) \
⋃
±

J⋃
j=1

Bδ(P±j ),

with Π(D) := {(y, z) ∈ Π : |y| < D}. Integrating by parts in Πδ(D) for a given D > `0 and taking the
limit δ → 0+, we also find

(5.31)

I± =
∑
±

J∑
j=1

lim
δ→0+

δ

∫ π

0

(
w±(y, z)∂r±j

u′−(y, z)− u′−(y, z)∂r±j
w±(y, z)

)∣∣∣
r±j =δ

dϕ±j

= −
J∑
j=1

(
w±(y−j ,−d)Hj(−`j)∂sv0

j (−`j)− w±(y+
j ,−d)Hj(`j)∂sv

0
j (`j)

)
.

Here, (r±j , ϕ
±
j ) ∈ R+ × (0;π) is the polar coordinate system centered at P±j . Note that the logarithmic

singularities in (5.25) have been taken into account to obtain the second line of (5.31). Now using that
v0
j (±`j) = w+(y±j ,−d) (see (5.10)), we get

(5.32) R′− =
− i

2N
√
a2 − k2

J∑
j=1

∫ `j

−`j
Hj(s)

((
dv0
j

ds
(s)

)2

+ k2(v0
j (s))

2

)
ds
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(5.33) and T ′ =
− i

2N
√
a2 − k2

J∑
j=1

∫ `j

−`j
Hj(s)

(∣∣∣∣dv0
j

ds
(s)

∣∣∣∣2 + k2|v0
j (s)|2

)
ds

which are nothing but formulas (3.2) and (3.3). As for the asymptotic expansions

Rε− = εR′− + εR̃ε− and T ε = 1 + εT ′ + εT̃ ε,(5.34)

the following estimate will be proven in Section 6.5.

Theorem 5.2. There are ε0 > 0 and δ ∈ (0; 1/2) such that for R′−, T ′ respectively given by (5.32),
(5.33), the remainders in (5.34) satisfy the estimate

|R̃ε−|+ |T̃ ε−| ≤ cδ ε1/2−δ.(5.35)

Note that the constant cδ depends on δ but not on ε ∈ (0; ε0].

5.4. The global asymptotic approximation. The matching method we have used up to now yields
asymptotic expansions of uε− in different zones. One may be interested in computing a global approxi-
mation of uε− in the whole domain Πε. To obtain such an approximation, and more generally, to model
boundary-value problems of type (2.4)–(2.6) on junctions of domains with different limit dimensions, an
approach based on self-adjoint extensions of differential operators has been proposed in [30, 38]. Using
this approach one can indeed model the initial problem by the system consisting of the equations (5.9)–
(5.10), (5.11)–(5.26) and derive error estimates. Unfortunately we obtain limited accuracy and these
estimate are not sufficient for the main goal of this paper.

Instead of using this model, we will work on the different expansions of uε− and glue them to obtain a
global approximation. The traditional approach [15] to do that, based on the use of partitions of unity,
does not provide sufficient accuracy for the purpose of the paper. Instead, we will employ a trick with
cut-off functions with overlapping supports, as introduced in [28, Chap. 2]. Note that the asymptotic
structures we get with this technique have been shown to be equivalent with the method of compound
asymptotic expansions (see [45, 28]).

The tunnel T εj enters the strip Π through the two junction segments (see the bold line in Fig. 2.1, b))

Ξε−j , Ξε+j such that Ξε−j ∪ Ξε+j = Γd ∩ T εj and P±j ∈ Ξε±j .(5.36)

Introduce smooth cut-off functions such that for j = 1, . . . , J , we have

(5.37) X±j = 1 in BR±j (0) and X±j = 0 outside B
R̃±j

(0).

Then we define Xε as

(5.38) Xε(x) = 1−
∑
±

J∑
j=1

X ε±j (x) with X ε±j (x) = X±j (P±j + ε−1(x− P±j )).

In (5.37), the radii 0 < R±j < R̃±j are chosen such that X ε±j = 1 in a neighbourhood of Ξε±j . Finally we

set Xε
0 := Xε|Π and Xε

j := Xε|$ε
j
, j = 1, . . . , J . Note that with a slight abuse of notation, we make no

distinction between these functions and their extensions by zero to Πε. Observe that Xε
0 is supported in

Π while Xε
j is supported in $ε

j , j = 1, . . . , J .

Now we have everything to define our global approximation. In the straight part Π, set

(5.39)

uεas(x) = Xε
0(x)(w+(x) + εu′−(x))

+
∑
±

J∑
j=1

X±j (x)(U0±
j + εU ′±j (ξ±j ))

−
∑
±

J∑
j=1

Xε
0(x)X±j (x)

(
U0±
j + ε

(
c0±
j ln ε+ c1±

j

1

π
ln

1

|ξ±j |
+ c2±

j ξ±j1

))
.
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In the curved thin strips $ε
j , we set

(5.40)

uεas(x) = Xε
j (x)v0

j (sj)

+
∑
±

J∑
j=1

X±j (x)
(
U0±
j + εU ′±j (ξ±j )

)
−Xε

j (x)
∑
±
X±j (x)

(
vj(±`j) + (sj ∓ `j)∂sv0

j (±`j)
)
.

These formulas need explanations. In Π, the right hand side of (5.39) first contains the outer expansion
(5.1) multiplied by the cut-off function Xε

0 which annuls it in a neighbourhood of the junction segments
(5.36). It also contains (second line) the inner expansions (5.14) multiplied by cut-off functions which
annul them far from the junctions. Note that the terms matched in §5.2 are present in both expansions.
However, their duplications are cancelled by the last subtrahend in (5.39) (which coincides exactly with
these matched terms). A similar structure is found in (5.40). However, the corrector εv′j(ln ε, sj) of

the outer expansion in $ε
j is not included to the first line on the right hand side of (5.40). This fact

simplifies the subtrahend in (5.40), although it will lead to additional difficulties in the estimation of
the discrepancies in Section 6.5. The authors do not know a simpler asymptotic structure which still
provides asymptotically sharp error estimates.

6. Justification of asymptotics.

In this section, we prove error estimates to justify the asymptotic expansions derived formally in §5.

6.1. Weighted Sobolev spaces with detached asymptotics. For β ∈ R, let W 1
β (Πε) be the com-

pletion of the space C∞c (Πε) with respect to the norm

‖uε;W 1
β (Πε)‖ :=

(
‖eβ|y|∇uε;L2(Πε)‖2 + ‖eβ|y|uε;L2(Πε)‖2

)1/2
.(6.1)

Note that this norm encloses an exponential weight. We start by considering the inhomogeneous water-
wave problem

(6.2)

−∆uε + k2uε = f ε in Πε

∂νu
ε = 0 on ∂Πε \ Γ0

∂νu
ε = λuε on Γ0.

The weak formulation of (6.2) writes

Find uε ∈W 1
−β(Πε) such that

(∇uε,∇ψ)Πε + k2(uε, ψ)Πε − λ(uε, ψ)Γ0 = F ε(ψ), ∀ψ ∈W 1
β (Πε),

(6.3)

where F ε ∈ W 1
β (Πε)∗, the space of continuous antilinear functionals in W 1

β (Πε). For F ε, for example,
one can take

F ε(ψ) = (f ε, ψ)Πε with f ε such that e−β|y|f ∈ L2(Πε).

Using the Riesz representation theorem, define the continuous mapping Aε−β(λ) : W 1
−β(Πε)→ W 1

β (Πε)∗

such that

(6.4) 〈Aε−β(λ)uε, ψ〉Πε = (∇uε,∇ψ)Πε + k2(uε, ψ)Πε − λ(uε, ψ)Γ0 , ∀ψ ∈W 1
β (Πε).

Here 〈·, ·〉Πε stands for the duality products between W 1
β (Πε)∗ and W 1

β (Πε). The Kondratiev theory

[20] (see also, e.g., [39, Chap. 5]) yields the Fredholm property of the operators Aε±β(λ) if the following
restriction holds for the weight exponent:

β ∈ (0;
√
b2 + k2).(6.5)

Here b is the root of the transcendental equation (2.10). Following [41] (see also [39, Chap. 5] and [35]),
we introduce the weighted space with detached asymptotics

W1
β(Πε;λ) ≈W 1

β (Πε)⊕ C2 3 {ũε, aε±}(6.6)
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consisting of functions of the form

uε(x) = ũε(x) +
∑
±
χ±(y)aε±w

±(x).(6.7)

Here, χ± are the cut-off functions introduced in (2.8). This space is endowed with the composite norm

‖uε; W1
β(Πε;λ)‖ :=

(
‖ũε;W 1

β (Πε)‖2 +
∑
±
|aε±|2

)1/2
.(6.8)

Notice that the waves w± included into the decomposition (6.7) depend of the spectral parameter λ > λ†,
which is therefore included in the notation (6.6). We formulate an assertion proved in [41, Thm. 4.7].

Lemma 6.1. Let λ > λ†(k) and assume that (6.5) holds. Then the mapping

Aε
β(λ) : W1

β(Πε;λ)→W 1
−β(Πε)∗(6.9)

is a Fredholm operator of index zero, and its null space satisfies the relation

ker Aε
β(λ) = kerAεβ(λ).(6.10)

A consequence of (6.10) is that the kernel of Aε
β(λ) consists of trapped modes, that is solutions of the

homogeneous problem (6.2) which are exponentially decaying at infinity. From Lemma 6.1, we also infer
that the compatibility conditions

F ε(ψ) = 0, ∀ψ ∈ kerAεβ(λ)

imply the existence of a solution uε ∈W1
β(Πε;λ) to the problem (6.3). The orthogonality condition

(uε, ψ)Πε = 0, ∀ψ ∈ kerAεβ(λ)(6.11)

implies the uniqueness and the estimate

‖uε; W1
β(Πε;λ)‖ ≤ c(ε)‖F ε;W 1

−β(Πε)∗‖.(6.12)

6.2. Limit problems in weighted spaces. We next present several known results concerning the
limit problems. We denote by W 1

β,γ(Π) the Kondratiev space [20] which is obtained as the completion

of C∞c (Π \ {P±1 , . . . , P
±
J }) with respect to the norm

‖ũ;W 1
β,γ(Π)‖ :=

(
‖eβ|y|ργ0∇ũ;L2(Π)‖2 + ‖eβ|y|ργ−1

0 ũ;L2(Π)‖2
)1/2

.(6.13)

Here ρ0(x) := min{1, r±1 , . . . , r
±
J } so that the norm has two types of weights, the exponential one at

infinity and the power weights near the points P±1 , . . . , P
±
J . The weights make it possible to detach the

asymptotics also near these points. Namely, we define the space W1
β,γ(Π;λ) of functions of the form

u0(x) = ũ0(x) +
∑
±

(
χ±(y)a±w

±(x) +

J∑
j=1

X±j (x)c0
j±

)
(6.14)

where ũ0(x) ∈ W 1
β,γ(Π) (the cut-off functions X±j are the ones introduced in (5.37)). We choose the

weight exponent

γ ∈ (−1; 0)(6.15)

so that X±j and X±j ln r±j do not belong to W 1
β,γ(Π) while X±j r

±
j does. Now, the Kondratiev theorem on

asymptotics, see [20] and [39, Chap. 2], leads to the following assertion.

Lemma 6.2. Let (6.5), (6.15) be valid and let F ε ∈W 1
−β,−γ(Π)∗ ⊂W 1

−β(Π)∗. Then, the unique solution

u0 ∈W1
β(Π;λ) of the problem

(∇u0,∇ψ0)Π + k2(u0, ψ0)Π − λ(u0, ψ0)Γ0 = F 0(ψ0), ∀ψ0 ∈W 1
−β(Π),(6.16)
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has the asymptotic form (6.14) and satisfies the estimate

‖u0; W1
β,γ(Π;λ)‖ :=

(
‖ũ0;W 1

β,γ(Π)‖2 +
∑
±

(
|a0
±|2 +

J∑
j=1

|c0
j±|2

))1/2
≤ c‖F 0;W 1

−β,−γ(Π)∗‖.(6.17)

We emphasize that the unique solvability of the water-wave problem in the unperturbed strip Π, which
is used in Lemma 6.2, follows from a result similar to Lemma 6.1 for the problem set in Π and from the
fact that uniqueness can be obtained with the Fourier method.

The next problem we consider is the mixed boundary value problem in the tunnel $ε
j :(

∇V ε
j ,∇ψ

)
$ε

j
+ k2

(
V ε
j , ψ

)
$ε

j
= F εj (ψ), ∀ψ ∈ H1

0 ($ε
j ; Ξε±j ).(6.18)

Here, H1
0 ($ε

j ; Ξε±j ) is the Sobolev space of functions satisfying the Dirichlet conditions on the junction

segments Ξε±j defined in (5.36). Noticing that dt((h + t)−1) = −(h + t)−2 and using an integration by
parts, one can establish the following classical one-dimensional Hardy inequality∫ `

0
(h+ t)−2|Ψ(t)|2dt ≤ 4

∫ `

0

∣∣∣dΨ

dt
(t)
∣∣∣2dt, ∀Ψ ∈ H1(0; `) with Ψ(0) = Ψ(`) = 0,

for all ` > 0, h > 0. This allows one to show that the standard Sobolev norm in H1
0 ($ε

j ; Ξε±j ) is equivalent
to the weighted norm

‖V ε;H1
0 ($ε

j ; Ξε±j )‖ =
(
‖∇V ε;L2($ε

j )‖2 + ‖(ε+ ρj)
−1V ε;L2($ε

j )‖2
)1/2

(6.19)

where ρj(s) = min(|s − `j |, |s + `j |). This observation and the Riesz representation theorem imply the
following simple assertion.

Lemma 6.3. If F εj ∈ H1
0 ($ε

j ; Ξε±j )∗, then problem (6.18) has a unique solution V ε
j ∈ H1

0 ($ε
j ; Ξε±j ) and

there holds the estimate

‖V ε
j ;H1

0 ($ε
j ; Ξε±j )‖ ≤ Cj‖F εj ;H1

0 ($ε
j ; Ξε±j )∗‖(6.20)

where, for some εj > 0, the number Cj is independent of F εj and ε ∈ (0; εj ].

Finally, we consider the problem

−∆U = F in Θ±j
∂νU = 0 on ∂Θ±j

(see a picture of the unbounded domain Θ±j in Fig. 5.1) in the weighted space W1
τ,σ(Θ±j ) endowed with

the norm

‖U ;W1
τ,σ(Θ±j )‖ :=

(
‖Rτ,σ∇ξU ;L2(Θ±j )‖2 + ‖Rτ−1,σU ;L2(Θ±j )‖2

)1/2
,(6.21)

where

Rτ,σ(ξ) = (1 + |ξ|)τ in R2
+, Rτ,σ(ξ) = eση

±
j in θ±j \ R

2
+.(6.22)

Lemma 6.4. Let τ ∈ (−1; 0), σ ∈ (0;π/Hj(±`)) and F±j ∈ W1
−τ,−σ(Θ±j )∗. Then, the problem(

∇ξU±j ,∇ξΨ
±
j

)
Θ±j

= F±j (Ψ±j ), ∀Ψ±j ∈ W
1
−τ,−σ(Θ±j )

has a unique solution U±j ∈ Wτ,σ(Θ±j ) and the estimate

‖U±j ;W1
τ,σ(Θ±j )‖ ≤ C±j ‖F

±
j ;W1

−τ,−σ(Θ±j )∗‖(6.23)

is valid with some coefficient C±j > 0 independent of F±j .
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This result again follows from the Kondratiev theory. According to a general result in [39, Chap. 5 and
6] (see also §5 in the review paper [32]), the Neumann problem in the domain Θ±j with two outlets at

infinity always has a (certainly non-unique) solution U±j ∈ Wτ,−σ(Θ±j ) admitting the representation

U±j (ξ) = Ũ±j (ξ) + C±j0 + C±j1Hj(`j)
−1η±j in θ±j \ R

2
+,

where Ũ±j decays exponentially as η±j → +∞. Subtracting the linear combination C±j0 +C±j1Y1±(ξ) (see

the definition of that functions in (5.16)) makes the solution to belong toW1
τ,σ(Θ±j ), and it also becomes

unique.

6.3. Solvability of the problem in Πε. We define in Πε the weights

(6.24) ρεγ,1(x) =

{
(ε+ ρ0(x))γ in Π

εγ in $ε
j

and ρεγ,0(x) =

{
(ε+ ρ0(x))γ−1 in Π

εγ(ε+ ρj(x))−1 in $ε
j

by glueing the weights in Π and in $ε
j of §6.2. We denote by W 1,ε

β,γ(Πε) the space W 1
β (Πε) endowed with

the new norm

‖uε;W 1,ε
β,γ(Πε)‖ :=

(
‖eβ|y|ρεγ,1∇uε;L2(Πε)‖2 + ‖eβ|y|ρεγ,0uε;L2(Πε)‖2

)1/2
.(6.25)

For any ε > 0, the norms of W 1,ε
β,γ(Πε) and W 1

β (Πε) are equivalent but the constants of equivalence

depend on ε. Then we define the space with detached asymptotics W1,ε
β,γ(Πε) of functions of the form

uε(x) = ũε(x) +
∑
±
χ±(y)aε±w

±(x) +

J∑
j=1

(
Xε
j (x)vεj (sj) +

∑
±
X εj±(x)cεj±

)
,(6.26)

where β and γ are fixed above,

ũε ∈W 1,ε
β,γ(Πε), aε±, c

ε
j± ∈ C, vεj ∈ H1(−`j ; `j), vεj (±`j) = cεj±, j = 1, . . . , J.(6.27)

Note that in (6.26), the cut-off functions Xε
j , X εj± have been defined in (5.38). Accordingly, the norm of

this space is given by

‖uε; W1,ε
β,γ(Πε;λ)‖ = inf

(
‖ũε;W 1,ε

β,γ(Πε)‖+
∑
±
|aε±|+

J∑
j=1

(∑
±
|cεj±|+ ‖vεj ;H1(−`j ; `j)‖

))
(6.28)

where the infimum is computed over all representations (6.26) (observe that in (6.26), the representation
of uε in Π and in the tunnels $ε

j are not unique).

Lemma 6.5. The norms ‖ · ; W1
β(Πε;λ)‖ and ‖ · ; W1,ε

β,γ(Πε;λ)‖ are equivalent.

Proof. Let us prove the relations

cε‖uε; W1
β(Πε;λ)‖ ≤ ‖uε; W1,ε

β,γ(Πε;λ)‖ ≤ Cε‖uε; W1
β(Πε;λ)‖,(6.29)

where the constants cε, Cε > 0 should not depend on uε but surely depend on ε. First, we verify the left
inequality in (6.29). Let uε be an element of W1

β(Πε;λ) with the decomposition

(6.30) uε(x) = ũε(x) +
∑
±
χ±(y)aε±w

±(x).

By definition of the inf in (6.28), there are ṽε ∈W 1,ε
β,γ(Πε), cεj± ∈ C, vεj ∈ H1(−`j ; `j) with vεj (±`j) = cεj±,

j = 1, . . . , J such that

(6.31) uε(x) = ṽε(x) +
∑
±
χ±(y)aε±w

±(x) +
J∑
j=1

(
Xε
j (x)vεj (sj) +

∑
±
X εj±(x)cεj±

)
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and such that

(6.32) ‖ṽε;W 1,ε
β,γ(Πε)‖+

∑
±
|aε±|+

J∑
j=1

(∑
±
|cεj±|+ ‖vεj ;H1(−`j ; `j)‖

)
≤ 2 ‖uε; W1,ε

β,γ(Πε;λ)‖.

Then we can write

(6.33)

‖uε; W1
β(Πε;λ)‖ = ‖ũε;W 1

β (Πε)‖+
∑
±
|aε±| ≤ ‖ṽε;W 1

β (Πε)‖+
∑
±
|aε±|+ ‖ṽε − ũε;W 1

β (Πε)‖

≤ cε‖ṽε;W 1,ε
β,γ(Πε)‖+

∑
±
|aε±|+ ‖ṽε − ũε;W 1

β (Πε)‖

≤ 2 cε ‖uε; W1,ε
β,γ(Πε;λ)‖+ ‖ṽε − ũε;W 1

β (Πε)‖.

Now comparing the two representations (6.30), (6.31) and using again (6.32), one finds

(6.34) ‖ṽε − ũε;W 1
β (Πε)‖ ≤ cε

J∑
j=1

(∑
±
|cεj±|+ ‖vεj ;H1(−`j ; `j)‖

)
≤ 2 cε‖uε; W1,ε

β,γ(Πε;λ)‖.

Inserting (6.34) in (6.33) leads to the left inequality of (6.29).

The right inequality of (6.29) is proven by setting ũε +
∑
± χ±a

ε
±w
± = uε and vεj = 0, cεj± = 0, and

referring again to the obvious equivalence of the norms of W 1,ε
β,γ(Πε) and W 1

β (Πε). We emphasize again

that the constants related to this equivalence relation depend on ε. That explains the very difference in
norming the same function space. �

The weak formulation of problem (6.2) in W1,ε
β,γ(Πε;λ) is similar to (6.3). It allows one to define the

bounded linear operator

Aε
β,γ(λ) : W1,ε

β,γ(Πε;λ)→W 1,ε
−β,−γ(Πε)∗,(6.35)

which coincides with (6.9), although it is related to different norms. In the next section, we construct
an approximate inverse operator

Rε
β,γ(λ) : W 1,ε

−β,−γ(Πε)∗ →W1,ε
β,γ(Πε;λ)(6.36)

such that the difference

Id−Aε
β,γ(λ)Rε

β,γ(λ) : W 1,ε
−β,−γ(Πε)∗ →W 1,ε

−β,−γ(Πε)∗(6.37)

has a small operator norm o(1) as ε → 0+. In view of the classical result concerning Neumann se-
ries, this shows that Aε

β,γ(λ)Rε
β,γ(λ) is invertible for ε small enough. We deduce that Aε

β,γ(λ)−1 :=

Rε
β,γ(λ)

(
Aε
β,γ(λ)Rε

β,γ(λ)
)−1

is a continuous right inverse of Aε
β,γ(λ). From the fact that Aε

β,γ(λ) is Fred-

holm of index zero (Lemma 6.1), we infer that Aε
β,γ(λ) is actually an isomorphism and that Aε

β,γ(λ)−1

is its true inverse for ε small enough. Thus, we can state the following important result which yields in
particular a stability estimate.

Theorem 6.6. Set β ∈ (0;
√
b2 + k2) and γ ∈ (−1/2; 0) where b is defined in (2.10). There is some

ε0 > 0 such that for all ε ∈ (0; ε0], for all F ε ∈ W 1,ε
−β,−γ(Πε)∗, the problem (6.2) in Πε has a unique

solution uε ∈W1,ε
β,γ(Πε;λ). In particular, trapped modes are absent. Moreover, the estimate

‖uε; W1,ε
β,γ(Πε;λ)‖ ≤ C‖F ε;W 1,ε

−β,−γ(Πε;λ)∗‖(6.38)

is valid with a constant C > 0 independent of F ε and, what is of the most importance, of ε ∈ (0; ε0].
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6.4. Construction of an approximate inverse operator. We will find the operator (6.36) as the
sum

Rε
β,γ(λ) = Rε0

β,γ(λ) +
J∑
j=1

(
Rεj
β,γ +

∑
±

Rεj±
β,γ

)
,(6.39)

where the terms will be defined below. We fix a functional F ε ∈W 1,ε
−β,−γ(Πε)∗ and denote its norm by N ε.

Step 1. Denote uε0 ∈ W1
β,γ(Π;λ) the solution of problem (6.16), which is well-defined according

to Lemma 6.2, with the right-hand side F ε0 such that

F ε0(v0) = F ε(Xε
0 v

0), ∀v0 ∈W 1
−β,−γ(Π).

Here Xε
0 is the cut-off function introduced after (5.38) which vanishes at the points P±j . According to

the definitions (6.25) and (6.24), we have ‖Xε
0 v

0;W 1,ε
−β,−γ(Πε)‖ ≤ c ‖v0;W 1

−β,−γ(Π)‖. We deduce the
estimate

‖F ε0;W 1
−β,−γ(Π)∗‖ ≤ cN ε.(6.40)

Note that in (6.40) the constant c > 0 is independent of ε. We emphasize that in what follows, if a
constant depends on ε, then we will write it explicitly. Thus, the estimate (6.17) with the bound (6.40)
holds for the ingredients ũε0, aε0± and cε0j± of the representation (6.14). We set

(6.41) Rε0
β,γ(λ)F ε := uε0 := Xε

0(x)ũε0(x) +
∑
±
χ±(y)aε0±w

±(x) +
J∑
j=1

(
Xε
j (x)vε0j (sj) +

∑
±
X εj±(x)cε0j±

)
,

where vε0j is the unique solution of the equation (5.9) with the Dirichlet data vε0j (±`j) = cε0j±. Note in
particular that

‖vε0j ;H2(−`j ; `j)‖ ≤ c
∑
±
|cε0j±| ≤ cN ε.

From the definition of the norm on W1,ε
β,γ(Πε;λ) in (6.28), we deduce that

‖Rε0
β,γ(λ)F ε; W1,ε

β,γ(Πε;λ)‖ ≤ c0N
ε.(6.42)

Step 2. Let V ε
j be the solution of the mixed boundary value problem (6.18) with the right-hand side

F εj such that

F εj (ψ) = F ε(Xε
j ψ), ∀ψ ∈ H1

0 ($ε
j ; Ξε±j ).(6.43)

Note that V ε
j is well-defined according to Lemma 6.3 and we have

‖V ε
j ;H1

0 ($ε
j ; Ξε±j )‖ ≤ c‖F εj ;H1

0 ($ε
j ; Ξε±j )∗‖.

Moreover, using (6.20) and (6.24), (6.19), we can write

|F εj (ψ)| ≤ ‖F ε;W 1,ε
−β,−γ(Πε)∗‖ ‖Xε

jψ;W 1,ε
−β,−γ(Πε)‖

≤ cN εε−γ
(
‖∇(Xε

jψ);L2($ε
j )‖+ ‖(ε+ ρj)

−1Xε
jψ;L2($ε

j )‖
)

≤ cN εε−γ
(
‖∇ψ;L2($ε

j )‖+ ‖ψ∇Xε
j ;L2($ε

j )‖+ ‖(ε+ ρj)
−1ψ;L2($ε

j )‖
)

≤ cN εε−γ‖ψ;H1
0 ($ε

j ; Ξε±j )‖.

We deduce that ‖F εj ;H1
0 ($ε

j ; Ξε±j )∗‖ ≤ cN εε−γ . Here, we have taken into account that ∇Xε
j = 0 for

sj ∈ [−`j + R̃−j ε; `j − R̃
+
j ε] so that |∇Xε

j (x)| ≤ c
(
ε+ ρj(x)

)−1
in $ε

j . Therefore, setting

Rεj
β,γF

ε := uεj := Xε
j (x)V ε

j (x),(6.44)

we find

‖Rεj
β,γF

ε; W1,ε
β,γ(Πε;λ)‖ ≤ cN ε(6.45)
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(take a representation with vεj = 0 in (6.28) and use the definition of the norm of W 1,ε
β,γ(Πε).

Step 3. Let us calculate the discrepancy (mismatch with respect to the data F ε) left in the problem
(6.3) by the sum

(6.46) uε = uε0 + uε1 + . . .+ uεJ .

We denote uεj0 = uε0
∣∣
$ε

j
. For every ψ ∈W 1

−β,−γ(Πε) with compact support (we can work by density), we

find (
∇uε0,∇ψ

)
Πε + k2

(
uε0, ψ

)
Πε − λ

(
uε0, ψ

)
Γ0

= F ε(Xε
0ψ) + f ε0 (ψ) +

J∑
j=1

f εj0 (ψ)

(6.47) with
f ε0 (ψ) = −

(
∇
(
(1−Xε

0)ũε0
)
,∇ψ

)
Π
− k2

(
(1−Xε

0)ũε0, ψ
)

Π

f εj0 (ψ) =
(
∇uεj0 ,∇ψ

)
$ε

j
+ k2

(
uεj0 , ψ

)
$ε

j
.

In the following, we shall say that a functional f ε is O(εα) if it satisfies ‖f ε;W 1,ε
−β,−γ(Πε)∗‖ ≤ cN εεα.

Note that f ε0 is a sum of terms located in ε-neighbourhoods of the points P±1 , . . . , P
±
J . One can prove

that it is O(ε0). We will compensate it by boundary layers in the next step. In contrast, we prove now

that the f εj0 are small as ε tends to zero.

Observe that the L2-norm of ψ ∈ W 1,ε
−β,−γ(Πε) has the weights of order ε−γ−1 in the vicinity of the

points P±j and of order ε−γ in $ε
j , see (6.24) and (6.25). Note also that uεj0 is constant in BR±j (P±j ).

Recalling the formulas (5.3)–(5.5) and the relation |A(n, s)− 1| ≤ c ε in $ε
j , we find

(6.48)

f εj0 (ψ) =
(
∇uεj0 ,∇ψ

)
$ε

j
+ k2

(
uεj0 , ψ

)
$ε

j
=
(
−∆uεj0 + k2uεj0 , ψ

)
$ε

j
+
(
∂νu

εj
0 , ψ

)
∂$ε

j

=
(
−∆uεj0 + k2uεj0 , ψ

)
$ε

j
−
∑
±
ε

∫ `j−εR+
j

−`j+εR−j

dH±j
ds

(s)
duεj0
ds

(s)ψ
(
± εH±j (s), s

)
ds+O(εγ+3/2).

Now using (6.41), in $ε
j we obtain

−∆uεj0 + k2uεj0 =
∑
±

2∇vε0j (sj) · ∇X εj± + (vε0j (sj)− cε0j±)∆X εj± + k2cε0j±X εj± +O(εγ+3/2).

Using that vε0j ∈ H2(−`j ; `j) ⊂ C 1[−`j ; `j ] with the estimate

sup
[−`j ;`j ]

|vε0j (s)|+
∣∣∣∣dvε0jds (s)

∣∣∣∣ ≤ c‖vε0j ;H2(−`j ; `j)‖ ≤ c
∑
±
|cε0j±| ≤ cN ε,

one can write

(6.49) |
(
−∆uεj0 + k2uεj0 , ψ

)
$ε

j
| ≤ cN εεγ+1.

On the other hand, one can show the estimate

(6.50)
∣∣∣∑
±
ε

∫ `j−εR+
j

−`j+εR−j

dH±j
ds

(s)
duεj0
ds

(s)ψ
(
± εH±j (s), s

)
ds
∣∣∣ ≤ cN εεγ+1/2.

Inserting (6.49) and (6.50) in (6.48), finally we obtain

(6.51) |f εj0 (ψ)| ≤ cN εεγ+1/2‖ψ;W 1,ε
−β,−γ(Πε)‖.

Now let us turn to the discrepancy left by the terms uεj in the sum (6.46). These functions vanish at the

segments Ξε±j and we have (
∇uεj ,∇ψ

)
$ε

j
+ k2(uεj , ψ)$ε

j
= F ε(Xε

jψ) + f εj (ψ)
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with f εj (ψ) = −
(
∇((1−Xε

j )V ε
j ),∇ψ

)
$ε

j
− k2

(
(1−Xε

j )V ε
j ), ψ

)
$ε

j
.(6.52)

Finally, since F ε is antilinear, we get

(6.53)

(
∇uε,∇ψ

)
Πε + k2

(
uε, ψ

)
Πε − λ

(
uε, ψ

)
Γ0

= F ε(ψ) +
(
f ε0 (ψ) +

J∑
j=1

(
f εj (ψ)−

∑
±
F ε(X ε±j ψ)

))
+

J∑
j=1

f εj0 (ψ).

Note that to obtain the identity, we used in particular the sequence of equalities

J∑
j=0

F ε(Xε
jψ) = F ε(Xεψ) = F ε(ψ)−

∑
±

J∑
j=1

F ε(X ε±j ψ).

The second element of the right hand side of (6.53) is supported in ε-neighbourhoods of the points
P±1 , . . . , P

±
J . Now we compensate it by boundary layers terms.

Step 4. We take an arbitrary Ψ±j ∈ W1
−τ,−σ(Θ±j ) and in order to compensate the second term of

the right hand side of (6.53), we introduce the functionals Fε±j such that

(6.54) Fε±j (Ψ±j ) = −
(
f ε0 (ψ±j ) + f εj (ψ±j )− F ε(X±j ψ

±
j )
)
,

with ψ±j (x) = Ψε±
j

(
P±j + εξ±j

)
. We remind the reader that ξ±j are the stretched coordinates defined

in (5.12). Due to the presence of the compactly supported cut-off functions in (6.54), the map Fε±j is

continuous in W1
−τ,−σ(Θ±j ) for any weight indices τ and σ, in particular for

τ ∈ [γ, 0) and σ ∈ (0;π/Hj(`j)).(6.55)

Again, observe that the weights for ∇xψ±j and ψ±j in the norm of W−β,−γ(Πε), are of the orders ε−γ and

ε−γ−1, respectively, in the vicinity of the point P±j , see (6.24) and (6.25). Hence, we conclude that

(6.56) c
∥∥Ψ±j ;W1

−τ,−σ
(
Θ±j ∩BR(0)

)∥∥ ≤ εγ∥∥ψ±j ;W 1
−β,−γ

(
Πε∩BRε(P±j

)∥∥ ≤ C∥∥Ψ±j ;W1
−τ,−σ

(
Θ±j ∩BR(0)

)∥∥,
where the constants C ≥ c > 0 depend on R > 0 but not on Ψ±j , ε ∈ (0; ε0]. Using the definitions of the

three terms on the right-hand side of (6.54), we get∣∣Fε±j (Ψ±j )
∣∣ ≤ cN ε

∥∥ψ±j ;W 1
−β,−γ

(
Πε ∩ BRε(P±j )

)∥∥ ≤ cN εε−γ
∥∥Ψ±j ;W1

−τ,−σ(Θ±j ∩ BR(0))‖
≤ cN εε−γ

∥∥Ψ±j ;W1
−τ,−σ(Θ±j )‖.

(6.57)

As a consequence, for any τ , σ satisfying (6.55), Lemma 6.4 guarantees the existence of a unique function
U ε±j ∈ W1

τ,σ(Θ±j ) satisfying(
∇ξU ε±j ,∇ξΨ±j

)
Θ±j

= F±j (Ψ±j ), ∀Ψ±j ∈ W
1
−τ,−σ(Θ±j ).

Moreover, we have the estimate

‖U ε±j ;W1
τ,σ(Θ±j )‖ ≤ Cτ,σ ε−γN ε.(6.58)

We then set

Rεj±
β,γ F

ε(x) = X±j (x)uε±j (x) with
X±j (x) = X±j (x− P±j )

uε±j (x) = U ε±j
(
ε−1(x− P±j )

)
.

(6.59)

Let us fix τ , σ such that (6.55) holds. Working as in (6.56) and taking into account (6.57), we can write

(6.60) ‖Rεj±
β,γ F

ε; W1,ε
β,γ(Πε;λ)‖ ≤ c‖X±j u

ε±
j ;W 1,ε

β,γ(Πε)‖ ≤ cεγ‖U ε±j ;W1
γ,σ(Θ±j )‖ ≤ cγ,σN ε.

Conclusion. Now we have completed the construction of the operator Rε
β,γ : W 1,ε

−β,−γ(Πε)∗ →W1,ε
β,γ(Πε;λ)

in (6.39). It is the sum of the operators Rε0
β,γ , Rεj

β,γ , Rεj±
β,γ defined respectively in (6.41), (6.44), (6.59). Its
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operator norm is bounded uniformly with respect to ε ∈ (0; ε0] for a fixed ε0. The term (6.59) produces
a new discrepancy in the problem (6.3) which is defined by(

∇uε±j , ψ±j ∇X
±
j

)
Πε −

(
uε±j ∇X

±
j ,∇ψ

±
j

)
Πε − k2

(
X±j u

ε±
j , ψ±j

)
Πε .(6.61)

To estimate (6.61) properly, we fix τ > γ and σ satisfying (6.55). The support of ∇X±j is contained in
the union of the sets

Σ0
j± := Π ∩

(
B
R̃±j

(P±j ) \ BR±j (P±j )
)
, Σε

j± := $ε
j ∩
(
B
R̃±j

(P±j ) \ BR±j (P±j )
)
.

In Σ0
j±, the weights ρ−γ,p(x), p = 0, 1, are of order 1 whereas in Σε

j±, they are of order ε−γ . In view of

(6.58), the moduli of the first two terms in (6.61) does not exceed

(6.62)

c
(
‖uε±j ;H1(Σ0

j±)‖+ εγ‖uε±j ;H1(Σε
j±)‖

)
‖ψ;W 1

−β,−γ(Πε)‖

≤ c
(
ετ‖U ε±j ;W1

τ,σ(R2
+)‖+ εγe−σR

±
j /ε‖U ε±j ;W1

τ,σ(θ±j \ R2
+)‖
)
‖ψ;W 1

−β,−γ(Πε)‖

≤ cετ−γN ε‖ψ;W 1
−β,−γ(Πε)‖.

The last term in (6.61) is estimated as follows:

(6.63)

∣∣(X±j uε±j , ψ±j )Πε

∣∣
≤ c
∥∥(ρε−γ,0)−1uε±j ;L2(Πε ∩ B

R̃±j
(P±j ))‖ ‖ψ±j ;W 1

−β,−γ(Πε)‖

≤ cε1+γ
(
‖(1 + |ξ|)γ−1U ε±j ;L2(R2

+)‖+ ‖(1 + |η±j |)U
ε±
j ;L2(θ±j \ R2

+)‖
)
‖ψ±j ;W 1

−β,−γ(Πε)‖

≤ cεN ε‖ψ±j ;W 1
−β,−γ(Πε)‖.

Finally, gathering (6.51), (6.62) and (6.63), we deduce that for all F ε ∈ W 1,ε
−β,−γ(Πε)∗, we have the

estimate

‖(Id−Aε
β,γ(λ)Rε

β,γ(λ))F ε;W 1,ε
−β,−γ(Πε)∗‖ ≤ c (εγ+1/2 + ετ−γ + ε) ‖F ε;W 1,ε

−β,−γ(Πε)∗‖.

This completes the proof of Theorem 6.6 showing in particular that when γ ∈ (−1/2; 0), the operator
Aε
β,γ(λ) is invertible for ε small enough.

6.5. Derivation of the error estimate. Now we prove that the function uεas defined in (5.39)–(5.40)
yields a good approximation of uε− as ε goes to zero. This will give us directly the proof of Theorem 5.2.
Estimating the discrepancies left by the asymptotic solution uεas is much simpler than in §6.4 because
the terms of the representations (5.39)–(5.40) are smooth and because we can deal with a functional
f(v) = (f, v)Πε which is continuous in the L2-norm. The boundary conditions (2.6) on Γ0 and (2.5) on

Γd \ ∪± ∪Jj=1 Ξε±j are satisfied due to our choice of cut-off functions. Furthermore, in Π we have

(6.64)

−∆uεas + k2uεas = −[∆, Xε
0 ]
(
w+ −

∑
±

J∑
j=1

X±j
(
w+(P±j )− c2±

j (y − y±j )
))

−ε[∆, Xε
0 ]
(
u′− −

∑
±

j∑
j=1

X±j Q
±
j

)
−ε
∑
±

J∑
j=1

[∆,X±j ]
(
U ′±j −Q

±
j − c

2±
j ξ±j1

)
+k2

∑
±

J∑
j=1

X±j
(
(1−Xε

0)U0±
j + ε

(
U ′±j −X

ε
0(Q±j + c2±

j ξ±j1)
)

=: Iε0 + εIε0
′ +
∑
±

J∑
j=1

(εIεj±
′ + k2Iεj±),
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where Q±j (x) = c0±
j (ln ε) − c1±

j π−1 ln |ε−1(x − P±j )|. Above, the commutator [∆, Xε
0 ](·) is defined by

[∆, Xε
0 ](·) = ∆(Xε

0 ·) −Xε
0∆·. All terms in (6.64) have compact supports, and in order to estimate the

scalar product

(−∆uεas + k2uεas, ψ)Π with ψ ∈W 1,ε
−β,−γ(Πε),

we need to evaluate the norms ‖(ε+ ρ0)1+γI ...... ;L
2(Π)‖, see (6.24), (6.25). Since

Iε0 = −[∆, Xε
0 ] ˜̃w+

, where ˜̃w+
(x) = O(|x− P±j |

2) as x→ P±j

and supp Iε0 = R2
+ ∩

(
∪± ∪Jj=1BεR̃±j (P±j )

)
, we have

‖(ε+ ρ0)1+γIε0 ;L2(Π)‖ ≤ cεγ+2.

The same bound holds for ‖(ε+ ρ0)1+γεIε0
′;L2(Π)‖ because we have

u′−(x)−Q±j (ε−1(x− P±j )) = O(|x− P±j |) as x→ P±j .

Concerning the term εIεj±
′, we observe that supp Iεj±

′ ⊂ Π ∩
(
B
R̃±j

(P±j ) \ BR±j (P±j )
)

and

U ′±j (ξ±j )−Q±j (ξ±j )− c2±
j ξ±j1 = O(|ξ|−1) as |ξ| → +∞, ξ ∈ R2

+.

Hence, we have ‖(ε+ ρ0)1+γεIεj±
′;L2(Π)‖ ≤ cε2. Finally, we obtain

‖(ε+ ρ0)1+γIεj±;L2(Π)‖ ≤ c
(∫ εR̃±j

0
(ε+ r)2(1+γ)rdr + ε2

∫ R̃±j

0
(ε+ r)2(1+γ) rdr

(1 + r/ε)2

)1/2
≤ cεγ+2.

Let us consider the function (5.40) in the tunnel $ε
j . First of all we notice that the boundary conditions

(2.5) are satisfied on ∂Πε ∩ suppX±j because of our assumption on the straight segments of ∂$±j .

Moreover, the harmonic functions U±j = w±(P±j ) and U ′±j are constants, see (5.20), and differ from a

linear function by an exponentially decaying remainder in θ±j \ R2
+. We have

(6.65)

−∆uεas + k2uεas = −Xε
j (∆− k2)

(
v0
j + ε

∑
±
X±j c

′
j±(ln ε)

)
−[∆, Xε

j ]
(
v0
j −

∑
±
X±j
(
v0
j (±`j) + (s∓ `j)∂sv0

j (±`j)
))

−ε
∑
±

[∆,X±j ]
(
U ′±j − c

′
j±(ln ε)∓ η±j ∂sv

0
j (±`j)

)
+k2

∑
±
X±j
(
(1−Xε

j )U±j + ε
(
U ′±j − c

′
j±(ln ε)∓ η±j ∂sv

0
j (±`j)

)
=: Iεj + Iεj0 + εI ′εj + k2Iεj±.

Because of the weight ρε−γ,0 = (ε)−γ(ε + ρj)
−1 in the norm of the function ψ ∈ W 1,ε

−β,−γ(Πε), we need

to process the norms εγ‖(ε+ ρj)I
...
... ;L2($ε

j )‖ of the expressions in (6.65). Owing to the Taylor formula

(5.19) we have

εγ‖(ε+ ρj)I
ε
j0;L2($ε

j )‖ ≤ cε2+γ .

Recalling the above-mentioned exponential decay yields

εγ+1‖(ε+ ρj)I
′ε
j ;L2($ε

j )‖ ≤ ce−δ/ε, δ > 0.

Moreover,

εγ‖(ε+ ρj)I
ε
j±;L2($ε

j )‖ ≤ cεγ+1/2
(∫ εR̃±j

0
(ε+ ρ)2dρ+ ε2

∫ R̃±j

0
(ε+ ρ)2e−2δρ/εdρ

)1/2
≤ cε2+γ .

Here, we have taken into account the width of the tunnel O(ε) and the evident relation∫ R̃±j

0
ρte−2δρ/εdρ ≤ ct,δ εt+1.
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For the remaining term Iεj , proceeding as in Section 6.4, Step 3, we obtain

(6.66) εγ‖(ε+ ρj)I
ε
j ;L2($ε

j )‖ ≤ cεγ+3/2(1 + | ln ε|).

Comparing with the other previous estimates, we find that this is the largest term. This concludes the
proof of Theorem 5.2. Indeed, the positive number δ = −γ in (5.35), cf. (6.15), can be chosen as small
as one wishes. However, it is not possible to set δ = 0 because R′′−(ln ε) is a linear function of ln ε.

6.6. Fine-tuning. Now we explain how to prove that there is % > 0 small enough such that the constant
cδ appearing in the estimate (5.35) of Theorem 5.2 can be chosen independent of h ∈ B% = {h ∈ R2 :
|h| ≤ %} for all ε ∈ (0; ε0(%)]. Let

Πε(h) = Π ∪$ε
1(h) ∪$ε

2(h) ∪$ε
3 ∪ . . . ∪$ε

J(6.67)

be the channel (2.3) with two tunnels shifted according to (3.6). We set xh = (yh, z) with

yh =
(
1− χ1(y)− χ2(y)

)
y + χ1(y)(y − h1) + χ2(y)(y − h2)(6.68)

and χj is a smooth cut-off function such that

χj(y) = 1 for y ∈
(
y−j −

1

3
(y−j − y

+
j−1), y+

j +
1

3
(y−j+1 − y

+
j

)
,

χj(y) = 0 for y /∈
(
y−j −

2

3
(y−j − y

+
j−1), y+

j +
2

3
(y−j+1 − y

+
j

)
.

The change of coordinates x 7→ xh is non-singular for small h ∈ R2 and transforms Πε(h) into Πε.
Moreover, it is independent of ε. The corresponding change affects the differential operators of the
problem (2.4)–(2.6) only in the Laplacian ∆ which turns into

∆ + D(h;x,∇x),

where D is a first order differential operator with smooth and compactly supported coefficients, depend-
ing smoothly also on the parameter h = (h1, h2). Then working as in the classical proofs of perturbations
theory for linear operators (see [19, Chapter 7, §6.5], [14, Chap. 4]), we can use the above change of
variables to compare the solutions of the problem (2.4)–(2.6) in the same geometry Πε and show that
they have smooth dependence with respect to h. We refer the reader to [5, §6.3] for more details.

6.7. Well-posedness for the corrector problem. Here we give the proof of a result of well-posedness
used in the construction of the asymptotic expansions.

Proposition 6.7. The problem (5.15) admits solutions Y1±, Y2± in H1
loc(Θ

±) with the expansions (5.16)
and (5.17).

Proof. First, for a source term F satisfying the conditions (6.71) below, we consider the problem

(6.69)
−∆U± = F in Θ±

∂νU
± = 0 on ∂Θ±

The natural variational formulation of the Neumann problem (6.69), cf. [25], writes(
∇U,∇V

)
Θ±

= (F ,V)Θ± , ∀V ∈ H.(6.70)

Here (·, ·)Θ± is the scalar product of L2(Θ±) and H is the completion of C∞c (Θ±) (infinitely differentiable
and compactly supported functions) with respect to the norm

‖V;H‖ :=
(
‖∇V;L2(Θ±)‖2 + ‖V;L2(Θ± ∩ BR(0))‖2

)1/2
.

Note that the constant functions are contained in H. Using one-dimensional Hardy inequalities, one can
prove that this norm is equivalent with the weighted norm(

‖∇V;L2(Θ±)‖2 + ‖(1 + |ξ|)−1V;L2(θ±>)‖2 + ‖(1 + |ξ|)−1(2 + ln |ξ|)−1V;L2(R2
+)‖2

)1/2
,
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where θ±> := θ± \ R2
+. As a consequence, the only solution of the homogeneous problem (6.70) (with

F = 0 ) is the constant solution in H. Moreover, according to the Fredholm theory, given a right-hand
side F ∈ L2

loc(Θ
±) such that

(6.71) (1 + |ξ|)F ∈ L2(θ±>) and (1 + |ξ|)(2 + ln |ξ|)F ∈ L2(R2
+),

a solution to (6.70) exists provided that F satisfies the compatibility condition

(F , 1)Θ± = 0.(6.72)

Now we show the existence of Y1±, Y2± in H1
loc(Θ

±) solving (5.15) with the expansions (5.16) and (5.17).

Introduce a cut-off function χ ∈ C∞(Θ±) such that χ = 0 in BR(0) and χ = 1 in B2R(0) for R large
enough. Define the functions ℵ1±, ℵ2± such that

ℵ1±(ξ) =


χ

π
ln

1

|ξ|
, in R2

+

χ
η±

H(±`)
in θ± \ R2

+

and ℵ2±(ξ) =

{
χ ξ1 in R2

+

0 in θ± \ R2
+.

Set F1± = ∆ℵ1± and F2± = ∆ℵ2±. Observe that these functions are compactly supported. Moreover,
a direct calculus shows that F1±, F2± satisfy the compatibility condition (6.72). Denote V1±, V2± the
corresponding solutions of (6.69) which behave as O(|ξ|−1) at infinity in R2

+ (remember that the solution
is defined up to an additional constant). Finally set Y1± := V1± + ℵ1± and Y2± := V2± + ℵ2±. Using
Fourier decomposition one can verify that Y1±, Y2± admit the desired behaviours at infinity. �

7. Conclusion

In this article, we presented a method to construct non-reflecting perturbations of the bottom of a
channel for a water-wave problem. To proceed, we considered singular perturbations of the geometry
with thin curved channels. With this approach, we showed how to get R = 0 and we proved that we
cannot get T = 1. As a consequence, the transmitted field exhibits a phase shift with respect to the
incident field. Let us mention that acoustic waveguides and water channels are somehow opposite of
each other in the following sense: for the former, regular perturbations of the boundary, Fig. 1.1, a),
may at most be non-reflecting (Rε = 0) while wells, Fig. 1.1, b), may be perfectly invisible (T ε = 1).
For the latter these properties are reversed. To obtain the main result of this article (construction of
non reflecting perturbations of the bottom), we extend the results known for asymptotic expansion in
junctions of massive bodies and thin ligaments. More precisely, we considered situations where the
ligaments have a non constant width and where the ligaments do not arrive perpendicularly to the
massive body. These studies were not performed in literature. Finally, let us mention that another
approach to achieve invisibility has been proposed in [8, 9] for acoustics problems. It would be relevant
to study if we can adapt it to deal with water-wave problems.
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