
HAL Id: hal-02546630
https://hal.science/hal-02546630

Submitted on 18 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

WHISPER A Tool for Run-time Detection of
Side-Channel Attacks

Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz Akram,
Vianney Lapotre, Guy Gogniat, Pascal Benoit

To cite this version:
Maria Mushtaq, Jeremy Bricq, Muhammad Khurram Bhatti, Ayaz Akram, Vianney Lapotre, et al..
WHISPER A Tool for Run-time Detection of Side-Channel Attacks. IEEE Access, 2020, 8, pp.83871-
83900. �10.1109/ACCESS.2020.2988370�. �hal-02546630�

https://hal.science/hal-02546630
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

WHISPER
A Tool for Run-time Detection of
Side-Channel Attacks
MARIA MUSHTAQ1, JEREMY BRICQ2, MUHAMMAD KHURRAM BHATTI3, AYAZ AKRAM4,
VIANNEY LAPOTRE5, GUY GOGNIAT5, AND PASCAL BENOIT1
1LIRMM, Univ Montpellier, CNRS, Montpellier, France
2University of Brussels, Brussels, Belgium
3ECLab, Information Technology University, Lahore, Pakistan
4University of California Davis, CA, USA
5Lab-STICC, Université Bretagne Sud, Lorient, France

Corresponding author: Maria Mushtaq (e-mail: maria.mushtaq@lirmm.fr).

This work is partially supported by the NCCS and PHC PERIDOT Project e-health.SECURE (Grant ID: 3-6/HEC/R&D/PERIDOT/2017).

ABSTRACT
High resolution and stealthy attacks and their variants such as Flush+Reload, Flush+Flush, Prime+Probe,
Spectre and Meltdown have completely exposed the vulnerabilities in Intel’s computing architecture over
the past few years. Mitigation techniques against such attacks are not very effective for two reasons: 1)
Most mitigation techniques protect against a specific vulnerability and do not take a system-wide approach,
and 2) they either completely remove or greatly reduce the performance benefits of resource sharing. In
this work, we argue in favor of detection-based protection, which would help apply mitigation only after
successful detection of the attack at runtime. As such, detection would serve as the first line of defense
against such attacks. However, for a detection based protection strategy to be effective, detection needs
to be highly accurate, to incur minimum system overhead at runtime, should cover a large set of attacks
and be capable of early stage detection, i.e., at the very least before the attack is completed. We propose a
machine learning based side-channel attack (SCA) detection tool, called WHISPER that satisfies the above
mentioned design constraints. WHISPER uses multiple machine learning models in an Ensemble fashion to
detect SCAs at runtime using behavioral data of concurrent processes, that are collected through hardware
performance counters (HPCs). Through extensive experiments with different variants of state-of-the-art
attacks, we demonstrate that the proposed tool is capable of detecting a large set of known attacks that
target both computational and storage parts in computing systems. We present experimental evaluation of
WHISPER against Flush+Reload, Flush+Flush, Prime+Probe, Spectre and Meltdown attacks. The results
are provided under variable system load conditions and stringent evaluation metrics comprising detection
accuracy, speed, system-wide performance overhead and distribution of error (i.e., False Positives & False
Negatives). Our experiments show that WHISPER can detect a large and diverse attack vector with more
than 99% accuracy at a reasonably low performance overhead.

INDEX TERMS Side-Channel Attacks (SCAs), Cryptography, Detection, Machine Learning, Security,
Privacy.

I. INTRODUCTION

Information security is fast becoming a first-class design
constraint in almost all domains of computing. Modern cryp-
tographic algorithms are used to protect information at the
software level. These algorithms are theoretically sound and
require enormous computing power to break with brute-

force. For instance, for a 128-bit AES key, it would take
5.4× 1018 years to crack the AES using a computer capable
of performing 106 decryption operations per µs [1]. How-
ever, recent research has shown that cryptosystems, including
AES, can be compromised due to the vulnerabilities of the
underlying hardware on which they run. Side-channel attacks

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

exploit such physical vulnerabilities by targeting the plat-
forms on which these cryptosystems execute [2].SCAs can
use a variety of physical parameters, e.g., power consump-
tion, electromagnetic radiation, memory accesses and timing
patterns to extract secret keys/information [3], [4], [5], [6].
The baseline idea here is that the SCAs can exploit variations
in these parameters during the execution of cryptosystems
on a particular hardware and can determine the secret in-
formation used by cryptosystems based on the observed
parameters. Cache-based side-channel attacks (CSCAs) are
a special type of SCA, in which a malicious process deduces
the secret information of a victim process by observing its use
of caching hardware. Such attacks often rely on the presence
of specialized instructions to manipulate the state of shared
caches. The inherent features that any known CSCA exploits
are cache timing and access patterns. In order to make an
attack possible, an attacker usually needs to identify the vic-
tim’s memory addresses by observing the shared caches. Fur-
ther, an attacker would also have to determine if a particular
memory access generated by the victim results in a cache hit
or a miss. Generally, attackers observe the victim’s memory
accesses indirectly rather than directly. Thus, they change
the usual utilization (with respect to a no-attack scenario)
of underlying hardware resources, particularly caches. Such
attacks can be prevented at various levels including at the
system level, hardware level and application level [7]. At the
system level, physical and logical isolation approaches exist
[8]. At the hardware level, mitigation techniques are rather
difficult due to the cost and complexity of their design. How-
ever, hardware solutions suggest having new secure caches,
changes in prefetching policies and either randomization or
complete removal of cache interference [9]. At the applica-
tion level, the proposed countermeasures tend to target the
source of information leakage and mitigate it [10]. The at-
tacks are becoming sophisticated and stealthier [4], [7]. They
overcome statically applied mitigation techniques. Therefore,
on the one hand, protection against these CSCAs needs to
be applied across the entire computing stake and, on the
other hand, mitigation strategies must not reduce or remove
the hard-earned performance benefits of computing systems.
There is a niche for using detection-based protection, which
would help apply mitigation only after successful detection
of CSCAs.

This work addresses the problem of accurate and early
detection of CSCAs at run-time. In this paper, we propose
a machine learning system based on a runtime detection tool,
called WHISPER, for CSCAs targeting Intel’s x86 archi-
tecture. We demonstrate that intelligent performance mon-
itoring of concurrent processes at hardware level, coupled
with machine learning methods, can enable early detection
of high precision and stealthier CSCAs. The state-of-the-art,
discussed in Section II, suggests that some solutions exist
based on machine learning for detection of CSCAs such as
[11], [12], [13], [14], [15]. However, there are three major
limitations in the prior work. The first is that the majority of
machine learning models used in these solutions are trained

to classify a specific attack, or a subset of attacks, belonging
to any one category. Thus, when exposed to other CSCAs,
these models have to be retrained. The second limitation is
that, even after the machine learning model is retrained, it
may not yield the same accuracy because different CSCAs
exploit different cache vulnerabilities and the same model
might simply not be capable of accurately classifying the
changed behavior. And the third limitation is, prior works that
are capable of detecting different attack techniques together
are proved to have ill-suited evaluation criteria, i.e., they do
not account for performance overhead, detection speed, miss
classification rates and load conditions simultaneously, for
accurate and fast detection of attack behaviors at runtime.
In practice, the system can be exposed to multiple attacks of
different categories, in any temporal order and under any sys-
tem load conditions. Thus, retraining or changing individual
machine learning models may not be feasible, particularly for
runtime detection tools. A more generic solution is needed
that takes into account all (or most) attack techniques and, at
the same time, well-suited evaluation criteria for detection.

In this paper, we use multiple machine learning models
in an ensemble fashion in the WHISPER tool. The use
of the ensemble model, instead of an individual machine
learning model, is motivated by the fact that the proposed
tool is designed to detect a large set of CSCAs. The en-
semble model uses behavioral data of concurrent processes
running on Intel’s x86 architecture. These data are collected
from different hardware events using HPCs, in near real-
time, and are used as features. These data represent the
pattern of memory accesses generated by data-dependent
cryptographic operations that are being carried out by the
underlying hardware. Since each CSCA generates a different
interference with caches, the data being captured through
HPCs at run-time can therefore lead to miss-classification
for a single machine learning model. Instead an Ensemble
model, incorporates multiple best-performing models and
performs a majority-vote before classifying a given situation
as Attack or No-Attack. It is thus capable of accurately de-
tecting a larger set of attacks. Through extensive experiments,
our goal is to evaluate the capability of the proposed tool
to detect different variants of three state-of-the-art CSCAs,
namely; Flush+Reload, Flush+Flush and Prime+Probe. The
experiments are conducted to illustrate the proposed tool’s
capability of detecting almost all major known attack cate-
gories that are based on cache access patterns. The following
are the main contributions of this work.

1) The paper proposes a run-time detection tool to detect
CSCAs. The tool, called WHISPER, uses multiple
machine learning models in an ensemble fashion and
relies on the run-time profiling of concurrent processes
that are collected directly through the hardware events
using HPCs in near real time.

2) The paper demonstrates the capability of the proposed
tool to detect access-driven side-channel attacks with
reasonably high detection accuracy, high detection
speed, low performance overhead and minimal false

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

positives and negatives.
3) For validation purposes, the paper presents experimen-

tal evaluation of the proposed tool against a large and
diverse attack vector comprising both computational
and storage attacks. Results for the detection of state-
of-the-art CSCAs, such as Flush+Reload, Flush+Flush
and Prime+Probe are presented and discussed. Results
on the detection of computational attacks, such as
Spectre and Meltdown are also presented to demon-
strate the scalability of WHISPER tool.

4) We demonstrate that the WHISPER tool is resilient to
noise generated by the system under various loads. To
do so, we provide results under realistic system load
conditions, i.e., under No Load (NL), Average Load
(AL) and Full Load (FL) conditions. These load con-
ditions are achieved by concurrently running memory-
intensive SPEC benchmarks on the system along with
the cryptosystem and attacks.

5) We provide detailed discussion, supported with experi-
mental data, about the selection of appropriate machine
learning models and hardware events for run-time de-
tection of CSCAs. Our results show that the proposed
tool can also be used for other attacks (i.e.., Spectre
and Meltdown attacks) without requiring any changes
in the selected HPCs or retraining of classifiers.

The rest of the paper is organized as follows. Section II,
provides the state-of-the-art on CSCAs, their mitigation and
detection techniques. Section III discusses selected attacks
as use-cases for evaluation of the proposed tool. Section
IV presents the WHISPER tool, its components and design
challenges associated with detection. Section V provides
experimental evaluation using recent attacks from 3 CSCA
categories. Section VI provides additional results on the
detection of computational attacks to showcase the scalability
of the WHISPER tool. Section VII discusses the results and
Section VIII presents concluding remarks on our findings.

II. RELATED WORKS
In this section, our main aim is to provide a detailed back-
ground on the state-of-the-art related to CSCAs, their mitiga-
tion techniques and their proposed detection mechanisms.

A. STATE-OF-THE-ART ON CACHE SIDE-CHANNEL
ATTACKS AND MITIGATION TECHNIQUES
CSCAs are a significant class of SCAs that exploit the
execution-level details of cryptosystems by observing their
interference with the cache hierarchy. The main sources of
information leakage exploited by CSCAs are the memory
access pattern of target cryptosystem and the access timing
disparity in cache hierarchy. Many side- and covert-channel
attacks have already been proposed [16]. For instance,
some cache-based side-channel attacks are Flush+Reload [3],
Flush+Flush [4], Prime+Probe [17], Evict & Time [5] and
Evict & Reload [18]. Similarly, some covert-channel attacks
include: Foreshadow [19] and May the Fourth Be With You
[20]. More recently, new vulnerabilities have been discovered

that exploit computational optimizations such as Out-of-
Order and Speculative execution. Spectre [21] and Meltdown
[22] attacks are the most recent examples of such attacks.
Both Spectre and Meltdown are two-phase attacks and, in
one of their phases, they require CSCAs to retrieve privi-
leged information from caches. CSCAs are broadly divided
into two classes, i.e., time-driven and trace-driven attacks.
Since cache hits and misses exhibit different timing for the
same operation, this difference allows time-driven attacks to
extract information on the secret key. Trace-driven attacks,
on the other hand, try to access the cache lines that are being
used by the victim by analyzing the cache state.

Multiple mitigation techniques have also been proposed
against these CSCAs in the last decade. These techniques can
be categorized into logical & physical isolation techniques,
noise-based techniques, scheduler-based techniques and con-
stant time techniques (referring to different cache levels in
the cache hierarchy). For instance, logical physical isolation
techniques include Cache Coloring [23], CloudRadar [24],
STEALTHMEM [10], NewCache [25] and Hardware Par-
titioning [26]; noise-based techniques include fuzzy times
[27], bystander workloads [28]; and scheduler-based tech-
niques include obfuscation [28] and minimum timeslice [29].
Our Study of these mitigation solutions reveals that most
techniques focus on only one specific vulnerability in the
cache hierarchy. In practice, a system can be exposed to
multiple attacks simultaneously or in any temporal order.
Moreover, with relatively smarter attacks, these mitigation
approaches can be bypassed. Moreover, researchers have
discussed the fact that these attacks have not been completely
patched to-date [7], [30]. Researchers have also debated that
cryptographic code designers are far away from incorporat-
ing the appropriate counters to avoid cache leakages [31].
Since in this work, our focus is on the detection strategies of
CSCAs, we provide more insight into detection mechanisms
in the following and invite interested readers to explore
further by following up references to mitigation techniques.

B. STATE-OF-THE-ART ON DETECTION MECHANISMS
SCA detection techniques are divided into two basic cate-
gories; signature-based and anomaly-based detection. Some
techniques use a combined approach as well, i.e., signature
+ anomaly-based detection. Signature-based techniques de-
pend on signature of known SCAs. At run time, program
execution is compared with an already generated signature
and in the case of a match, an attack is detected. Such
detection mechanisms show good accuracy for known attacks
but suffer from low accuracy in the case of unknown or
modified attacks [24]. Anomaly-based detection approaches
generate a model for normal/benign applications. Any signif-
icant deviations from the model will be detected/considered
as an attack. Anomaly-based detection mechanisms have
the capability to detect unknown and modified attacks, but
they can suffer from high false positives as it is difficult
to include the behavior of every benign application. Also,
benign applications can potentially resemble CSCAs due

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

to intensive memory usage [24]. There are some detection
mechanisms that merge both anomaly and signature based
detection mechanisms to achieve accurate results [32], [24].

1) Signature-based Detection
Allaf et al. [15] propose a mechanism to inspect Prime+Probe
and Flush+Reload attacks targeting AES cryptosystem. Their
mechanism uses ML models and HPCs but the work lacks the
basic evaluation criteria required for detection. The proposed
mechanism shows good accuracy under isolated conditions,
where the attacker and victim are the only load on the system
whereas, accuracy degrades under realistic load conditions.
Moreover, the authors do not discuss the impact on overall
performance caused by the said technique. Mushtaq et al.
[12] proposed a signature-based run-time detection mech-
anism called the NIGHTs-WATCH. It comprises 3 linear
machine learning classifiers, LDA, LR, and SVM, that work
independently. The NIGHTs-WATCH takes different hard-
ware events as input features under attack/no-attack scenar-
ios. The authors claim a low performance overhead for a high
detection accuracy and speed. This work is limited to the
use of individual ML models trained and used for specific
attacks. This means that models need to be retrained for each
new attack to detect it. In a similar work, Mushtaq et al. in
[13] used both linear and non-linear ML classifiers to detect
different implementations of Prime+Probe attacks running on
the AES cryptosystem.

In [33], Sabbagh et al. proposed a signature-based detec-
tion tool, SCADET, that detects Prime+Probe attacks. Instead
of using HPCs, this approach uses high-level semantics and
invariant patterns of attack, i.e., I-cache, D-cache and LLC.
Results show that SCADET provides very good accuracy, but
no results on detection speed or on the performance overhead
of the mechanism, which leaves the question of runtime
adaptation. Authors report that, in some cases, the system
provides false alarms under load conditions. Moreover, the
trace analysis time in this approach is very long, meaning
the solution is not suitable for runtime detection. Notable
irregularities have also been reported when the trace exceeds
a certain size.

Some of the signature-based detection mechanisms use
threshold determination to detect CSCAs instead of machine
learning [34], [35], [36]. One of the techniques in [34],
named as HexPADS, utilizes the values of cache miss rates
and page faults to detect an attack. HexPADS is able to
detect cache template attacks [18] based on Flush+Reload,
enhanced version of C5 attack [37] based on Prime+Probe,
page fault attacks (CAIN [38]) and fault attacks based on
Rowhammer [39]. However, the paper lacks a discussion on
detection speed. Moreover, HexPADS assumes no variation
in the system load, therefore, overhead may increase with re-
alistic scenarios. Another similar threshold-based technique
is presented in [35], which uses cache miss rate and data-
TLB miss rate to recognize CSCAs. Authors reported results
depicting successful detection of variants of Flush+Reload
attacks. However, the authors mentioned neither performance

overhead caused by this detection technique nor the detection
speed. Raj and Dharanipragada [36] presented Pokerface
to identify and mitigate CSCAs. Pokerface compares the
memory bus bandwidth with a threshold level to detect
Prime+Probe and Flush+Reload CSCAs. However, the au-
thors do not provide a discussion of detection accuracy or
mention the speed of the proposed mechanism. A threshold-
based detection technique Deja-Vu [40] was introduced to
detect attacks on programs guarded by SGX. This technique
uses test benchmarks with a negligible overhead. However,
the instrumentation required can increase the size of enclave
binaries to a very large number and threshold determination
is not always very sophisticated or provides a reliable approx-
imation for detecting attacks.

2) Anomaly-based Detection
Recently, two new detection techniques that rely on anomaly-
based detection have been proposed [41], [42]. CacheShield
[41] is an anomaly-based detection mechanism for CSCAs
on legacy software (victim applications) that monitors HPCs
while using an unsupervised anomaly detection algorithm
called Cumulative Sum Method (CUSUM). The CacheShield
detects Flush+Reload, Flush+Flush and Prime+Probe attacks
under load conditions and the results show that attacks
were detected before the attack was 50% complete. Another
anomaly-based detection mechanism is a semi supervised
technique called the SpyDetector [42]. It has been pro-
posed to detect CSCAs under variable load conditions using
HPCs. The SpyDetector has been validated on Flush+Reload,
Flush+Flush and Prime+Probe attacks running over RSA,
AES and ECDSA cryptosystems. The mechanism performs
well under variable load conditions on physical as well as
on virtual setups, but the authors do not provide any results
regarding detection speed and the overhead for reported
accuracy.

3) Signature + Anomaly Based Detection
As discussed earlier, there are detection techniques that use
a combination of both signature- and anomaly-based de-
tection approaches [11], [24], [32]. Chiappetta et al. [11]
proposed a machine learning based detection mechanism
for Flush+Reload attack on AES and ECDSA cryptosys-
tems. This work uses three approaches to detect the attack:
correlation-based detection, anomaly detection and artifi-
cial neural networks-based detection. This detection mech-
anism offers good detection accuracy and speed but does
not incur less overhead. Another signature and anomaly-
based detection mechanism is CloudRadar [24], which cor-
relates cryptographic execution of applications on virtual
machines and the anomalous behavior of caches to detect
CSCAs in cloud systems. The CloudRadar demonstrates
its efficiency by performing an attack and once it is de-
tected, VM migration is performed, which serves as a light-
weight patch to cloud systems. The proposed mechanism is
tested for Flush+Reload and Prime+Probe attacks and offers
high accuracy and negligible overhead at a predetermined

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

sampling frequency and threshold. This approach does not
take machine learning into account for analyzing variable
behaviors and performs a threshold-based decision which is
unreliable for different attack behaviors at runtime, where,
the realistic load conditions can be noisy and attack behav-
ior may vary from predetermined threshold based behavior.
Although CloudRadar detects attacks with high accuracy in
isolated conditions, no tests have been performed under re-
alistic/noisy scenarios to measure the efficiency of the detec-
tion mechanism. Another three-step detection mechanism on
cache and branch predictor based CSCAs is proposed in [32].
This method includes HPCs and machine learning models
and uses three stages; detecting the anomaly, finding the class
of anomaly and correlating malicious process with the victim.
Their experiments show that this mechanism performs well
and provides high accuracy under a predetermined sampling
frequency and a specific threshold, but the detection speed
and detection overhead of the proposed technique are not
evaluated or discussed.

Based on our findings, the overall state-of-the-art on detec-
tion techniques are lacking in certain aspects that are crucial
for making run-time detection an effective way to mitigate
SCA attacks. For instance, most of the proposed techniques
primarily focus on achieving higher detection accuracy and
either ignore or insufficiently cater for other parameters like
detection speed and performance overhead. Moreover, the
attack surface is continuously expanding, but the proposed
techniques target only selected attacks and do not try to cover
a larger attack vector. We believe that, for run-time detection
to be an effective way of mitigating SCAs, the detection tools
need to cover a large attack vector while offering reasonably
good detection accuracy, speed and overhead.

III. USE-CASES: SELECTED CACHE SIDE CHANNEL
ATTACKS
As highlighted in Section I, we evaluated the proposed tool
against a large and diverse attack vector to demonstrate its
adaptability. Our primary focus, however, is on cache side-
channel attacks. We selected six different CSCA implemen-
tations as use-cases for the validation of the WHISPER tool.
These attacks cover three main categories of CSCAs, i.e.,
Flush+Reload (F+R), Prime+Probe (P+P) and Flush+Flush
(F+F). In the state-of-the-art, these selected use-case attacks
often target a given cryptosystem to retrieve secret key
information. Therefore, for the purpose of uniformity and
demonstration, all the experimental results in this work are
mainly shown for one cryptosystem, i.e., AES. However, it is
worth mentioning here that the WHISPER tool also works
effectively in other cryptosystems, such as RSA. For the
selected CSCA use-cases, we used two different versions of
OpenSSL on which the attacks are demonstrated in the state-
of-the-art. Table 1 details these use-cases. Later, in Section
VI, we demonstrate that the WHISPER tool is also capable
of detecting attacks that are independent of the cryptosystem,
such as Spectre and Meltdown attacks.

To serve the community at large, we provide the source

code and experimental data related to all these CSCAs at our
Github repository [43], which can be freely accessed, used,
distributed and reproduced.

TABLE 1: List of Selected CSCAs as Use-Cases

No. Use-case
CSCAs

OpenSSL
Version

Key Recov-
ery

1 Flush+Reload 0.9.7l/ 1.0.1f Half Key
2 Flush+Reload 0.9.7l/ 1.0.1f Full Key
3 Flush+Flush 0.9.7l/ 1.0.1f Half Key
4 Flush+Flush 0.9.7l/ 1.0.1f Full Key
5 Prime+Probe 0.9.7l/ 1.0.1f Half Key
6 Prime+Probe 0.9.7l/ 1.0.1f Full Key

A. FLUSH+RELOAD
Flush+Reload [3] is a trace-driven attack that relies on the
presence of page sharing. State-of-the-art attacks have been
performed using the Flush+Reload technique using RSA and
AES cryptosystems [44], [6]. This technique has three major
steps; first the attacker flushes the shared cache line using
CLFLUSH instruction. In the second step, the attacker lets
the victim execute and in the third step, the attacker reloads
the cache line and measures the reload time. Reload time
indicates if the cache line was of interest for the victim or not.
Two different variants of this attack were implemented on
the AES cryptosystem for our test cases, which are available
in [6], [45] (full key, faster implementation), [46] (half key,
slower implementation).

B. PRIME+PROBE
Prime+Probe attacks are in the category of trace-driven at-
tacks that exploit last level shared caches across multiple
cores. The principle of Prime+Probe has been used to develop
various CSCAs such as those proposed in [28], [47], [5], [44],
[48], [49]. The Prime+Probe technique involves two major
steps; in the first step, the attackers prime the cache with
their own data and let the victim execute, in the second step,
the attackers probe the cache and measure the time needed
to access their own primed data in cache. The difference in
time will inform the attacker if any of the cache set has been
accessed by the victim or not. The Prime+Probe technique
has been used at different cache levels including L1-Data
cache (L1-D) [48], L1-Instruction cache (L1-I) [50] and Last
Level Cache (LLC) [51]. Two different variants of this attack
technique are available; one implementation contains half
key recovery with a slower implementation [46], whereas
we implemented the Flush+Reload on AES from [6], [45]
and modified it for faster and full key recovery on the same
principle for Prime+Probe.

C. FLUSH+FLUSH
Flush+Flush [4] attacks also belong to trace-driven attack
techniques, but replace the Reload step of Flush+Reload
with a Flush step. Attacks rely on CLFLUSH instructions to
perform the Flush step. This technique has two major steps;

VOLUME 4, 2016 5



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

in the first step, the attacker flushes the cache line from the
shared address space and lets the victim to operate normally
(the victim may or may not access the flushed cache line).
In the second step, the attacker flushes the same cache line
and measures the time of flushing (the attacker determines
if the victim has accessed that cache line or not during its
normal execution). We implemented two different variants
of this attack technique on the AES cryptosystem in our test
cases and these are available on [4], [46] (this implementation
targets the first round of encryption to recover half key which
is rather slow). We also implemented Flush+Reload on the
AES from [6], [45] and modified it for faster and full key re-
covery on the same principle as that used in Flush+Flush. The
Flush+Flush attack is considered a stealthy, high-resolution
and non-detectable CSCA. The Flush+Flush attack is also
considered to be fast because unlike other CSCAs, it does not
access any memory. Flush+Flush causes minimal cache hits
and no cache miss at all due to constant flushes mechanism.
Gruss et al. [4] claimed that the spy process in this attack can
not be detected by monitoring cache behavior (hits, misses).
Due to its working principle, a Flush+Flush attack causes
more cache misses and memory accesses for the victim
process due to constant flushing of its instruction/data.

We build our claim based on the fact that detection is
required to indicate the presence or absence of intrusion from
the victim’s perspective. That is, for detection as a first step, it
is important to identify when an intrusion is happening in the
system in order to take the right protective measures. Then,
the steps can be taken to identify which particular process in
the system is the malicious one.

IV. WHISPER -A RUN-TIME SCA DETECTION TOOL
Having established the background and state-of-the-art in
the previous sections, we now present the design details
of our proposed CSCA detection tool, WHISPER. One of
the distinguishing features of the WHISPER tool is that
it is designed to work at runtime, i.e., when the attack is
actually happening, to detect and help the operating system
protect itself against known CSCAs. The three challenges we
address in designing the WHISPER tool are: 1) Detection
tools usually approximate the whole system behavior which
can increase the number of false positives and false negatives
at runtime, 2) The detection process can slow down the
overall execution of the cryptosystem, which can lead to
a significant performance overhead while trying to achieve
greater detection accuracy and 3) Detection can sometimes
be very slow, resulting in late detection in the sense that
the attacker has already completed up to 50% of its activity,
for instance, secret key retrieval. In the literature, 50% is
considered as a theoretical threshold for a successful attack
[2], [5]. We considered all these design challenges as our
evaluation metrics for the WHISPER tool.

The WHISPER tool does intelligent performance mon-
itoring of concurrent processes with data collected at the
hardware-level using hardware events and feeds them to se-
lected machine learning models to perform early detection of

high precision and stealthier CSCAs. The tool has two major
components: 1) Selection of appropriate hardware events that
will provide, at runtime, insight into the cache behavior while
CSCAs take place and 2) Selection of appropriate machine
learning methods that could perform binary classification
of Attack vs No-Attack scenarios with high accuracy, high
speed and minimum performance overhead.

We consider that the tool will operate under realistic
system load conditions on commodity hardware. Therefore,
we emulate the load conditions by running memory-intensive
SPEC benchmarks on the system as background load. The
load conditions are defined such that a No Load (NL) con-
dition involves only victim and attacker processes running,
an Average Load (AL) involves victim, attacker and any two
SPEC benchmarks running, and a Full Load (FL) condition
involves Victim, Attacker and any four SPEC benchmarks
running in the background. In the state-of-the-art, it often
happens that attacks are running in isolated conditions i.e.,
attacker and victim are the only load. For instance, the attacks
presented in [4], [5] and [3] have no load conditions. There-
fore, to assume a realistic scenario, it is useful to validate the
mechanism under different load conditions, which, in turn,
validate the functioning of the tool in a realistic scenario.
This is why we deliberately used SPEC benchmarks that
are memory intensive and affect caches in terms of cache
accesses, CPU cycles, cache hits and misses, etc.

In this section, we detail the methodology of the WHIS-
PER tool and selection criteria for the two aforementioned
components. We validate the tool experimentally on six
different CSCAs and their variants. The CSCA use cases
considered cover a large attack surface. In this work, we
evaluate the efficacy of the proposed tool with these CSCAs
being validated on different OpenSSL versions. We provide
empirical evidence for the effectiveness of the proposed
detection tool against these attacks and variants.

A. METHODOLOGY
Figure 1 is an abstract view of the methodology used in the
WHISPER tool. We consider shared memory architecture
as most known CSCAs target Intel’s x86 based execution
platforms. As illustrated, the tool collects behavioral data on
concurrent processes at runtime using HPCs. As discussed in
Section IV-B, these data comprise selected hardware events,
which are fed to an Ensemble model. The WHISPER tool
methodology consists of three distinct and significant phases,
namely; 1) Run-time profiling, 2) Training machine learning
models and 3) Classification & detection. In the following,
we describe these phases in detail.

1) Run-time Profiling
The first phase of WHISPER’s detection mechanism com-
prises runtime profiling of the victim’s process i.e. target
cryptosystem. In this phase, runtime samples from selected
hardware events are collected using HPCs. Since we target
access-driven CSCAs, we consider only the hardware events
that are most affected by these attacks. Section IV-B provides

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

FIGURE 1: WHISPER Tool’s Methodology-Abstract view

details on the selection of such events. Intel x86 processors
[52] provide access to hundreds of hardware events through
software APIs, which can reveal valuable information on the
system.

WHISPER offers runtime profiling at variable sampling
granularity. That is, the tool allows both the user and the
system to adjust sampling granularity between fine-grain and
coarse-grain levels, depending on the prevailing threat level.
Sampling granularity is defined as the rate at which the data
from HPCs are collected with respect to the completion of
encryption. For example, Flush+Reload is a single encryption
attack on RSA. Therefore, in this case, the sampling granular-
ity would be after every n− bits of encryption defined by the
user. For attacks that require multiple encryptions to be com-
pleted, the sampling rate can be defined as n− encryptions.
For instance, Flush+Flush attack on AES requires between
350−400 encryptions at least. Therefore, rather coarse-grain
sampling would still be enough to detect this attack before its
completion.

Sampling granularity has a major influence on the victim’s
performance as it varies the execution time of the victim’s
process and its shared libraries compared to normal exe-
cution. A higher sampling rate for hardware events would
provide precise measurement of cache behavior, which would
facilitate in faster detection speed. However, it will also
slowdown the encryption/decryption process of the victim
and increase the performance overhead. Therefore, sampling
granularity implies a trade-off between detection speed and
performance overhead. The experimental results in Section V
show that our detection mechanism provides better detection
speed at reasonably low performance cost, both at high
and low sampling granularity. Once collected, these runtime
profiles of the victim’s process under variable system load

conditions are used for training and cross validation of the
machine learning models in the next phase. Post-training, the
classifiers work with the same hardware events at runtime.

2) Training of machine learning models
The hardware events that are used to profile the target cryp-
tosystem at runtime enable the tool to differentiate between
attack and no-attack processes. We collected training data on
one million samples evenly distributed among representative
execution scenarios for the victim’s process. For instance, the
samples comprise an equal number of training data for attack
and no-attack scenarios. Furthermore, each of these scenarios
comprises an equal number of training data being collected
under no load, average load and full load conditions. We
then train the selected machine learning models with these
labelled data. Our training data set is un-biased, i.e., it does
not favor one execution scenario over the other. For validation
purposes, we apply K fold cross validation technique [53] for
each individual model using training data to check its accu-
racy before deploying these models for runtime detection.

3) Classification & Detection
In the third and last phase, trained individual classifiers in
the tool utilize runtime data originating from hardware events
for classification and detection purpose. Based on training in
the second phase, every model classifies the run-time data
in two categories: Attack or No-Attack. A majority vote is
then taken by the ensemble model on the individual decisions
of selected machine learning models to decide whether the
cryptosystem is under attack or not. Detection accuracy is
based on how well the model is trained, whereas the speed
of detection and performance is dependent on how fast we
try to collect the samples, i.e., sampling granularity. The rate
of miss classifications is the measure of imperfections and
inclinations of the predicted results and is defined as False
Positives (FPs) and False Negatives (FNs). FPs is the case
when a no-attack condition is detected as an attack and leads
to loss of performance and loss of confidence. On the other
hand, FNs is a condition in which an attack is detected as a
no-attack, which is more of a security breach and involves
loss of critical information. The results in Section V show
how accurately and rapidly different models classify data
samples at runtime in our proposed detection mechanism.

B. HARDWARE PERFORMANCE COUNTERS
Hardware performance counters (HPCs) are special purpose
hardware registers present in almost all modern processor
families. HPCs are basically used to monitor the perfor-
mance of applications on architectural events (e.g., cache
misses/hits, CPU cycles, cache references, etc.) while ap-
plications are running on underlying hardware. Processors
based on Intel’s x86 architecture [52] provide access to
hundreds of hardware events that can reveal valuable in-
formation of the system using HPCs. However, modifiable
HPCs are limited in number. Therefore, few events can be
monitored concurrently (ranging from 4 to 8 events). There

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

are many high-level libraries and APIs that can be used to
configure and read HPCs, such as; PerfMon [54], OProfile
[55], Perftool [56], Intel Vtune Analyzer [57] and PAPI [58],
etc. As mentioned in Section II-B, many detection techniques
use HPCs to detect different CSCAs. Selection of most
appropriate and minimum number of hardware events that
could help revealing the attack behavior remains an important
challenge for detection tools.

1) Selection of HPCs
Many hardware events provide valuable information regard-
ing normal vs abnormal behavior of running processes. For
instance, Figure 2 shows some experimental results of se-
lected hardware events (under NL conditions) that measure
L1-Data Cache Misses (L1-DCM), L3-Total Cache Accesses
(L-TCA) and L3-Total Cache Misses (L3-TCM) and Total
Cycles for 100, 000 encryptions of the AES cryptosystem.
Figure 2 shows the frequency of samples on the Y-axis and
the magnitude of measured event on the X-axis. Results
shown in green represent normal behavior of AES encryption
algorithm running under no-attack, and results in red show
AES running under Prime+Probe attack. Figure 2 shows that
the magnitude of these events varies particularly (increases in
this case) under an attack situation compared to in a no-attack
(normal) situation, indicating that the events are particularly
affected during the attack. Our detailed experiments with
other cache-related hardware events show that they reveal
very interesting information about CSCAs.

TABLE 2: Selected events related to CSCAs
Scope of
Event

Hardware Event as Fea-
ture

Feature ID

L1 Caches
Data Cache Misses L1-DCM
Instruction Cache Misses L1-ICM
Total Cache Misses L1-TCM

L2 Caches

Instruction Cache
Accesses

L2-ICA

Instruction Cache Misses L2-ICM
Total Cache Accesses L2-TCA
Total Cache Misses L2-TCM

L3-Caches
Instruction Cache
Accesses

L3-ICA

Total Cache Accesses L3-TCA
Total Cache Misses L3-TCM

System-wide Total CPU Cycles TOT_CYC
Branch Miss-Predictions BR_MSP

Since we target access-driven CSCAs, we consider only
hardware events that are the most affected by these attacks.
We performed experiments on a larger set of related hard-
ware events (25+), including cache and system-wide counters
and selected the 12 most significant events depicting the
cache behaviors, as shown in Table 2. These events have also
been used in previous studies for CSCA detection [59], [60],
[12], [32]. Any of these events can be useful for detecting
CSCAs relying on cache behaviors. Selection of events is

FIGURE 2: Results showing selected hardware events under
no load condition for Prime+Probe attack on AES.

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

TABLE 3: Selected events related to use-case CSCAs
Attack Hardware Event as Fea-

ture
Feature ID

Flush+Reload

L1- Data Cache Misses L1-DCM
L3-Total Cache Accesses L3-TCA
L3-Total Cache Misses L3-TCM
Total CPU Cycles TOT_CYC

Flush+Flush

L1- Data Cache Misses L1-DCM
L3-Total Cache Misses L3-TCM
L3-Total Cache Accesses L3-TCA
Total CPU Cycles TOT_CYC

Prime+Probe

L1-Data Cache Misses L1-DCM
L3-Total Cache Accesses L3-TCA
L3-Total Cache Misses L3-TCM
Total CPU Cycles TOT_CYC

strictly based on the following five arguments: 1) the rele-
vance of events with respect to attack’s behavior, 2) provision
of precise and distinctive information on normal/abnormal
behavior that does not overlap with any other set of events,
3) diversity and non-correlation among features that can be
fed to machine learning models to enable confidant decision-
making under realistic scenarios, 4) a minimum but suffi-
cient set of events that does not cause huge performance
overhead while sampling, and 5) minimum events that do
not require multiplexing of hardware performance counters
(as multiplexing can lead to non-deterministic and imprecise
measurements at run time). Since every selected attack has its
own peculiar characteristics and yet they affect caches in one
way or the other, for the WHISPER tool, we chose the most
suitable minimum number of hardware events that could
maximize the understanding of targeted vulnerabilities in the
cache behavior. To elaborate further, for instance, almost
all cache-based side-channel or covert-channel attacks target
the sharing property of the caching hardware (e.g., inclusive
LLC) or use specialized instructions like CLFLUSH instruc-
tion. They increase the cache miss rate by continuously
flushing selected cache lines, which also affects the total CPU
time for the victim’s process. Thus, we select the hardware
events that are the most affected ones by the cache’s behavior
when system is under attack. As illustrated in Figure 2, we
can see that attack behavior is mostly influenced by these
4 events; attacker creates a significant rise in L1 data cache
misses and L3 total cache misses due to continuous flushing,
the total number of access of cache increase and distinguishes
normal/abnormal behaviors due to the number of total cycles
increase as attacker is performing activity along with victim’s
execution. It is important to note that tweaking HPCs with
relevance to attack behavior can provide a lot of information
on system behavior to launch a detection mechanism.

Based on the CSCA characteristics reported in Section III,
we selected the hardware events mentioned in Table 3 as
being the best suited. For instance, figures 2 and 3 present
experimental results of these selected hardware events for
Prime+Probe attack under no load and full load conditions,

FIGURE 3: Results showing hardware events under Full
Load conditions for Prime+Probe attack on AES.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

respectively. As depicted in these figures, each hardware
event shows distinguishable features for attack and no-attack
cases.

TABLE 4: List of Machine Learning Models for CSCA
Detection (Non-exhaustive)

No. Machine Learning Model Category
1 Linear Regression (LR) Linear
2 Linear Discriminant Analysis

(LDA)
Linear

3 Support Vector Machine (SVM) Linear
4 Quadratic Discriminant Analy-

sis (QDA)
Non-linear

5 Random Forest (RF) Non-linear
6 K-Nearest Neighbors (KNN) Non-linear
7 Nearest Centroid Linear
8 Naive Bayes Linear
9 Perceptron Linear
10 Decision Tree (DT) Non-linear
11 Dummy Non-linear
12 Neural Networks Non-linear

C. MACHINE LEARNING MODELS
In this section, we discuss the rationale for selecting machine
learning models for the WHISPER tool. In section IV-B,
we discuss how hardware events can provide valuable infor-
mation regarding the behavior of target processes and how
the load conditions can affect their ability to provide dis-
tinguishable information. The difference between attack and
no-attack scenarios is quite clear under No Load conditions
as shown in Figure 2, which could easily be separated using
a threshold. However, under a more realistic load condition
such as Full Load, this situation worsens, as shown in Figure
3. Due to increased interference with caches, it becomes hard
to separate an attack scenario from a no-attack scenario with
simple threshold-based approaches.

Adding to the problem, in practice, a system can be
exposed to multiple CSCAs simultaneously or in any tem-
poral order, which would further increase the difficulty in
distinguishing an attack scenario using data from hardware
events. To explain this, we conducted experiments with six
different attacks as use-cases (discussed in Section III). We
collected data for selected hardware events under all load
conditions for these six use-cases separately and then plotted
them together as shown in Figure 4 for the full load case
in order to illustrate the overlapping nature of data under
different attacks. As can be seen in Figure 4, it is not easy
to classify these HPC’s data using simple threshold-based
approaches.

For such a system, machine learning models can be helpful
by appropriately learning the behavior of each CSCA using
HPC data. However, any selected ML model is assumed to
deal with such a data mix in order to separate an attack from
a no-attack scenario, whereas our experiments show that not

FIGURE 4: Results showing selected hardware events under
Full Load conditions for six CSCAs on AES.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

all ML models yield acceptable results and it is important
to understand the diversity of data affecting the caches in
an attack/no-attack scenario for selection of ML models. To
this end, in Section IV-C1, we discuss the behavior of mixed
data collected under all six attacks that affects the caches.
Analysis of these data provides an insight about the data mix
and helps select appropriate ML models for the WHISPER
tool. Based on the analysis in Section IV-C1, we then discuss
the selection of ML models in Section IV-C2.

1) Dimensionality Reduction of Data
Before we present the results for different use-cases, it is
important to have a look at the data that are being used
for classification. Since the WHISPER tool is designed to
detect multiple attacks at runtime, therefore, also for training
purposes, the tool simultaneously takes into account the data
from six attacks exhibiting different behaviors. It becomes
very difficult for the ML models to perform behavioral
analysis on such a mix of data. Figure 5 illustrates the data
density plot between two selected hardware events, L1_DCM
& L3_TCA in this case, under Full Load conditions for
combined data of all attacks. These results show that the
ML features are heavily correlated, which is the reason why
not all linear models were able to perform well on these
data. Other density plots between selected hardware events
reveal similar information and are therefore omitted in favor
of space.

FIGURE 5: Results for data density between L1_DCM &
L3_TCA under Full Load conditions -All attacks combined.

For the sake of clarity, we reduced the dimensionality of
data for visualization using t-distributed Stochastic Neighbor
Embedding (t-SNE) algorithm [63]. Other tools can be used
for data reduction including Principal Component Analysis
(PCA) [64]. PCA is a mathematical technique but t-SNE is a
probabilistic one. In order to represent high dimension data
on low dimension, non-linear manifold, similar data points
have to be represented close together, which can be more
easily achieved by t-SNE rather than with PCA. As a result,
in Figure 6, the data reduction can be seen from high scale
to a good classification scale for Full Load conditions. This

FIGURE 6: Results on data reduction and visualization using
t-SNE algorithm under Full Load conditions -All attacks
combined.

representation of data, on the one hand, provides us with
the necessary information to select best-suited ML models
for the tool and, on the other hand, provides a good insight
into the cache behavior under multiple attacks. Figure 6
shows that, in reduced dimensions, the no-attack case is
still distinguishable from the attack case if appropriate ML
models are used.

2) Selection of Machine Learning Models
Machine learning models are broadly classified into two
basic categories; linear and non-linear models. We experi-
mented with a set of 12 distinguished ML models, among
which, 6 models are linear and 6 models are non-linear as
mentioned in Table 4. LDA is a statistical model used in
Machine Learning to discriminate classes by finding a linear
combination of the input features such that it provides the
best separation between classes. SVM is a non-probabilistic
supervised Machine Learning model also known as maxi-
mum margin classifier. SVM learns and chooses an optimal
hyperplane through the training data in such a way that its
distance from the nearest training data points is maximum on
each side. The hyperplane then characterizes the new input
data points. QDA is a statistical, non-linear, supervised model
used in Machine learning. QDA is somewhat similar to LDA
in the context of assumptions, except for one assumption of
the same co-variance matrix between the features. QDA finds
a non-linear combination of features such that it provides the
best separation between classes. RF is an ensemble learning
method that is used for classification and regression purposes.
It is mostly used for over-fitting of training sets. It is robust to
the inclusion of irrelevant features and produces inspectable
models. It explodes in the form of a tree and is able to grow
deeply following highly irregular patterns. KNN is a non-
parametric statistical approach used in pattern recognition
and for supervised classification in Machine Learning. KNN
classifies an incoming data point by assigning it the same
label as that of its maximum K-nearest training data points

VOLUME 4, 2016 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

label. This algorithm is computation and memory intensive.
The Nearest Centroid is a parametric supervised classifier
used in ML. It calculates the distance of the new input data
point from the mean of the training data of each class and
then assigns the label to the new input data point in the
class whose calculated distance was smallest. Naive Bayes
is a probabilistic supervised ML classifier with a strong
assumption that the features are independent of each other.
It calculates the probability of an incoming data point in each
class. The new data point gets the label of the class whose
probability is greater. Perceptron is like the neuron in human
brain. It is a linear supervised ML approach which represents
the simplest neural network. It learns some weights for future
use from the training data and then predicts the class of the
new incoming data point by calculating the weighted sum
of these features. DT is a tree like model of decisions and
their possible consequences. It is one of the models that
contains conditional control statements. In decision analysis,
DT mainly helps to carve a strategy to reach certain goals.
Dummy Model is a naive approach that can be used for
classification. It assigns the label of the most frequent class
to the new input data. Neural Networks, also known as
multilayer perceptrons, are composed of multiple perceptron
hidden layers. Feed forward and backward propagation tech-
niques can be used for error reduction. Detailed explanations
about these models are available in [53], [61], [62], [63]. We
performed experiments with well-known basic ML models
as they exhibit low overhead at runtime with considerable
accuracy. This list is non-exhaustive and does not imply
rejection of the use of other ML models.

FIGURE 7: Accuracy Comparison of ML models for 6
Attacks

Since WHISPER is a runtime CSCA detection tool, we
apply stringent criteria for selection of ML models that
best suit our design constraints, i.e., classification accuracy,
implementation feasibility for run-time detection, perfor-
mance overhead, distribution of error (false positives and
false negatives) and detection speed. Detection accuracy is
the most important criterion for the tool. Therefore, we test
the detection accuracy for all 12 models with a training
data set collected for all six attacks running on the system.
We then compare these models on the rest of the design

constraints. Figure 7 illustrates the detection accuracy of all
12 models that were tested against six attacks with variable
load conditions (No Load, Average Load and Full Load
). Figure 7 shows that linear models, including LDA, LR,
Naive Bayes, Nearest Centroid and Perceptron do not per-
form very well on detection accuracy while classifying the
HPC data of six attacks. This is because of the significant
data overlap. Similar pattern can also be observed in some
of the non-linear models, including QDA, Dummy and K-
means. Based on the detection accuracy alone, it leaves us
with a choice of SVM, DT, RF, KNN and Neural Networks.
However, detection accuracy, the most important parameter,
is not the only one to consider when deploying a high-speed
run-time CSCA detection tool. The other very important
parameter to examine while comparing ML models is their
implementation feasibility. Likewise, ML models should be
able to quickly provide their decision while keeping their
performance overhead minimum. According to these criteria,
although the KNN model shows good detection accuracy,
it uses all training data points at runtime to infer decision.
Thus, KNN involves significant implementation complexity,
which can lead to high performance and storage overheads.
Neural network is a model that performs well in terms of
detection accuracy as shown in Figure 7. It uses a forward and
backward propagation technique that causes the problem of
over-fitting due to which it backtracks all events for error re-
duction and eventually increases performance overhead. That
is why we did not use neural networks in the WHISPER tool,
but it could be a useful selection for sophisticated attacks in
future. For the moment, our problem can be resolved using
models that provide less overhead than Neural Networks.
That is why we selected the remaining three models with a
good performance, i.e., DT, RF and SVM. All these models
perform consistently, offer good accuracy and ease of imple-
mentation while providing negligible performance overhead
(as demonstrated by experimental evidence). The WHISPER
tool uses these three ML models to demonstrate its effective-
ness. However, the tool is scalable and can include/exclude
other ML models with one-time training phase, as explained
in Section IV-A.

Our experiments revealed that, although all three selected
ML models perform reasonably well when used individually,
they still exhibit high rate of false positives and false neg-
atives because of the variation in HPC data captured under
different attacks. Therefore, the WHISPER tool uses all three
models in an ensemble fashion where the final decision on
detection is taken through a majority-vote among the best-
performing ML models for runtime input data. The results in
Figure 7 show that the ensemble of models shows consistent
accuracy for diverse data coming from six different attacks at
runtime.

D. IMPLEMENTATION OF DETECTION MODULE
Before presenting the experimental evaluation, in this sec-
tion, we briefly present the implementation details of the
WHISPER tool. Algorithm 1 presents an abstract level pseu-

12 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

docode for WHISPER’s detection module. As illustrated, the
module takes as input the sampling granularity for hardware
events (SamplingGranularity), which can be either
user-defined or adjusted at runtime. By default, the sampling
granularity is set to fine grain, i.e., 10 AES encryptions. The
sampling in WHISPER is user-defined and can be changed
based on the type and the level of threat at runtime. Moreover,
different attacks require observation of a different number
of encryptions in order to be successful. For instance, there
are certain attacks that require observation of only a single
encryption to complete (e.g., Flush+Reload on RSA-1024
bits [3]) while other attacks require observtion multiple
encryptions to complete (e.g., Flush+Flush on AES [4]).
Therefore, in the case of Flush+Reload on RSA, WHISPER
can set the sampling granularity at the rate of every 10 bits,
whereas 10 encryptions for Flush+Flush on AES require
observation of roughly 350 − 400 encryptions to complete
the attack. Sampling granularity can always be tuned by the
user/system to effectively control the performance overhead
depending on the type and level of threat at runtime. Another
input is the total number of iterations for which we tested
the module (MaxIterations). The number of iterations
varies for each attack as discussed in Section V. Lines
1− 3 show that a victim’s (encryption) process is initialized,
the detection module is activated once and the hardware
events are set around the victim’s process considering it
as the ROI (Region of Interest). For the overall selected
number of iterations, the module activates detection after
every 10 or 100 encryptions in the case of AES cryptosystem,
depending on what granularity has been specified through
SamplingGranularity (lines 4−6). Once activated, the
detection module collects the data from hardware events (line
7) and feeds them as features to selected binary classifiers
(line 8) in order to perform individual voting. Based on these
individual votes, the module generates a report after taking
a majority vote on the results (line 9). Detection is then
deactivated (line 10) and if the report is True then an attack
is reported (lines 11 − 12). Otherwise, the victim’s process
continues to execute uninterrupted.

V. EXPERIMENTS AND DISCUSSION
We evaluate the WHISPER tool under stringent design con-
straints. To do so, we create three experimental case studies to
detect Prime+Probe, Flush+Reload and Flush+Flush attacks,
respectively, on AES cryptosystem. In each case, we evaluate
the performance of our tool under variable load conditions,
i.e., No Load (NL), Average Load (AL) and Full Load (FL)
conditions, as explained in Section I.

A. SYSTEM MODEL
We demonstrate the efficiency of the WHISPER tool on
Intel’s core i7−4770 CPU running on Linux Ubuntu 16.04.1
with Kernel 4.13.0 − 37 at 3.40-GHz. Our threat model
consists of access-driven CSCAs, which produce information
leakage over the entire cache hierarchy (L1, L2 & LLC)
of Intel x86 architecture. We take same-core and cross-

Algorithm 1: Run-time Detection Module
Input: SamplingGranularity, MaxIterations
Initialization:
events← ∅, votes← ∅
report← False, VictimProcess← NIL

1 VictimProcess← Get_Encryption_Process()
2 Activate_Detection(VictimProcess)
3 Set_Hardware_Events(VictimProcess)
4 for i← 1 to MaxIterations 1 do
5 if i mod SamplingGranularity == 0 then
6 Activate_Detection()
7 events← Read_Hardware_Events()
8 votes← ML_Classifiers(events)
9 report← Majority_Voting(votes)

10 Sleep_Detection()
11 if report == True then

/* Attack Detected */
12 return 1

/* No-attack detected ! */
13 return 0

core CSCAs into account for the purpose of detection. We
consider that the Operating System (OS) is not compromised
in our system model (i.e., it is part of the trusted computing
base). The PAPI (Performance Application Programming
Interface) library is used to access hardware events using
HPCs from the Intel Core i7 machine. It provides machine
and operating system independent access to HPCs. Any of
over 100 preset events can be counted through either a simple
high level programming interface or a more complete low
level interface of PAPI. For experimentation, the training
has been performed offline with 1-Million samples of un-
biased data of attack and no-attack samples. For run-time
inference, we analyzed the results by running the attacks
100, 000 times. In the following, we present our experimental
results using 3 case studies. Additionally, for comparative
analysis, we provide results using individual ML models
running separately as well as in an ensemble fashion.

B. CASE STUDY-I: DETECTING PRIME+PROBE
Our first case study provides experimental evaluation of the
detection of two implementations of a Prime+Probe attack
targeting the AES cryptosystem.

1) Detection Accuracy
Detection accuracy is the primary indicator to judge the
effectiveness of any detection tool. In all our case studies,
we use percentage accuracy to demonstrate the validity of
trained machine learning models. We use unbiased samples
in the training and validation data, i.e., samples for attack and
no-attack cases are equal.

Tables 5 & 6 show our experimental results for individual
ML models (RF, DT, SVM) and Ensemble, respectively, for

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

two different implementations of the Prime+Probe attack.
These results illustrate the variation in aforementioned met-
rics under different load conditions. All three ML models
individually provide very high and consistent detection accu-
racy under No Load, Average Load and Full Load conditions,
i.e., between 92.67–99.99% for Impl.1 (Table 5) and between
97.73–99.99% for Impl.2 (Table 6). Evidently, the Ensemble
model used by the WHISPER tool also performs very well
and provides a detection accuracy ranging between 97.62–
99.99% for Impl.1 (Table 5) and 96.94–99.77% for Impl.2
(Table 6), respectively. The results of Ensemble model are
particularly interesting under Average Load and Full Load
conditions where individual models might not always per-
form consistently. To support these results, we also provide
the run-time behavior of hardware events under different
load conditions. For instance, Figure 8 shows the behavior
of hardware events for Prime+Probe attack Impl.1 under
Full Load conditions and Figure 2 shows the same events
for Prime+Probe attack Impl.2 under No Load condition.
Figures 2 & 8 illustrate that, under Prime+Probe attack, the
hardware events offer distinguishable behavior for attack and
no-attack scenarios under all load conditions, which is why
the detection accuracy for all ML models remains very high.

2) Detection Speed
Detection speed is another important criterion for the eval-
uation of any run-time intrusion detection tool. Detection
speed is an indirect reflection of how aggressively a detection
tool profiles the victim’s process behavior (through hardware
events in this case) and provides its decision. Detection speed
also affects the resulting performance overhead of the tool
as it is a trade-off between how fast an intrusion can be
detected versus how much overhead the detection process
would cost. According to the literature, a Prime+Probe attack
would require AES cryptosystem to perform at least 4, 800
encryptions for Impl.1 and 50, 000 encryptions for Impl.2
[4], [6] in order to be successful. Therefore, the percentage
of encryptions being performed before the WHISPER tool
raises a flag, defines the detection speed with respect to attack
completion. For instance, for Prime+Probe attack Impl.1, if
the tool raises a flag before 4800 encryptions of AES are
performed, then the tool is said to be capable of detecting
a Prime+Probe attack on AES within 10% of attack comple-
tion. Please note that the detection speed is determined in a
time-independent manner. Also, theoretically, it is considered
enough for an attacker to deduce 50% of the secret key, as
the rest of the key can be acquired using reverse engineering
techniques [2], [5]. Therefore, it is safe to detect an attack be-
fore it can complete at most 50% by itself. For the WHISPER
tool, we considered this the upper bound on detection speed.

Our experimental results in Tables 5 & 6 show that the
WHISPER tool is capable of detecting Prime+Probe attack
Impl.1 and Impl.2 within 0.21% and 0.02% of completion,
respectively. This result implies that the WHISPER tool
detects within the first 10 encryptions out of 4800 and 50, 000
encryptions required by Impl.1 and Impl.2, respectively. This

TABLE 5: Results using individual and Ensemble ML mod-
els for detection of Prime+Probe (Impl.1: half-key recovery)
on AES at fine-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.99 0.21 0.01 0.00
AL 99.76 0.21 0.24 0.00 6.59
FL 95.00 0.21 5.00 0.00

SVM
NL 99.99 0.21 0.01 0.00
AL 99.82 0.21 0.18 0.00 7.83
FL 94.92 0.21 5.08 0.00

RF
NL 99.99 0.21 0.01 0.00
AL 99.72 0.21 0.28 0.00 11.3
FL 92.67 0.21 7.33 0.00

Ensemble
NL 99.99 0.21 0.01 0.00
AL 99.77 0.21 0.23 0.00 8.03
FL 97.62 0.21 2.37 0.01

TABLE 6: Results using individual and Ensemble ML mod-
els for detection of Prime+Probe (Impl.2: full-key recovery)
on AES at fine-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.99 0.02 0.01 0.00
AL 98.53 0.02 1.47 0.00 7.45
FL 98.54 0.02 1.46 0.00

SVM
NL 99.99 0.02 0.01 0.00
AL 98.50 0.02 1.50 0.00 6.75
FL 98.61 0.02 1.38 0.02

RF
NL 99.99 0.02 0.01 0.00
AL 97.90 0.02 2.10 0.00 9.34
FL 97.73 0.02 2.27 0.00

Ensemble
NL 99.77 0.02 0.23 0.00
AL 96.94 0.02 3.6 0.00 8.20
FL 99.09 0.02 0.91 0.00

speed is achieved under variable load conditions with fine-
grain sampling frequency. Fine-grain is the highest profiling
granularity used in these experiments in which the tool
samples hardware events after every 10 encryptions. We
also tested the tool with coarse-grain sampling granularity,
as shown in Tables 7 & 8. Coarse-grain profiling would
mean sampling hardware events after every 100 encryptions.
Tables 7 & 8 show that the resulting accuracy remains almost
the same or is further improved in some cases, while the
system overhead decreases drastically compared to fine-grain
sampling.

Results in Tables 7 & 8 reveal that the tool is still capable
of achieving detection accuracy comparable to that of fine-
grain detection, while the performance overhead is reduced
by significantly large margins. For instance, in Tables 6 & 8

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

FIGURE 8: Run-time behavior of selected hardware events under Full Load conditions for Prime+Probe Impl.1

with Prime+Probe attack Impl.2, the performance overhead
for the Ensemble model decreased from 8.20% to 1.03%
–that is, by a factor of roughly 8! Similarly, the misclassi-
fication rate for FPs and FNs also decreases due to coarse-
grain detection where, in most cases, FNs are always zero
or negligible. Detection speed would naturally go down by
a small margin in the case of coarse-grain detection as we
sample hardware events only after every 100 encryptions.

TABLE 7: Results using individual and Ensemble ML mod-
els for detection of Prime+Probe (Impl.1: half-key recovery)
on AES at coarse-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.99 2.08 0.01 0.00
AL 99.82 2.08 1.47 0.18 0.30
FL 98.18 2.08 1.82 0.00

SVM
NL 100 2.08 0.00 0.00
AL 97.51 2.08 2.49 0.00 0.15
FL 98.72 2.08 1.28 0.00

RF
NL 99.99 2.08 0.01 0.00
AL 97.20 2.08 2.80 0.00 2.99
FL 97.70 2.08 2.30 0.00

Ensemble
NL 99.99 2.08 0.01 0.00
AL 97.48 2.08 2.52 0.00 3.01
FL 97.93 2.08 2.07 0.01

TABLE 8: Results using individual and Ensemble ML mod-
els for detection of Prime+Probe (Impl.2: full-key recovery)
on AES at coarse-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.99 0.19 0.01 0.00
AL 99.71 0.19 0.29 0.00 4.5
FL 98.19 0.19 1.81 0.00

SVM
NL 99.99 0.19 0.00 0.01
AL 99.32 0.19 0.66 0.01 0.82
FL 98.87 0.19 1.13 0.00

RF
NL 99.99 0.19 0.01 0.00
AL 99.21 0.19 0.79 0.00 1.71
FL 97.90 0.19 2.10 0.00

Ensemble
NL 99.99 0.19 0.01 0.00
AL 99.29 0.19 2.52 0.71 4.55
FL 98.19 0.19 1.81 0.00

3) Confusion Matrix
Confusion matrix provides a prognosis of results by repre-
senting the number of correct and incorrect predictions by
the ML models as False Positives (FP) and False Negatives
(FN). Ideally, any error in the detection is not desired. The
presence of FNs in the system are indicative of a direct
security breach, whereas, the presence of FPs would generate
a false alarm, thus leading to performance degradation in the
system. From the point of view of security, having a bounded

VOLUME 4, 2016 15



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

amount of FPs compared to FNs is still less damaging to the
system in the sense that FNs would be a breach of security
while FPs would cause degraded performance. For compar-
ative analysis, we look into the FPs and FNs generated by
each individual model compared to the Ensemble model.
As shown in Tables 5 & 7, for Prime+Probe attack Impl.1,
all models offer very high accuracy, which naturally leads
to a very low number of FPs & FNs. For instance, if we
analyze the miss-classifications performed by these models
under variable load conditions, the SVM model misclassi-
fies 5.08% for fine-grain detection and 2.49% for coarse-
grain detection, the DT model misclassifies 5.0% for fine-
grain detection and 1.82% for coarse-grain detection and RF
model misclassifies between 7.33% for fine-grain detection
and 2.80% for coarse-grain detection, respectively. These
are the maximum misclassification results. Compared to all
these individual models, the Ensemble misclassifies 2.37%
at fine-grain detection and 2.52% at coarse-grain detection
in the worst case. A very important observation here is that,
while the overall error in classification is already very low,
misclassification only concerns False Positives. No False
Negatives are generated by the tool, except for 0.01% of FN
by the Ensemble model under FL conditions for fine-grain
detection, which is negligible. For coarse-grain detection, the
misclassification rate is almost always 0% for FP & FN.

We report similar results for Prime+Probe attack Impl.2 as
shown in Tables 6 & 8. Here, SVM model miss-classifies be-
tween 1.50% for fine-grain detection and 1.13% for coarse-
grain detection, DT model misclassifies between 1.47% for
fine-grain detection and 1.81% at coarse-grain detection and
RF model misclassifies between 2.27% for fine-grain detec-
tion and 2.10% for coarse-grain detection, respectively, in the
worst-case. Compared to all these individual models, the En-
semble misclassifies between 3.6% for fine-grain detection
and 2.52% for coarse-grain detection in the worst-case. For
Prime+Probe attack Impl.1, the Ensemble model performs
well for fine-grain detection and further reduces the mis-
classification rate for coarse-grain detection. For Impl.2, at
coarse-grain detection, there are only 0.71% FNs in Average
Load condition but in all other cases it implies 0.00% FNs.

4) Performance Overhead
The performance overhead of the detection tools becomes
a particularly important design parameter in the case of
runtime detection. Moreover, the adaptability and scalability
of the tool also depends on its runtime performance overhead.
As discussed briefly in Section V-B2, the detection granular-
ity determines how fast the hardware events are profiled by
a detection tool to make effective decisions at run-time. This
granularity aggressively impacts the performance overhead
as fine granularity would imply more time spent in profiling.
We measure performance overhead as a percentage of slow-
down experienced by the AES cryptosystem when detection
is being enabled. Our experiments with selected ML models
reveal that the performance overhead of the WHISPER tool
is low, specifically at coarse-grained detection. Tables 5 &

6 show that the AES cryptosystem experiences a maximum
slowdown of 11.3% and 9.3% for Impl.1 and Impl.2, respec-
tively, at fine-grain detection granularity for the RF model.
A coarse-grain sampling frequency of 100 encryptions for
hardware events reduces the performance overhead to a max-
imum of 2.99% and 4.5% for Impl.1 and Impl.2, respectively,
as shown in Tables 7 & 8.

C. CASE STUDY-II: DETECTING FLUSH+RELOAD
Our second case study concerns experimental evaluation of
the detection of two implementations of Flush+Reload attack
targeting AES cryptosystem.

1) Detection Accuracy
Although a Flush+Reload attack is considered a high-
resolution CSCA, the WHISPER tool also demonstrates very
high detection accuracy for this attack case study. Tables 9
& 10 show the experimental results of our individual ML
models (RF, DT, SVM) and Ensemble, respectively, for two
different implementations of Flush+Reload attack. Like the
results of our first case study against Prime+Probe attack,
all three ML models individually provide very high and
consistent detection accuracy under No Load, Average Load
and Full Load conditions, i.e., between 97.17–100.00% for
Impl.1 (Table 9) and between 98.52–99.99% for Impl.2 (Ta-
ble 10). Similarly, the Ensemble model used by the WHIS-
PER tool also performs very well and provides a detection
accuracy ranging between 98.92–99.99% for Impl.1 (Table
9) and 98.37–99.99% for Impl.2 (Table 10). As shown in
Tables 9 & 10, the selected ML models for the tool perform
consistently even under Average Load and Full Load condi-
tions against Flush+Reload attack.

The runtime behavior of hardware events gives more in-
sight into these results. For instance, Figure 9 shows the
behavior of hardware events for Flush+Reload attack Impl.1
under the No Load condition and Figure 10 shows the same
events for Flush+Reload attack Impl.2 under the Full Load
condition. These figures show that, under a Flush+Reload
attack, the hardware events offer distinguishable behavior for
attack and no-attack scenarios.

2) Detection Speed
Flush+Reload attack of the AES cryptosystem requires 250
encryptions for Impl.1 and 50, 000 encryptions for Impl.2 to
successfully extract the secret key. Our experimental results,
shown in Tables 9 & 10, show that the WHISPER tool is
capable of detecting Flush+Reload attack Impl.1 and Impl.2
within 4.00% and 0.02% of their completion, respectively,
i.e., within the first 10 encryptions out of 250 and 50, 000
required by the Flush+Reload attack Impl.1 and Impl.2,
respectively. Tables 11 & 12 show the results for coarse-
grain sampling, where the detection accuracy remains more
or less the same, while detection speed is reduced to 40%
and 0.2% for Impl.1 and Impl.2, respectively. As illustrated
in Tables Tables 11 & 12, the main advantage of using
coarse-grain detection remains the significant decrease in

16 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

FIGURE 9: Run-time behavior of selected hardware events under No Load conditions for Flush+Reload Impl.1

FIGURE 10: Run-time behavior of selected hardware events under Full Load conditions for Flush+Reload Impl.2

system overhead compared to fine-grain sampling. Similarly,
the misclassification rate in terms of FPs and FNs is also
reduced in many cases due to coarse-grain detection. The
results show that the percentage of FNs is almost always zero
or negligible. This explains why the WHISPER tool works
efficiently for coarse-grain detection with a further decrease
in system overhead and reasonable detection speed.
One important point to note here and in most of the upcoming
results is the constant detection speed. We tested individual as
well as Ensemble models with fixed sampling (fine-grain or
coarse-grain). Therefore, the attack is detected at a constant
speed for both individual and Ensemble models. Moreover,

in some cases, the attack detection speed varies slightly due
to variable load conditions, but the difference is negligible.

3) Confusion Matrix

We analyzed the misclassification error rate for the WHIS-
PER tool w.r.t. Flush+Reload attack on the same pattern as
we did for the Prime+Probe attack. In the Flush+Reload
attack Impl.1 (with fine-grain and coarse-grain detection),
as shown in Tables 9 & 11, the SVM model misclassi-
fies between 0.86% and 1.53%, DT model misclassifies
between 1.0% and 1.77% and RF model misclassifies be-
tween 2.83% and 2.17% for fine-grain and coarse-grain

VOLUME 4, 2016 17



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

TABLE 9: Results using individual and Ensemble ML mod-
els for detection of Flush+Reload (Impl.1: half-key recovery)
on AES at fine-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.99 4.00 0.01 0.00
AL 99.71 4.00 0.29 0.00 10.8
FL 99.00 4.00 1.00 0.01

SVM
NL 100 4.00 0.00 0.00
AL 99.75 4.00 0.25 0.00 11.1
FL 99.14 4.00 0.86 0.00

RF
NL 99.98 4.00 0.02 0.00
AL 99.57 4.00 0.43 0.00 12.3
FL 97.17 4.00 2.83 0.00

Ensemble
NL 99.99 4.00 0.01 0.00
AL 99.68 4.00 0.32 0.00 11.2
FL 98.92 4.00 1.08 0.00

TABLE 10: Results using individual and Ensemble ML mod-
els for detection of Flush+Reload (Impl.2: full-key recovery)
on AES at fine-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.99 0.02 0.01 0.00
AL 99.44 0.02 0.56 0.00 11.17
FL 98.91 0.02 1.09 0.00

SVM
NL 99.99 0.02 0.01 0.00
AL 99.45 0.02 0.50 0.05 9.78
FL 95.92 0.02 0.70 3.38

RF
NL 99.99 0.02 0.01 0.00
AL 99.05 0.02 0.95 0.00 13.25
FL 98.52 0.02 1.47 0.01

Ensemble
NL 99.99 0.02 0.01 0.00
AL 98.37 0.02 0.63 0.00 8.27
FL 98.99 0.02 1.01 0.01

detection, respectively, in the worst case. Compared to all
these individual models, the Ensemble model misclassifies
between 1.08% and 1.01% of fine-grain and coarse-grain
detection, respectively, in the worst case. The overall error
in classification is also very low in this case and the mis-
classification mainly constitutes False Positives. It can be
seen in Table 10 that Ensemble achieves 0.01% of FNs even
in cases where individual models do not exhibit any FNs.
This is because individual models, compared to Ensemble,
are average results of different iterations and sometimes vary
due to different runtime conditions. No False Negative is
generated by the tool except in the DT model that provides
0.01% in Table 9 and 0.02%−−0.18% in Table 11. Similar
results for Flush+Reload attack Impl.2 are shown in Tables
10 & 12. Here,the SVM model misclassifies between 0.70%

TABLE 11: Results using individual and Ensemble ML mod-
els for detection of Flush+Reload (Impl.1: half-key recovery)
on AES at coarse-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.99 40 0.01 0.00
AL 99.86 40 0.13 0.02 2.00
FL 98.05 40 1.77 0.18

SVM
NL 100 40 0.00 0.00
AL 98.47 40 1.53 0.00 1.3
FL 98.82 40 1.18 0.00

RF
NL 99.99 40 0.01 0.00
AL 98.28 40 1.72 0.00 1.89
FL 97.83 40 2.17 0.00

Ensemble
NL 99.99 40 0.01 0.00
AL 98.44 40 1.56 0.00 2.19
FL 98.09 40 1.91 0.00

TABLE 12: Results using individual and Ensemble ML mod-
els for detection of Flush+Reload (Impl.2: full-key recovery)
on AES at coarse-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.96 0.2 0.02 0.02
AL 95.83 0.2 0.36 3.81 0.1
FL 98.30 0.2 1.70 0.00

SVM
NL 100 0.2 0.00 0.00
AL 98.44 0.2 1.56 0.00 0.41
FL 90.00 0.2 0.99 0.00

RF
NL 100 0.2 0.00 0.00
AL 98.20 0.2 1.80 0.00 2.0
FL 98.41 0.2 1.59 0.00

Ensemble
NL 100 0.2 0.00 0.00
AL 98.37 0.2 1.63 0.00 2.10
FL 98.60 0.2 1.40 0.00

and 1.56%, the DT model misclassifies between 1.09% and
1.70% and the RF model misclassifies between 1.47% and
1.80% only in fine-grain and coarse-grain detection, respec-
tively, in the worst case under variable load conditions. The
Ensemble model misclassifies between 1.01% and 1.63% in
the worst case. The Ensemble model provides only 0.01%
FNs under Full Load conditions, as shown in Table 10 and
provides no FN, as shown in Table 12 for Flush+Reload
Impl.2. If we compare all the results of misclassifications
from No Load to Full Load conditions, it can be observed
that coarse-grain detection helped reduce FPs and FNs in
many cases. This is due to the fact that HPCs are inherently
imprecise and non-deterministic, as discussed in Section
IV-B1, which might lead to erroneous results in the case of
fine-grain (rapid) sampling. A coarse-grain (slow) sampling

18 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

would allow hardware events to mature their measured values
before being read.

4) Performance Overhead
As discussed earlier, performance overhead is more related
to the implementation and sampling granularity of hardware
events. Tables 9 & 10 show that the AES cryptosystem expe-
riences a maximum slowdown of 12.3% and 13.25% while
detecting Impl1. and Impl2. of Flush+Reload attack, respec-
tively, under fine-grain detection granularity. This overhead
is remarkably reduced to a maximum of 2% for both imple-
mentations of Flush+Reload attack in the case of coarse-grain
detection.

D. CASE STUDY-III: DETECTING FLUSH+FLUSH
Our third and last case study provides experimental evalua-
tion of the detection of two implementations of Flush+Flush
attack targeting AES cryptosystem. Flush+Flush is a stealth
and high-resolution attack that targets LLC except that it is
stealthier than Flush+Reload and Prime+Probe attacks. Un-
like other CSCAs, the stealth nature of Flush+Flush does not
make any memory accesses. Thus, as a running process itself,
it causes no cache misses and the number of cache hits are re-
duced to minimum due to constant cache flushing. Authors in
[4] claimed to detect their own attack using hardware events
in LinuxPerf_event_open interface. They documented that
the attack (spy process) is non-detectable using 24 hardware
events available with Linux syscall interface. Contrary to the
claim in the above mentioned paper, we observed that the spy
process might not be detectable on one hand, but that, on the
other hand, the victim’s process is affected by the constant
high speed flushing. We build our argument around the fact
that detection mechanism should indicate the presence or ab-
sence of intrusion from the victim’s perspective. Specifically
identifying the malicious process is often not required to
apply protection. If, and when, an intrusion is detected in the
victim’s process, the OS can still take preventive measures
like complete isolation or execute a critical section of the
victim’s process, etc. This work practically demonstrates
that along with training of other CSCAs, WHISPER can
detect stealth nature attacks like Flush+Flush. We achieved
considerably high detection accuracy for Flush+Flush attack.

1) Detection Accuracy
In this case study, we demonstrate that Flush+Flush is not
only detectable but also detectable with relatively very high
detection accuracy using the WHISPER tool. Tables 13 &
14 show our experimental results for individual ML models
(RF, DT, SVM) and Ensemble, respectively, for two different
Flush+Flush attacks on similar patterns as shown in the
other two case studies. In this case as well, all three ML
models provide high and consistent detection accuracy when
used as individual models under No Load, Average Load
and Full Load conditions. As shown, the accuracy ranges
between 71.84–99.98% for Impl.1 (Table 13) and between
72.86–99.56% for Impl.2 (Table 14). The Ensemble model

performs better than individual ML models in this case and
provides a very good detection accuracy ranging between
94.68–99.97% for Impl.1 (Table 13) and 94.82–97.71% for
Impl.2 (Table 14). Please note that, in this case study, the
use of the Ensemble model instead of individual models
has a clear advantage. This is due to the stealthy nature of
the Flush+Flush attack, which is not easily detectable by
individual models under all load conditions. Thus, a major
vote helps achieve the best possible accuracy. As shown
in Tables 13 & 14, individual ML models show significant
variations under load conditions against Flush+Flush attacks
but the Ensemble model performs consistently even under
Average Load and Full Load conditions. It can be seen that
detection accuracy under Full Load conditions reaches 94%
in both cases due to integrating three models in which one
model provides poor accuracy, whereas, the other two models
are between 94 − 97% and 95 − 99%. This shows that the
Flush+Flush attack is stealthy in nature and hard to detect
and we rely on the Ensemble model rather than choosing
individual models for detection. For instance, in this case,
the SVM predicts with low accuracy. The run-time behavior
of hardware events gives more insight for these results. For
instance, Figure 13 shows the behavior of hardware events
for Flush+Flush attack Impl.1 under No Load condition and
Figure 12 shows the same events for Flush+Flush attack
Impl.2 under Full Load condition. These figures show that,
under a Flush+Flush attack, the hardware events offer much
less distinguishable behavior for attack and no-attack sce-
narios compared to the other two use-cases, which causes
the accuracy of ML models to vary. Nevertheless, our tool
demonstrates that it is capable of precisely capturing this
variation and provides high detection accuracy for stealthier
attacks as well.

TABLE 13: Results using individual and Ensemble ML mod-
els for detection of Flush+Flush (Impl.1: half-key recovery)
on AES at fine-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.98 2.50 0.01 0.01
AL 99.89 2.50 0.11 0.00 10.0
FL 97.77 2.50 0.81 1.43

SVM
NL 71.84 2.50 0.01 28.14
AL 84.52 2.50 0.13 15.35 14.5
FL 88.44 2.50 2.71 8.85

RF
NL 99.94 2.50 0.03 0.03
AL 99.73 2.50 0.26 0.01 12.74
FL 94.71 2.50 1.44 3.85

Ensemble
NL 99.97 2.50 0.01 0.02
AL 99.80 2.50 0.17 0.03 11.17
FL 94.68 2.50 4.36 0.96

VOLUME 4, 2016 19



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

FIGURE 11: Run-time behavior of selected hardware events under No Load conditions for Flush+Flush Impl.1

FIGURE 12: Run-time behavior of selected hardware events under Full Load conditions for Flush+Flush Impl.2

2) Detection Speed

A Flush+Flush attack on AES cryptosystem requires 350–
400 encryptions for Impl.1 and 50, 000 encryptions for
Impl.2 to extract the secret key. Our experimental results,
shown in Tables 13 & 14, show that the WHISPER tool is
capable of detecting Flush+Flush attack Impl.1 and Impl.2
within 2.5% and 0.02 − 0.04% of their completion, respec-
tively. That is, within the first 10 − 20 encryptions out of
350 − 400 and 50, 000 encryptions required by Flush+Flush
attack Impl.1 & Impl.2, respectively. Like the first two case
studies, this speed is achieved under variable load conditions

under fine-grain detection granularity. Tables 15 & 16 show
results for coarse-grain sampling, where the speed is reduced
to 25% and 0.4% for Impl.1 and Impl.2, respectively, in the
worst case. In terms of performance overhead, we observe
a similar decreasing pattern as in other case studies in both
implementations. With a Flush+Flush attack, the misclassifi-
cation rate is generally higher than with the other two attacks.
This is mainly due to the stealthy nature of this particular
attack, which makes the models to misclassify more often.
Here, we only analyze the reduction in the misclassification
rate between fine-grain and coarse-grain detection scenarios

20 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

TABLE 14: Results using individual and Ensemble ML mod-
els for detection of Flush+Flush (Impl.2: full-key recovery)
on AES at fine-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.56 0.02 0.01 1.43
AL 99.12 0.02 0.51 0.37 12.5
FL 97.84 0.02 1.54 0.62

SVM
NL 72.86 0.02 0.02 27.12
AL 87.44 0.04 0.50 12.06 11.5
FL 79.53 0.02 1.58 18.89

RF
NL 98.16 0.02 0.08 1.76
AL 98.80 0.02 0.95 0.25 14.78
FL 95.16 0.02 2.76 2.08

Ensemble
NL 97.07 0.02 0.01 2.92
AL 95.71 0.02 4.08 0.21 18.1
FL 94.82 0.02 1.76 3.42

that are linked with detection speed. Overall, the misclassi-
fication rate decreases in the case of coarse-grain detection.
Our results show that the magnitude of both FPs and FNs is
reduced with coarse-grain sampling.

TABLE 15: Results using individual and Ensemble ML mod-
els for detection of Flush+Flush (Impl.1: half-key recovery)
on AES at coarse-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.97 25 0.02 0.00
AL 99.79 25 0.20 0.00 0.2
FL 96.65 25 2.48 0.88

SVM
NL 71.99 25 0.00 28.01
AL 93.58 25 0.94 5.49 2.74
FL 91.43 25 1.50 7.07

RF
NL 98.79 25 0.01 1.20
AL 95.37 25 1.19 3.45 1.72
FL 96.07 25 2.88 1.05

Ensemble
NL 98.79 25 0.01 1.20
AL 95.54 25 1.01 3.45 2.96
FL 96.18 25 2.48 1.34

3) Confusion Matrix
For a Flush+Flush attack, we analyze the misclassification
error rate based on the same pattern as for Prime+Probe and
Flush+Reload attacks. However, in this case, our findings
are different. Tables 13 & 15 show our results concerning
the error distribution as a percentage of FPs and FNs for
Flush+Flush attack Impl.1 and Tables 14 & 16 show sim-
ilar results for Impl.2. In case of Flush+Flush Impl.1, our
experiments yield that individual models miss-classify with
a significant high rate. For instance, SVM miss-classifies

TABLE 16: Results using individual and Ensemble ML mod-
els for detection of Flush+Flush (Impl.2: full-key recovery)
on AES at coarse-grain sampling.

ML
Model

Load Accu-
racy
(%)

Speed
(%)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 88.01 0.2 0.02 11.97
AL 93.73 0.2 0.28 5.99 2.9
FL 90.31 0.2 1.80 7.89

SVM
NL 74.07 0.4 0.00 25.93
AL 90.68 0.2 2.19 7.12 4.13
FL 83.14 0.4 4.87 12

RF
NL 87.32 0.4 0.03 12.65
AL 92.71 0.2 2.48 4.81 5.46
FL 92.64 0.4 2.78 4.58

Ensemble
NL 87.28 0.4 0.03 12.69
AL 92.58 0.2 2.22 5.20 5.82
FL 91.72 0.4 2.47 5.81

between 2.71%–1.50% as FPs and 28.14%–28.01% as FNs.
The DT model miss-classifies between 0.81%–2.48% as FPs
and 1.43%–0.88% as FNs. Similarly, the RF model miss-
classifies between 1.44%–2.88% as FPs and 3.85%–3.45%
as FNs in the worst-case. The Ensemble model, under the
similar conditions, miss-classifies between 4.36%–2.48% as
FPs and 0.96%–1.34% as FNs in the worst-case. Similar
pattern can be found in case of Flush+Flush attack Impl.2
in Tables 14 & 16.

These results show that, for a given cryptosystem, de-
pending on the target attack type and load conditions, some
models may respond differently than others when used stand
alone thus leading to much higher error rates in certain
conditions. The use of an Ensemble model helps to main-
tain consistency in detection despite these variations and
eliminates the impact of an individual model’s error rate on
overall accuracy under specific conditions. For instance, in
this case, the effect of the SVM model error rate in detecting
Flush+Flush attack has been eliminated thanks to the use of
Ensemble by the WHISPER tool. The overall error in classi-
fication for the Ensemble model remains low and the miss-
classification mainly constitutes False Positives. There is a
small fraction of False Negatives, between 0.96%–1.34%,
generated by Ensemble which is attributed to the stealthy
nature of Flush+Flush attack. Yet, the overall distribution of
error is well-managed by the Ensemble model.

4) Performance Overhead
Tables 13 & 14 show that the AES cryptosystem experi-
ences a maximum slowdown of 14.5% and 14.7% while
detecting Flush+Flush attack Impl.1 and Impl.2, respectively,
under fine-grain detection granularity. This overhead is sig-
nificantly reduced to maximum of 2.7% and 5.4% under
coarse-grain detection for Impl.1 and Impl.2, respectively,
as indicated in Tables 15 & 16. Overall, the performance

VOLUME 4, 2016 21



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

overhead is comparatively large for a Flush+Flush attack
compared to Prime+Probe and Flush+Reload attacks. This
variation mainly originates from the implementation of the
attack, which could have different make-span and thus lead
to additional (or fewer) iterations of the victim’s process,
causing the detection module to execute more often.

VI. SCALABILITY OF WHISPER -THE CASE OF
COMPUTATIONAL ATTACKS
Section V has provided a detailed experimental evaluation
of the WHISPER tool against a large set of known side-
channel attacks. In this section, we demonstrate that the
proposed tool is also capable of detecting a diverse attack
vector, which is not necessarily known a priori, i.e., for which
the tool is not trained beforehand. We consider both a trivial
scenario in which the tool uses its training on 02 CSCAs
(Flush+Flush and Prime+Probe) to detect another CSCA
(Flush+Reload), as well a non-trivial scenario by training
WHISPER tool with a set of CSCAs (i.e., Flush+Reload,
Flush+Flush and Prime+probe attacks) and try to detect other
attacks (i.e., Spectre [21] and Meltdown [22] attacks), which
are computational attacks and unknown to the tool. The
later evaluation scenario inherently covers the trivial case.
However, do provide results for both scenarios in Section
VI-A.

Attacks like Spectre [21] and Meltdown [22] exploit
out-of-order and speculative execution techniques that are
available in almost all modern processors to maximize
the utilization of execution units in CPU cores. Unlike
Flush+Reload and Flush+Flush, these attacks are indepen-
dent of the cryptosys-tem and can retrieve data from the
victim’s address space without having access privilege. This
section briefly elaborates the scalability of the WHISPER
tool by detecting both Spectre and Meltdown attacks. We
demonstrate the scalability under two scenarios. In the first
scenario, no modification is performed to WHISPER, i.e.,
no new features (hardware or software events) are added and
no retraining of the ML models is performed. In the second
scenario, we show that adding new features to WHISPER
that are specifically related to the computational part and
retraining the ML models can yield even better results. In
the following, first we briefly explain the attack vector. In
modern processors, when the control flow of the applica-
tion depends on the result of a preceding instruction, the
processor can predict the most likely path of the program
and speculatively execute the next instructions. Depending
on the size of the reorder buffer, speculative execution can
run several hundreds of instructions ahead. In practice, it is
known that speculative execution can lead to the incorrect
execution of a program, but the CPU is designed to revert
the results of incorrect speculative executions by simply
not committing such results. Therefore, these errors were
assumed to be safe prior to the discovery of Meltdown and
Spectre attacks. However, it turns out that not all side effects
of speculative execution are revertible and some previously
leaked information, for instance, cache contents, can survive

the revision of the CPU state. The Spectre and Meltdown
attacks exploit this flawed behaviour by recovering the leaked
information from the cache using CSCAs like Flush+Reload
and Prime+Probe etc. Although Spectre and Meltdown at-
tacks exploit computational optimization techniques like out-
of-order and speculative execution, they still use CSCAs
like Flush+Reload and Flush+Flush to potentially retrieve
information from the caches.

The Spectre vulnerability exploits hardware features, such
as branch prediction units, to reveal secret data. Speculative
execution in CPUs, which results from branch mispredic-
tions, leaves observable effects in the cache. Spectre vul-
nerability is verified as being effective on Intel, AMD and
ARM processors. A Spectre attack is executed in two distinct
phases: a branch instruction mistraining phase followed by a
CSCA. Spectre attacks are reported to have many variants.
However, the baseline vulnerability exploited by all variants
is the mistraining of branch instructions, be it a branch
direction predictor or Branch Target Buffer (BTB).

Similarly, Meltdown vulnerability exploits out-of-order
and speculative execution. Out-of-order memory look-ups
also leave noticeable effects in the cache, which are exploited
by this particular attack. Meltdown vulnerability affects Intel
processors and, according to ARM, some of their processors
are also affected. Meltdown is also a two-phase attack that,
in the first phase, bypasses memory isolation by unprivileged
out-of-order execution and, in the second phase, performs
CSCA to retrieve information from the caches that is being
brought in but not committed due to exception. Meltdown
generates segmentation faults or invalid page faults while
it bypasses the memory isolation. Our experimental results
show that Meltdown generates significantly more page faults
than other processes.

Meltdown relies on a vulnerability specific to Intel and
ARM processors and can be mitigated by implementating
KAISER [21] in operating systems, whereas Spectre applies
to vastly more CPU architectures and cannot be mitigated as
effectively. To the best of our knowledge, no research work
has reported on the detection of Meltdown attacks prior to
this work. Some research work has, however, reported the
detection of a Spectre attack and its variants [64]. Further de-
tails on how Spectre and Meltdown attacks work are provided
in [21] and [22], respectively.

For our experiments, we use Perf and PAPI libraries to
extract events related to Meltdown and Spectre attacks, re-
spectively. Although Spectre attack have multiple variants
we use one of the variants proposed in the original work on
Spectre attack [21]. Since both attacks are independent of the
cryptosystem, their detection therefore requires monitoring
of all concurrent processes. We wrap the events around all
active processes to sample the features at a coarse-grain
frequency of 100 ms and demonstrate the detection results.
Thus, the performance overhead in this case comprises the
sampling of events for all processes and are therefore slightly
higher (Tables 20 & 21).

22 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

A. SCENARIO 01: WITHOUT MODIFICATIONS IN THE
WHISPER TOOL
It is pertinent to mention here that, in this case, the tool uses
exactly the same HPCs and machine learning models without
being retrained. That is, the tool has used its previous one-
time training on cache-based SCAs to detect other attacks.
At first, we have performed experiments with a trivial case
in which, we have performed cross validation of the tool by
training it with two CSCAs (Flush+Flush and Prime+Probe)
and evaluated against an unknown CSCA (Flush+Reload),
i.e., without training the tool for Flush+Reload attack. Table
17 shows that the detection accuracy is very high as antici-
pated intuitively. There were also no false negatives reported
in this case.

TABLE 17: Results on the detection of Flush+Reload Attack
using the WHISPER tool with training on only 02 attacks
(Flush+Flush and Prime+Probe)

ML
Model

Load Accu-
racy
(%)

Speed
(ms)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 98.08 100 1.92 0.0
AL 96.435 100 3.565 0.00 0.51
FL 92.77 100 7.23 0.00

SVM
NL 98.80 100 1.20 0.00
AL 96.35 100 3.65 0.00 0.77
FL 94.12 100 5.88 0.00

RF
NL 98.48 100 1.52 0.00
AL 95.35 100 4.65 0.00 0.46
FL 89.57 100 10.43 0.00

Ensemble
NL 96.88 100 3.12 0.00
AL 93.435 100 6.565 0.00 0.79
FL 88.76 100 11.24 0.00

Then, in a rather non-trivial case, the tool has used its
previous one-time training on cache-based SCAs to detect
Spectre and Meltdown attacks. This is relatively difficult exe-
cution scenario as these two attacks are no bache-based SCAs
and the tool has no a priori knowledge of their behavior. In-
tuitively, retraining ML models involving variants of Spectre
and Meltdown attacks would increase the detection accuracy
and further reduce the chances of detection inconsistencies
(discussed in Section VI-B).

Tables 18 and 19 present our detection results on Melt-
down and Spectre attacks, respectively, using the WHISPER
tool. Although the performance of WHISPER is evaluated
using the same evaluation metrics, in these cases, sampling is
adjusted to a fixed interval of 100 ms rather than a percentage
of attack completion. This is because both these attacks are
independent of cryptosystems. Therefore, they do not have a
single victim process. Moreover, the overhead mainly consti-
tutes the sampling cost of HPCs and not of any victim’s slow-
down. With a rather fixed and coarse-grain sampling rate, the
overhead for the detection module is much less than in pre-
vious cases. As shown in Table 17, detection accuracy of all

individual ML models under NL and AL conditions remains
very high and the Ensemble consequently also provides very
high accuracy. In the FL condition, however, the detection
accuracy suffers and the tool generates a large number of
False Positives. The fact that WHISPER is able to achieve
reasonably good detection accuracies under 2 out of 3 load
conditions is because both Spectre and Meltdown attacks
use CSCAs to extract information from caches, and their
behavior thus resembles that of the conventional CSCAs,
which WHISPER is able to capture with no further training.
An important result in the case of Meltdown detection is the
fact that there are no False Negatives in the system. Similar
pattern in results can be observed in Table 19 for Spectre
attack detection. In this case, the overhead is slightly higher
than in the detection of Meltdown. Figures 13–16 illustrate
the variations in previously selected HPCs under NL and FL
for Spectre and Meltdown attacks, respectively.

TABLE 18: Results on the detection of Meltdown Attack
using the WHISPER tool without any modifications

ML
Model

Load Accu-
racy
(%)

Speed
(ms)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 96.428 100 3.57 0.0
AL 97.435 100 2.56 0.00 0.49
FL 42.857 100 57.14 0.00

SVM
NL 92.857 100 7.14 0.00
AL 97.435 100 2.56 0.00 0.70
FL 87.142 100 12.85 0.00

RF
NL 96.428 100 3.57 0.00
AL 97.435 100 2.56 0.00 0.47
FL 42.857 100 57.14 0.00

Ensemble
NL 96.428 100 3.57 0.00
AL 97.435 100 2.56 0.00 0.79
FL 42.857 100 57.14 0.00

TABLE 19: Results on the detection of Spectre Attack using
the WHISPER tool without any modifications

ML
Model

Load Accu-
racy
(%)

Speed
(ms)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 97.058 100 2.94 0.00
AL 91.176 100 8.82 0.00 1.14
FL 42.857 100 57.14 0.00

SVM
NL 100.0 100 0.00 0.00
AL 94.117 100 5.88 0.00 0.99
FL 87.142 100 12.85 0.00

RF
NL 97.058 100 2.94 0.00
AL 94.117 100 5.88 0.00 1.28
FL 42.857 100 57.14 0.00

Ensemble
NL 97.058 100 2.94 0.00
AL 94.117 100 5.88 0.00 1.30
FL 42.857 100 57.14 0.00

VOLUME 4, 2016 23



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

FIGURE 13: Run-time behavior of selected hardware events under No Load conditions for Spectre Attack

The significant variations in detection accuracy, partic-
ularly in the FL condition, originates from the fact that
WHISPER did not use any additional training on the data
set generated for Meltdown and Spectre attacks. Rather, it
uses its previous training on Flush+Flush, Flush+Reload and
Prime+Probe attacks to also detect Spectre and Meltdown,
which become unknown attacks for WHISPER in this case.

B. SCENARIO 02: WITH MODIFICATION IN THE
WHISPER TOOL
Section VI-A described results obtained with no modifica-
tions to the WHISPER tool. Intuitively, if the data set relevant
to Spectre and Meltdown attacks is used in the training phase,
the high rate of FPs in the previous case would naturally
be reduced. Moreover, the use of new features that would
make it possible to capture the behavior of these attacks
more specifically can further enhance accuracy. Thus, we
demonstrate that if WHISPER is enhanced with more specific
features and retrained, its reported accuracy gets even better.

As mentioned earlier, the baseline vulnerability exploited
by a Spectre attack is the mistraining of branch instructions,
i.e., the branch direction predictor or BTB. Therefore, we
select two new hardware events related to the Spectre attack:
(1) Total Branch Instructions, and (2) Total Branch Mispre-
dictions, as features for the ML models. Our experiments and
analysis of Spectre attack code reveals that it has the much
less number of total instructions to execute and, among those
instructions, a large proportion of instructions comprise of
branch instructions. Interestingly enough, the attack process

generates the highest number of branch mispredictions. Our
results show that, if total branch instructions and the total
branch mispredictions generated by a process are collected as
features, the ML models can detect Spectre attack with very
high accuracy, as shown in Table 20 under all load conditions.

In the case of a Meltdown attack, similar observations can
be made by observing the number of page faults generated
by the attacker. Meltdown generates segmentation faults or
invalid page faults while bypassing the memory isolation
through exceptions. Page faults can be captured through a
software event by using Perf API. Our experiments reveal
that, for a relatively very small number of total instructions,
the Meltdown attack process generates significantly large
numbers of page faults that can serve as a very effective and
highly uncorrelated feature for ML models in WHISPER.
When we used page faults as one of the features, the detection
accuracies against the Meltdown attack were significantly
enhanced, as shown in Table 21.

VII. COMPARATIVE ANALYSIS AND DISCUSSION OF
THE RESULTS–LESSONS LEARNED
Table 22 provides a brief comparative analysis of WHISPER
with the state-of-the-art. We provide this comparison with
respect to the evaluation metrics used in this work, i.e., detec-
tion accuracy, speed, performance overhead and system load
conditions in order to provide the reader with an overview
of the existing techniques. Details on these techniques are
already discussed in Section II. The authors in [59] detected
Flush+Reload at an accuracy of F-score=0.93 and speed of

24 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

FIGURE 14: Run-time behavior of selected hardware events under Full Load conditions for Spectre Attack

TABLE 20: Results on the detection of Spectre attack using
the WHISPER tool with modified features and retraining of
ML Models.

Model Loads Accu-
racy
(%)

Speed
(ms)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.93 100 0.07 0

1.6AL 99.06 100 0.57 0.37
FL 98.03 100 1.18 0.79

RF
NL 99.97 100 0.03 0

1.6AL 98.40 100 1.27 0.33
FL 97.36 100 1.98 0.66

SVM
NL 99.25 100 0.69 0.06

1.6AL 97.29 100 2.02 0.69
FL 95.87 100 2.87 1.26

Ensemble
NL 99.80 100 0.17 0.03

1.6AL 99.13 100 0.57 0.29
FL 97.43 100 1.56 1.01

the 1/5th of attack completion in the presence of background
noise. The F-score is a measure of accuracy in statistical anal-
ysis of binary classification. However, this technique does
not discuss the impact on performance degradation.HexPADS
[34] claims to have detected Flush+Reload and Prime+Probe
attacks with 100% accuracy with 2% overhead. These results
are reported under No load conditions, which may lead
to erronous accuracy and increased overhead under noisy
system load conditions. There is no discussion of how fast

TABLE 21: Results on the detection of Meltdown attack us-
ing the WHISPER tool with modified features and retraining
of ML Models.

Model Loads Accu-
racy
(%)

Speed
(ms)

FP
(%)

FN
(%)

Over-
head
(%)

DT
NL 99.95 100 0.05 0

2.11AL 99.83 100 0.13 0.04
FL 98.27 100 1.24 0.49

RF
NL 99.35 100 0.65 0

2.11AL 97.39 100 1.98 0.63
FL 94.67 100 3.43 1.90

SVM
NL 99.97 100 0.03 0

2.11AL 99.17 100 0.67 0.16
FL 98.24 100 1.39 0.37

Ensemble
NL 99.43 100 0.48 0.09

2.11AL 99.17 100 0.55 0.28
FL 98.69 100 0.79 0.52

HexPADS can detect any of the tested attacks. CloudRadar
[24] claims to have detected Prime+Probe and Flush+Reload
attacks with 100% accuracy and 5% overhead under No Load
conditions as well. This technique also suffers from the same
issues as HexPADS. The techniques proposed in [15] detect
Flush+Reload and Prime+Probe attacks at 97% and 98%
accuracy, respectively, and within 2% detection speed in the
presence of background noise but did not discuss the over-

VOLUME 4, 2016 25



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

FIGURE 15: Run-time behavior of selected hardware events under No Load conditions for Meltdown Attack

head of their proposed mechanism. The technique proposed
in [60] claims to detect template attacks with 99% accuracy
but does not provide detection speed, overhead and any vari-
ations in system load conditions. The technique proposed in
[35] claims to work 100% accurately on Prime+Probe attack
with 2% overhead. However, the authors do not provide any
result on the detection speed and the percentage of false
negatives increases under load conditions with the proposed
technique. The solution proposed in SCADET [33] claims to
detect Flush+Reload at 100% accuracy in isolated conditions
but there is no discussion about the impact of detection
speed and overhead under load conditions. Similarly, The
SCADET technique proposed in [33] claims to perform 100%
accurately under different load conditions but the detection
speed and the performance overhead of this mechanism are
not discussed, on the other hand, it raises false alarms in load
conditions and trace timing is long in some cases, which is
not suitable for early stage detection.

The brief comparison provided in Table 22 supports our
earlier discussion that detection accuracy alone is not a
suit-able measure of a good detection technique. Based on
these comparisons, our proposed detection tool clearly per-
forms better under stringent evaluation metrics. Our mech-
anism works for a larger set of attacks while performing
runtime detection. We provide results for multiple attacks,
namely: Flush+Reload on AES, Flush+Flush on AES half-
key (FF_Imp1), Flush+Flush on AES full-key (FF_Imp2),
Prime+Probe on AES half-key (FF_Imp1), Prime+Probe on
AES full-key (FF_Imp2), Spectre and Meltdown. The re-

ported accuracy of our tool for these attacks is comparable
or better than the state-of-the-art techniques. Similarly, the
reported detection speed is well within the theoretical upper
bound of 50% attack completion and performance overhead
remains low under variable load conditions.

A. DISCUSSION
Throughout this work, we have built our argument in favor of
detection-based protection, which would help apply mitigation only
after successful detection of CSCAs. Our experiments applied to
three different case studies, comprising the state-of-the-art CSCAs,
demonstrate that detection can be highly accurate with a minimum
system overhead at runtime and fast enough to raise the alarm
before attack completion. Our experiments with different attack
categories enabled us to provide an evidence-based analysis of
CSCA detection.

The first lesson we learned from these results is that almost
all CSCAs, whether they are known or unknown, dependent or
in-dependent of cryptosystem, leave their footprints on the cache
hierarchy, either in the form of access timing or access pattern. Such
a footprint can be captured by carefully profiling the behavior of
the affected process(es) without a priori knowledge of the type of
attack or the temporal order of multiple attacks taking place. To
this end, selection of most relevant hardware events is of paramount
importance, as demonstrated in Section IV-B1. Nevertheless, it is
pertinent to mention here that the underlying hardware events may
be imprecise, non-deterministic and limited in number, which can
lead to an increased error rate (FPs & FNs) under smarter attacks
in the future. Das et al. [65] provide a detailed insight into the
limitations and pitfalls of using HPCs for security.

We have provided the proof of concept on the use of WHISPER
for a larger attack vector. For instance, we have shown detection
results for cache-based attacks like Flush+Reload, Flush+Flush and

26 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

FIGURE 16: Run-time behavior of selected hardware events under Full Load conditions for Meltdown Attack

Prime+Probe as well as for computational attacks like Spectre
Meltdown. We show that WHISPER is able to detect available
state-of-the-art attacks that target cryptosystems as well as those
that are independent of cryptosystems. Our results show signif-
icant high detection accuracy for these attacks with reasonably low
performance overhead, making WHISPER a very good candidate
for adoption for early-stage runtime detection.

The second lesson we learned from our experiments is that
simple statistical or threshold-based solutions are not sufficient to
distinguish anomalous behavior from normal behavior, particularly
in the case of side-channel attacks. As shown in Section IV-C, the
attacks can take place in any temporal order and the data being
collected by the hardware events might not be easy to classify. In
certain cases, even stand-alone ML models might not be sufficient
to detect anomalous behavior, as illustrated in our third case study
with The SVM model (Section V-D3). Our experiments with 12
different ML models and the use of Ensemble model provide
empirical evidence to strengthen the belief that machine learning
can help building the resilient software/hardware security solutions
for modern computing systems. We have demonstrated their success
on known CSCAs.

The third lesson we learned is that detection tools and techniques
must be evaluated in a holistic manner, i.e., by considering security
as well as performance aspects. For instance, very high detection
accuracy is not enough if the tool cannot be adopted for runtime de-
tection due to its slow speed or considerably high runtime overhead,
which would cause significant slowdown for the victim’s process.
The use of multiple stringent evaluation metrics in this work reveals
that there is a trade-off between the performance overhead and
the detection speed of a runtime detection tool. In order to serve
as the first line of defense against SCAs, a detection tool must
be fast enough to report an attack before its completion and yet
it has to be light-weight enough to continuously monitor the sys-
tem’s behavior without significantly increasing the overhead. Our
experiments show that increased detection granularity yields more

reliable results in terms of speed, accuracy and misclassification
rates, resulting in increased performance overhead. With decreased
granularity, performance overhead is significantly reduced. There-
fore, we propose to use the WHISPER tool in two different modes,
i.e., fine-grain and coarse-grain sampling modes. The tool offers this
flexibility to run in either of these modes depending on the operating
conditions and persisting threat levels. Once a threat is detected,
the tool can adjust its sampling rate to confirm the detection and
subsequently report to the OS to take remedial measures.

The fourth and last lesson we learned is that, unless there are
design changes at the hardware level and a complete overhauling
of the entire computing stack, software alone cannot completely
protect against side-channel information leakage. It can only make
such leakage harder. Detection solutions that are entirely based on
software are vulnerable to adversarial attacks, which could corrupt
software features for ML models in order to overcome the detection
mechanism. From an in-depth analysis and experimentation in this
work, we have learned that it is hard to corrupt the values of hard-
ware events directly collected using HPCs at runtime. In order to do
so, the malicious processes need to alter the behavior of caches at the
hardware level to camouflage their activities, which is much harder
than tempering software-based values. Therefore, hypothetically,
even if the adversary knows the detection mechanism as a white
box, it is still very hard to manipulate the information of hardware
events at runtime.

VIII. CONCLUSIONS AND FUTURE WORK
This paper argued in favor of using runtime detection as the first line
of defense against cache side-channel attacks. We advocate for a
detection-based protection mechanisms as existing mitigation tech-
niques against SCAs either completely remove or greatly reduce the
performance benefits of resource sharing. In this paper, we propose
a machine learning based CSCA detection tool, called WHISPER,
for Intel x86 architecture. The tool comprises multiple machine
learning models, integrated in an Ensemble fashion, that use real-

VOLUME 4, 2016 27



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

TABLE 22: Comparative analysis of WHISPER
with the state-of-the-art [Note: F+R=Flush+Reload,
F+F=Flush+Flush, P+P=Prime+Probe, NA=Not Available].

Ref. Attack Accu-
racy

Speed Over-
head

Load

[59]
F+R F-score

0.93
1/5th of
attack
com-
pletion

NA Yes
(Apache)

[34]
F+R, P+P 100% NA <2% No

[24]
P+P, F+R 100% NA <5% No

[15]
F+R, P+P 97%,

98%
2% NA Yes

(SPEC)

[32]
Template
Attacks

>99% NA NA No

[60]
P+P 100% NA 2% Yes

(CIW)

[35]
F+R 100% NA NA No

[33]
P+P 100% NA NA Yes

(Open
source)

This
work

F+R(AES),
F+F(AES,
Imp1),
F+F(AES,
Imp2),
P+P(AES,
Impl1),
P+P(AES,
Imp2),
Spectre,
Melt-
down

99.99%,
99.99%,
99.8% ,
99.99%,
99.77%,
97.05%,
97.43%

<40%,
<25%,
<25%,
<0.21%,
<0.21%,
fixed,
fixed

<
8%

Yes
(SPEC)

time behavioral data of concurrent processes running on Intel x86
architecture. The WHISPER tool is capable of detecting a large set
of the state-of-the-art attacks without the need to retrain its machine
learning models for each specific type of attack. We describe ex-
tensive experimentation with six different attacks and evaluate the
tool under stringent constraints, such as: detection accuracy, speed,
performance overhead and distribution of error (i.e., false positives
and false negatives). Our results show very high detection accuracy,
i.e., > 99%, with a negligible error rate. We have also demonstrated
the scalability of WHISPER by detecting computational attacks,
i.e., Spectre and Meltdown. Results show that WHISPER, without
retraining and no modification of the hardware events, is able to
detect both vulnerabilities with a reasonable accuracy. The tool is
light weight and easy to integrate for runtime detection. We provide
experimental evaluation of the tool under variable load conditions
to demonstrate its resilience and consistency in noisy environment.
As a future direction, specialized machine learning models can be
trained to detect partially known or fully unknown attacks.

REFERENCES
[1] W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhattacharjee, "Computer

security: principles and practice". Pearson Education Upper Saddle River,
NJ, USA, 2012.

[2] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a timing attack
on OpenSSL constant-time RSA,” Journal of Cryptographic Engineering,
vol. 7, no. 2, pp. 99–112, 2017.

[3] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in 23rd USENIX Conference on
Security Symposium, 2014.

[4] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack,” in Proceedings of the 13th International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment - Volume 9721, DIMVA 2016, 2016.

[5] D. A. Osvik, A. Shamir, and E. Tromer, "Cache Attacks and Countermea-
sures: The Case of AES". Springer Berlin Heidelberg, 2006.

[6] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a
fast, cross-VM attack on AES,” in International Symposium on Research
in Attacks, Intrusions, and Defenses, pp. 299–319, 2014.

[7] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,” Journal
of Cryptographic Engineering, pp. 1–27, 2016.

[8] X. Jin, H. Chen, X. Wang, Z. Wang, X. Wen, Y. Luo, and X. Li, “A
simple cache partitioning approach in a virtualized environment,” in IEEE
Int’l Symposium on Parallel & Distributed Processing with Applications,
pp. 519–524, Aug 2009.

[9] F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 203–215, 2014.

[10] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-
Level Protection Against Cache-Based Side Channel Attacks in the
Cloud,” in USENIX Security, pp. 189–204, 2012.

[11] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,” Ap-
plied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[12] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, V. Lapotre, and
G. Gogniat, “NIGHTs-WATCH: A Cache-based Side-channel Intrusion
Detector Using Hardware Performance Counters,” in Proceedings of the
7th International Workshop on Hardware and Architectural Support for
Security and Privacy, HASP ’18, (New York, NY, USA), pp. 1:1–1:8,
ACM, 2018.

[13] M. Mushtaq, A. Akram, M. Bhatti, N. B. R. Rao, V. Lapotre, and
G. Gogniat, “Run-time detection of Prime+Probe side-channel attack
on AES encryption algorithm,” in Global Information Infrastructure and
Networking Symposium, Greece, 2018.

[14] M. Mushtaq, A. Akram, M. K. Bhatti, M. Chaudhry, M. Yousaf, U. Farooq,
V. Lapotre, and G. Gogniat, “Machine Learning For Security: The Case of
Side-Channel Attack Detection at Run-time,” in 25th IEEE International
Conference on Electronics Circuits and Systems, Bordeaux, FRANCE,
2018.

[15] Z. Allaf, M. Adda, and A. Gegov, “A comparison study on Flush+Reload
and Prime+Probe attacks on AES using machine learning approaches,” UK
Workshop on Computational Intelligence, 2017.

[16] Y. Lyu and P. Mishra, “A survey of side-channel attacks on caches and
countermeasures,” Journal of Hardware and Systems Security, vol. 2, no. 1,
pp. 33–50, 2018.

[17] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Cache attacks enable bulk key recovery on the cloud,” in International
Conference on Cryptographic Hardware and Embedded Systems (CHES),
vol. 9813, pp. 368–388, 08 2016.

[18] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Au-
tomating attacks on inclusive last-level caches,” in Proc. of 24th USENIX
Conf. on Security Symp., (Berkeley, CA, USA), pp. 897–912, USENIX
Assoc., 2015.

[19] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “FORE-
SHADOW: Extracting the keys to the intel SGX kingdom with transient
out-of-order execution,” in 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018., pp. 991–1008,
2018.

[20] D. Genkin, L. Valenta, and Y. Yarom, “May the Fourth Be With You: A
microarchitectural side channel attack on several real-world applications
of Curve25519,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pp. 845–858, 2017.

[21] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre

28 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER:A Tool for Run-time Detection of Side-Channel Attacks

attacks: Exploiting speculative execution,” in 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[22] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Melt-
down: Reading kernel memory from user space,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[23] M. Godfrey and M. Zulkernine, “Preventing cache-based side-channel
attacks in a cloud environment,” IEEE Transactions on Cloud Computing,
vol. 2, pp. 395–408, Oct 2014.

[24] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses, Springer, 2016.

[25] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: secure cache architec-
ture thwarting cache side channel attacks,” IEEE Micro Special Issues on
Security, vol. 36, 2016.

[26] Z. Wang and R. B. Lee, “New cache designs for thwarting software cache-
based side channel attacks,” SIGARCH Comput. Archit. News, vol. 35,
pp. 494–505, June 2007.

[27] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of com-
puter security, vol. 1, no. 3-4, pp. 233–254, 1992.

[28] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM Side
Channels and Their Use to Extract Private Keys,” in ACM CCS, (NY,
USA), 2012.

[29] V. Varadarajan, T. Ristenpart, and M. Swift, “Scheduler-based defenses
against cross-VM side-channels,” in 23rd USENIX Security Symposium,
(San Diego, CA), 2014.

[30] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ort-
ner, F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation
of transient execution attacks and defenses,” in 28th USENIX Security
Symposium (USENIX Security 19), pp. 249–266, 2019.

[31] G. Irazoqui, K. Cong, X. Guo, H. Khattri, A. K. Kanuparthi, T. Eisenbarth,
and B. Sunar, “Did we learn from LLC side channel attacks? A cache
leakage detection tool for crypto libraries,” CoRR, vol. abs/1709.01552,
2017.

[32] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya, “Per-
formance counters to rescue: A machine learning based safeguard against
micro-architectural side-channel-attacks.” Cryptology ePrint Archive, Re-
port 2017/564, 2017. https://eprint.iacr.org/2017/564.

[33] M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding, “SCADET: a side-channel
attack detection tool for tracking Prime+Probe,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2018.

[34] M. Payer, HexPADS: A Platform to Detect “Stealth” Attacks, pp. 138–154.
Cham: Springer International Publishing, 2016.

[35] S.-h. PENG, Q.-f. ZHOU, and J.-l. ZHAO, “Detection of cache-based side
channel attack based on performance counters,” DEStech Transactions on
Computer Science and Engineering, no. aiie, 2017.

[36] A. Raj and J. Dharanipragada, “Keep the PokerFace on! Thwarting cache
side channel attacks by memory bus monitoring and cache obfuscation,”
Journal of Cloud Computing, vol. 6, no. 1, p. 28, 2017.

[37] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-cores
cache covert channel,” in International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, pp. 46–64, Springer,
2015.

[38] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN: Silently
Breaking ASLR in the Cloud,” in 9th USENIX Workshop on Offensive
Technologies (WOOT), 2015.

[39] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to gain
kernel privileges,” Black Hat, vol. 15, p. 71, 2015.

[40] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting privileged
side-channel attacks in shielded execution with déjá vu,” in Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications
Security, pp. 7–18, ACM, 2017.

[41] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisenbarth, “CacheShield:
Detecting cache attacks through self-observation,” in Proceedings of the
8th Conference on Data & Application Security & Privacy, pp. 224–235,
ACM, 2018.

[42] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “SpyDetector: An approach
for detecting side-channel attacks at runtime,” IJIS, 2018.

[43] “Online repository of cache side-channel attacks,”
https://github.com/ECLab-ITU, 2019.

[44] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proceedings of the 2015 IEEE
Symposium on Security and Privacy, SP ’15, (Washington, DC, USA),
pp. 605–622, IEEE Computer Society, 2015.

[45] Nepoche, “https://github.com/nepoche/flush-reload,” 2017.
[46] D. Gruss, “https://github.com/iaik/flush_flush,” 2017.
[47] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks on AES,

and Countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp. 37–71,
2010.

[48] C. Percival, “Cache missing for fun and profit,” in Proc. of BSDCan 2005,
2005.

[49] O. Aciicmez, B. B. Brumley, and P. Grabher, “New results on instruction
cache attacks,” in Proc. of Int’l Conference on Cryptographic Hardware
and Embedded Systems, CHES’10, (Heidelberg), pp. 110–124, Springer-
Verlag, 2010.

[50] O. Aciicmez and W. Schindler, “A vulnerability in RSA implementations
due to instruction cache analysis and its demonstration on OpenSSL,”
in Proceedings of the 2008 The Cryptopgraphers’ Track at the RSA
Conference on Topics in Cryptology, CT-RSA’08, (Berlin, Heidelberg),
pp. 256–273, Springer-Verlag, 2008.

[51] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating fine grained
timers in Xen,” in CCSW, 2011.

[52] “Intel 64 and ia-32 arch. software developer’s manual volume 3b: System
programming guide, part2.,” June 2014.

[53] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[54] PerfMon, “https : //knowledge.ni.com/,” 2018.
[55] OProfile, “http : //oprofile.sourceforge.net/,” 2018.
[56] P. Tool, “http : //lacasa.uah.edu/,” 2018.
[57] I. V-Tune, “https : //software.intel.com/en − us/vtune −

amplifier − cookbook,” 2018.
[58] “Performance application programming interface,” in http :

//icl.cs.utk.edu/papi/, 2018.
[59] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-

based side-channel attacks using hardware performance counters,” Journal
of Applied Soft Computing, vol. 49, pp. 1162–1174, Dec. 2016.

[60] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud,
“Cache-based side-channel attacks detection through intel cache monitor-
ing technology and hardware performance counters,” in Fog and Mobile
Edge Computing (FMEC), 2018 Third International Conference on, pp. 7–
12, IEEE, 2018.

[61] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews],” IEEE Transactions on
Neural Networks, vol. 20, no. 3, pp. 542–542, 2009.

[62] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning, vol. 112. Springer, 2013.

[63] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning, vol. 1. Springer series in statistics New York, 2001.

[64] J. Depoix and P. Altmeyer, “Detecting spectre attacks by identifying
cache side-channelattacks using machine learning,” in WAMOS 2018
Fourth Wiesbaden Workshop on Advanced Microkernel Operating Sys-
tems, Wiesbaden, Germany., Hochschule RainMan, Computer Engineer-
ing Department, August 2018.

[65] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, & perils of using hardware performance
counters for security,” IEEE Symposium on Security & Privacy, 2019.

MARIA MUSHTAQ Maria Mushtaq is a CNRS
Post Doctoral researcher at LIRMM, University of
Montpellier (UM), France. She did her Ph.D. from
Lab-STICC, University of South Brittany (UBS),
France in 2019. Maria has specific expertise in
developing runtime detection and mitigation solu-
tions against side-channel information leakage in
computing systems. Her research interests mainly
focus on cryptanalysis, constructing and validating
software security components, and constructing

OS-based security primitives against various hardware vulnerabilities.

JEREMY BRICQ Jeremy Bricq is a PhD student
from the Université Catholique de Louvain, Bel-
gium, since 2019. He spent 3 months internship
in the Université de Bretagne-Sud, France, where
he worked on the Side-Channel Attacks detection.
Jeremy received a Master in Cybersecurity from
the Université Libre de Bruxelles. His current
works focus on Cryptography, with Fully Homo-
morphic Encryption.VOLUME 4, 2016 29

https://eprint.iacr.org/2017/564


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2988370, IEEE Access

WHISPER: A Tool for Run-time Detection of Cache Side-Channel Attacks

MUHAMMAD KHURRAM BHATTI is an Assis-
tant Professor at Information Technology Univer-
sity, Lahore, Pakistan. He did his Postdoc from
KTH Royal Institute of Technology, Stockholm,
Sweden. He did his MS and Ph.D. in Embedded
Systems from University of Nice-Sophia Antipo-
lis, France. His research interests include Embed-
ded Systems, Information Security at both hard-
ware and software level, Cryptanalysis, Mixed
Criticality and Parallel Computing Systems.

AYAZ AKRAM Ayaz Akram received his bache-
lor’s degree in electrical engineering from the Uni-
versity of Engineering and Technology, Lahore,
Pakistan, and his master’s degree in computer
engineering from Western Michigan University,
USA. He is currently pursuing a Ph.D. degree in
computer science with the University of California
at Davis, USA. His research interests include com-
puter architecture, high-performance computing,
and the intersection of computer architecture with

other areas like computer security and machine learning.

VIANNEY LAPOTRE Vianney LAPOTRE re-
ceived his MSc and PhD in Electrical and Com-
puter Engineering from the University Bretagne-
Sud, France. He spent six months as an invited
researcher at the Ruhr-University of Bochum, Ger-
many. He was a Postdoctoral at LIRMM, Montpel-
lier, France. He is an associate professor at Univer-
sity Bretagne-Sud, France. His research interests
include hardware security, reconfigurable and self-
adaptive multiprocessor architectures.

GUY GOGNIAT is a Professor in ECE with
the University of Bretagne-Sud, Lorient, France,
where he has been since 1998. In 2005, he spent
one year as an invited Researcher with the Uni-
versity of Massachusetts, Amherst, USA, where
he worked on embedded security using reconfig-
urable technologies. His work focuses on embed-
ded systems design methodologies and tools. He
also conducts research in the domain of recon-
figurable and adaptive computing and embedded

system security.

PASCAL BENOIT received the Ph.D. degree in
microelectronics from the University of Mont-
pellier, France, in 2004, and the Habilitation de-
gree from the Montpellier Laboratory of Informat-
ics, Robotics and Microelectronics, University of
Montpellier, in 2015. He was a Scientific Assis-
tant with the Karlsruhe Institute of Technology,
University of Karlsruhe, Germany. Since 2005, he
has been a Permanent Associate Professor with the
Montpellier Laboratory of Informatics, Robotics

and Microelectronics, University of Montpellier. He has co-authored over
130 publications in books, journals, and conference proceedings. He holds
five patents. His research interests include the Internet of Things, from smart
sensors to gateways, energy efficiency, and security issues.

30 VOLUME 4, 2016


