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A turbulent flow mixes in general more rapidly a passive scalar than a laminar flow does. From an energetic
point of view, for statistically homogeneous or periodic flows, the laminar regime is more efficient. However, the
presence of walls may change this picture. We consider in this investigation mixing in two-dimensional laminar
and turbulent wall-bounded flows using direct numerical simulation. We show that for sufficiently large Schmidt
number, turbulent flows more efficiently mix a wall-bounded scalar field than a chaotic or laminar flow does. The
mixing efficiency is shown to be a function of the Péclet number, and a phenomenological explanation yields a
scaling law, consistent with the observations.
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I. INTRODUCTION

For a Newtonian fluid, flowing through a pipe of diameter
D and length l at a given rate, the pressure drop �p between
both ends is a direct measure of the energy injected in the
system. A common way to express this is by the friction factor
f ,

f = 2
D

l

�p

ρU 2
, (1)

where ρ is the density and U the mean velocity. Whenever
the flow transitions to a turbulent state, the power one needs
to supply is larger than for a laminar flow. For turbulent flow
through smooth pipes, the ratio of energy injected to obtain a
given flow rate to the energy needed to obtain the same rate
for a laminar flow can be roughly estimated by comparing the
Poiseuille solution f = 64/Re to the turbulence friction factor
proposed by Blasius, f = 0.316 Re−1/4 [1], yielding

Pturb

Plam
= 4.9 × 10−3Re3/4, (2)

where Re = UD/ν with ν the kinematic viscosity. This ratio
can become very large for large values of the Reynolds
number. Energetically, turbulence is therefore not a desirable,
but in general an inevitable, feature of pipe flow and numerous
engineering flows.

In the case of mixing, it is well known that a turbulent
flow rapidly mixes a scalar, and often turbulence is a welcome
ingredient of a process where efficient mixing is required.
However, it is not a priori known whether energetically it is
desirable to mix a system in turbulent flow or that a laminar
flow will succeed a given level of mixedness using less energy.
It was illustrated by Raynal and Gence [2] that from such
an energetic viewpoint, laminar mixing is more efficient than
turbulent mixing. That study assumed, however, an infinite or
periodic domain. In more recent works [3,4] it was illustrated
that the presence of solid boundaries can affect the mixing
process dramatically. Indeed, it turned out to be of major

importance to take into account the fact that unmixed regions
near the walls of the domain act like reservoirs from which
the scalar is injected into the flow in a fairly continuous
matter. It was shown that this effect significantly decreases the
effectiveness of a flow to mix. That particular investigation
considered the Stokes limit and did not assess the energy
balance of the system and answers therefore not the question
whether in the case of turbulent flow, the boundaries affect the
mixing efficiency in a similar matter, and that is the subject of
the present investigation. Indeed, the presence of boundaries
importantly affects turbulent flows, since walls act as sources
of vorticity in turbulent flows. The role of coherent vortices
for mixing was investigated in Ref. [5]. Also, confinement
can directly affect the temporal decay rate of scalar variance
[6] and so can the nature of the boundary conditions (i.e.,
slip or no slip) [7]. Moreover, Thiffeault et al. showed in
Ref. [8] that the presence of moving walls improves the
mixing. A recent review on chaotic mixing can be found in
Ref. [9], and a more complete treatise is Ref. [10]. Attempts
to integrate the influence of nontrivial boundary conditions
on the theoretical description of mixing are presented in
Ref. [11], where the authors focused on mixing in a near-
wall region. In Ref. [12] a three-dimensional steady mixing
flow is constructed contained by no-slip boundaries, which
allows us to establish an upper bound for the mixing rate
in such flows. In Ref. [13] a Lagrangian approach to study
turbulent dissipation is extended to the case in the presence of
walls. However, it seems that the case of wall-bounded mixing
has received far less interest from a theoretical viewpoint
than the unbounded or spatially periodic case has. In the
present work we contribute to this subject with observations
from, and a quantitative analysis of, well-controlled numerical
simulations.

To summarize the question we address, as positioned with
respect to existing work: Raynal and Gence [2] showed that
in infinite or periodic domains, energetically it is favorable
to mix using a laminar flow. Reference [3] showed that the
mixing rate is radically changed when a laminar mixing flow
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FIG. 1. Sketch of the computational domain and the trajectory of
the mixing rod. The white region (χ = 0) corresponds to the fluid,
and the gray region (χ = 1) corresponds to the solid part of the
domain.

is confined by a solid wall. We will investigate whether in
wall-bounded domains it is favorable to mix by a laminar flow
or a turbulent flow. We will attempt to propose an expression
similar to Eq. (2) to describe our results.

We will consider a simple two-dimensional flow in a
circular container with a circular rod, stirring a passive scalar,
considering a broad range of values of the Reynolds and
Schmidt numbers. The setup is similar to the one investi-
gated experimentally at low Reynolds number in Ref. [3]. A
definition of the energetic mixing efficiency is introduced in
Sec. II, the setup and the numerical method used are discussed
in Sec. III, and the results obtained to quantify the energy
efficiency are reported on in Sec. IV. In Sec. V we propose a
phenomenological explanation to describe the results. Finally,
conclusions and perspectives will be given.

II. DEFINITION OF AN ENERGETIC MIXING
EFFICIENCY

We consider passive scalar mixing in a circular domain that
is stirred with a rod. Figure 1 shows a sketch of the compu-
tational domain, a rectangle of size Lx × Ly. The diameter of
the fluid domain which is immersed in the rectangle is 2R,
and the fluid is set into motion by a circular rod of radius
R0 = aR, describing an eight-shaped motion, parametrized by
a lemniscate of Bernoulli similar to [3]

X (t ) = X0 + λ sin(t )

1 + cos(t )2
, (3)

Y (t ) = Y0 + λ sin(t ) cos(t )

1 + cos(t )2
, (4)

where (X0,Y0) is the center of the domain and λ is the length
of the lemniscate’s half axis. The initial condition of the
passive scalar is a Gaussian blob where the phases of the

Fourier coefficients have been randomized and thus the spatial
structure has been destroyed. It corresponds to a statistically
Gaussian distribution of the scalar. At t = 0, the rod is set
into motion until obtaining a statistically steady state. Once
the latter state is accomplished, the scalar is injected into the
flow. Its initial volume averaged value kθ is set to unity.

The Navier-Stokes equations for incompressible flow read

∂t u + u · ∇u = −p + 1

Re
�u (5)

combined with the continuity equation ∇ · u = 0, where u is
the velocity and p the pressure. The velocity satisfies no-slip
and no penetration conditions at the wall. In the limit of very
low Reynolds number, the nonlinear term of Eq. (5) becomes
negligible, and in this limit the flow becomes purely diffusive.
This “Stokes” regime can be described by

∂t u = −∇p + 1

Re
�u. (6)

The Reynolds number used here, Re = UL/ν, is based on a
characteristic length scale L (for convenience we choose L =
1 in the following) and the speed U of the stirring rod. The
geometry is determined not only by the size of the domain,
but also by the rod size and the radius λ of the lemniscate.
We have not varied these parameters and have used constant
values for the geometrical parameters.

The dynamics of a passive scalar θ is governed by an
advection-diffusion equation,

∂tθ + u · ∇θ = 1

Pe
�θ, (7)

where the Péclet number is Pe = UL/α, with α the diffusivity.
No-flux of the passive scalar is imposed at the wall. A useful
dimensionless number is the Schmidt number Sc = ν/α, com-
paring diffusivity and kinematic viscosity. The dimensionless
numbers are related via Pe = Re Sc.

The main question in this study is how much energy it costs
to mix the scalar. The kinetic energy in the system is

k(t ) = 1

2

∫
V

‖u‖2 dV (8)

and the scalar variance

kθ (t ) = 1

2

∫
V

θ2 dV, (9)

where V is the volume of the fluid domain. The evolution of k
and kθ is given by

dk(t )

dt
= Pin(t ) − ε(t ), (10)

dkθ (t )

dt
= −εθ (t ), (11)

where the dissipation of kinetic energy and of scalar fluctua-
tions are, respectively, defined as

ε(t ) = 1

Re

∫
V

ω(t )2 dV, (12)

εθ (t ) = 1

Pe

∫
V

‖∇θ (t )‖2 dV. (13)
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Note that expression (12) is specific to this two-dimensional
case, where the vorticity ω reduces to a scalar quantity.
The passive scalar variance equation does not contain a
source term, and since the dissipation is a positive quantity,
the variance decays monotonically from a given initial value.
The kinetic energy balance contains the energy injection
by the moving rod, represented by Pin. It is this injected energy
which interests us. The cumulative total injected energy is
obtained by integrating Eq. (10),

�(t ) =
∫ t

0
Pin(τ ) dτ = k(t ) +

∫ t

0
ε(τ ) dτ. (14)

In a Stokes flow, �(t ) will be a monotonically growing
function of time. In a turbulent flow there will also be a
growing trend, but fluctuations around it can be observed,
reflecting the fluctuations of the kinetic energy in the domain.
In both the Stokes and turbulent cases, the total injected
energy will tend to infinity at infinite times. To estimate the
energy needed to mix we need to define a criterion. Our
criterion for the mixing time τβ is

kθ (t = τβ )

kθ (t = 0)
= β, (15)

where β ∈ [0, 1] measures the amount of remaining scalar
variance. For instance, τ0.01 corresponds to the time at which
the variance is reduced to 1% of its initial value. Subsequently
we introduce the amount of injected energy at time τβ :

�β = �(t = τβ ). (16)

The quantity �β is thus a measure for the required energy to
mix a scalar and to reduce the initial variance to a fraction β.

In the following, we will compare the quantity �β for
different values of β, Re, and Sc, and we will assess how �β

depends on the different quantities.

III. SETUP AND NUMERICAL METHOD

The numerical implementation is a Cartesian Fourier pseu-
dospectral method, combined with a volume-penalization
technique to model the presence of the circular boundaries
and the rod. Time-integration is performed by a second-
order Adams-Bashforth scheme. Details of the code are given
in Ref. [14], and its recent implementation in the FLUSI
framework is described in Ref. [15]. The volume-penalization
method was proposed by Ref. [16] for imposing no-slip
boundary conditions in fluid flow. It was extended to no-flux
conditions in Ref. [17] for passive scalars, and Ref. [18]
presents an extension for moving objects. These methods
treat boundaries by an immersed boundary principle, where
the solid boundaries are imposed using a forcing term in
the evolution equations. We consider here no-slip boundary
conditions for the velocity and no-flux conditions for the
passive scalar. The size of the domain is Lx × Ly where Lx =
24 and Ly = 24. The diameter of the circular domain and of
the rod is R = 10 and R0 = 0.8, respectively. The motion of
the rod center follows the parametric equations of a lemnis-
cate of Bernoulli with λ = 7.12, and constant speed U = 2.
The characteristic length L is chosen to be equal unity for
convenience of the logarithmic plots. The spatial resolution

TABLE I. Summary of the simulations for different Schmidt and
Reynolds numbers. St denotes the Stokes regime.

�������Sc
Re

St 101 102 103 104

100 � � � � �
101 � � � �
102 � � �
103 � �
104 �

is N = 10242 and the time step is dt = 10−4 such that the
stability constraint of the explicit time scheme is satisfied.

Specifically, the vorticity field ω = ∇ × u is computed by

∂tω + u · ∇ω = 1

Re
�ω − ∇ ×

(
χ

η
[u − us]

)
. (17)

where χ is the mask function, which equals 1 inside the solid
and 0 inside the fluid region. Note that in practice we have
two mask functions, one for the outer cylinder wall for which
us = 0 and χ being time independent, and one for the rod. The
latter is time-dependent, i.e., its center follows the trajectory
of the lemniscate with a constant velocity norm ‖us(t )‖ = U
to impose no-slip conditions of the rod. The penalization
parameter η corresponds to the permeability of the solid. A
small value η = 10−4 is imposed to limit the method’s error
[16] for the given spatial resolution [15].

To study scalar mixing, we use the penalization technique
for the advection-diffusion equation:

∂tθ + [(1 − χ )u + χus] · ∇θ

= ∇ ·
{[

1

Pe
(1 − χ ) + εχ

]
∇θ

}
, (18)

where θ is the passive scalar. The penalization parameter ε

for the passive scalar equation is chosen sufficiently small
according to Ref. [17] and imposes the ratio between the
diffusivity and the penalization parameter to be constant with
α/ε = 10−9.

IV. MAIN RESULTS

We report here on 15 simulations we carried out, for
Schmidt numbers in the range [1, 104] and Reynolds numbers
in the range [1, 104], in addition to simulations of Stokes
flow, where the nonlinear term in the Navier–Stokes equations
is set strictly to zero. Also in this case we need to define
the visocity and have set its value to unity, corresponding
to a Reynolds number of order unity. This Reynolds number
does therefore not quantify the ratio of inertial to viscous
forces, but quantifies the typical timescale of the viscous
diffusion compared to the stirring frequency. The limitation
of the attainable numerical grid resolution restricts the Péclet
number to be Pe � 104, which implies that for increasing
Schmidt number the Reynolds number needs to be reduced,
and vice versa (see Table I).
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FIG. 2. Visualizations of the vorticity field (a), the scalar field for Sc = 1 (b) and the scalar field for Sc = 10 000 (c) for the Stokes flow
simulations, at time t = 50. Min and max values of the colorbar for scalar fields correspond to ±2σθ , where σθ is the standard deviation of the
scalar θ .

A. Flow characterization

1. Stokes flow

Figure 2(a) shows a visualization of the vorticity field gen-
erated by the moving rod in Stokes flow. The main vorticity
generation is situated on the rod surface. In Figs. 2(b) and 2(c)
we visualize the scalar field at t = 50 for Schmidt numbers
1 and 104, respectively. The most important remark, with
respect to mixing, is that most of the unmixed fluid is close
to the wall for Sc = 104. This explained the observations of
slow mixing in investigation [3] for a similar case. For Sc = 1
this unmixed scalar is less present since the diffusive mixing
contributes substantially to the overall scalar mixing at low
values of Sc.

Figure 3 presents the evolution of the scalar variance as a
function of time for values of the Schmidt number ranging
from 1 up to 104. The general trend is that mixing is slower
for increasing values of the Schmidt number. Indeed, for large
Sc the unmixed fluid close to the wall diffuses less towards the
center of the domain, which implies that the overall variance

10-4

10-3

10-2

10-1

100

 0.01  0.1  1  10  100  1000

10%

1%

0.1%

k θ

t

Sc=1
Sc=10

Sc=100
Sc=1000

Sc=10000

FIG. 3. Time evolution of the variance of passive scalar in the
Stokes flow, for different values of the Schmidt number. Horizontal
dashed lines indicate three distinct levels of mixedness β = 0.1, 0.01
and 0.001.

decays more slowly. The dashed horizontal lines correspond
to three levels of mixedness, respectively, when the variance
is reduced to a fraction β = 0.1, 0.01, and 0.001 of its initial
value. For the highest values of Sc, the increasing time of the
simulations does not allow us to reach the largest levels of
mixedness.

2. Flow at higher Reynolds number

The main difference, when the inertial term in the Navier-
Stokes equations is not neglected, is that vorticity detaches
from the region where it is generated. This is illustrated in
Fig. 4, where circular vortices are clearly observed in the
entire domain for Re = 103. These vortices interact with each
other, but, more important, penetrate the domain close to the
wall, where they allow an efficient mixing in the part of the
flow which is not easily mixed in the Stokes regime.

In Figs. 5(a) and 5(b) we show the evolution of the scalar
variance as a function of time for values of the Schmidt
number ranging from 1 up to 104. The different levels of
mixedness are again indicated by dashed lines. A larger value
of Sc leads also to a slower mixing.

In particular in Fig. 5(b), it is interesting to note that at short
times for a given Sc, the Stokes flow mixes most efficiently,
whereas at longer times, the highest Reynolds number flow
attains the thresholds of mixedness β = 0.01 and β = 0.001
before the other flows do. Clearly the molecular diffusion
is at longer times less efficient than the mixing induced by
vortical structures. What we do not know yet is if it is also
energetically desirable to use turbulent mixing and that will
be determined now.

B. Mixing efficiency

We have evaluated the mixing times τβ for different values
of β = 0.1, 0.01, 0.001, and summarize them in Fig. 6 for
all the different values of Re and Sc. The general trend is
that the mixing time increases with Sc and decreases with Re.
Clearly stirring the fluid faster mixes the scalar more rapidly.
However, does a higher Reynolds number also increase the
efficiency in terms of injected energy? We recall that for
unbounded flows it was shown that this is not the case [2].
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FIG. 4. Visualizations of the vorticity field (a), the scalar field for Sc = 1 (b) and the scalar field for Sc = 10 (c) for the simulations with
Re = 1000 at time t = 50. Min and max values of the color bar for scalar fields correspond to ±2σθ , where σθ is the standard deviation of the
scalar θ . The thin green line indicates the interface between the fluid and solid domain.
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FIG. 5. Time evolution of the variance of passive scalar for different values of the Reynolds and Schmidt numbers; Sc = 1 (a) and Sc = 10
(b). Horizontal dashed lines indicate three distinct levels of mixedness: β = 0.1, 0.01, and 0.001.
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FIG. 6. Mixing times τβ , corresponding to the time it takes for the flow to decrease the value of scalar variance to a fraction β of its initial
value.
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FIG. 7. Parametric plot of the evolution of the variance of passive scalar for different Reynolds number as a function of the injected energy
�(t ), for different values of the Schmidt number. (a) Stokes flow; (b) Re = 10; (c) Re = 100; (d) Re = 1000. Horizontal dashed lines indicate
three distinct levels of mixedness.

In Figs. 7 and 8 we plot the evolution of the variance of
the scalar, but this time as a function of the injected energy
�(t ) instead of time. The decay is not strictly monotonous
because of the fluctuations of the kinetic energy, but the global
trend of kθ (�) is decaying for increasing injected energy.
Again we indicate the three levels of mixedness by horizontal
dashed lines. The values of �β are summarized in Fig. 9.

This figure clearly shows that the needed amount of energy
to achieve a fixed decrease of the variance is a decreasing
function of the Péclet number. The answer to the question we
asked—“is it energetically favorable to stir a confined scalar
flow strong enough to make the flow turbulent?”—can thus
be answered positively. This disagrees with theoretical results
for unbounded flows [2], but can be understood in the light
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FIG. 8. Parametric plot of the evolution of the variance of passive scalar for different values of the Reynolds number as a function of the
injected energy �(t ). (a) Sc = 1 (b) Sc = 10. Horizontal dashed lines indicate three distinct levels of mixedness β = 0.1%, 1%, and 10%.
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FIG. 9. Mixing energy �β , corresponding to the amount of energy injected into the flow at t = τβ plotted as a function of Pe for different
Sc numbers, and for (a) β = 0.1; (b) β = 0.01; and (c) β = 0.001. This quantity represents the mixing efficiency of a flow from an energetic
viewpoint.

of the observations of chaotic mixing [3] in wall-bounded
flow.

V. PHENOMENOLOGICAL EXPLANATION

In Fig. 9, in particular in Figs. 9(b) and 9(c), it is observed
that the amount of energy needed to attain a level of mixedness
compared to the Stokes case is given by a power law of the
Péclet number. More precisely the observed relation is close
to

�/�Stokes ∼ Pe−1/3. (19)

This is the mixing equivalent of expression (2), which com-
pares the friction in turbulent pipe flow compared to its
laminar value. In the present case, the exponent is however
negative. This expression can be obtained by dimensional
arguments as follows.

It was shown in the case of flux-line expulsion in liquid-
metal flows [19,20] and in the case of mixing of a passive
scalar [21,22], that the typical mixing timescale Tθ in a flow
with a typical velocity-gradient timescale Tu is given by

Tθ ∼ TuPe1/3. (20)

This expression holds for mixing in laminar flow. Also in
laminar tube flows of diameter D and length l the transfer
of heat, characterized by the Nusselt number Nu, is well
described by a relation proposed by Sieder and Tate [23,24],
writing for constant viscosity,

Nu ∼ D

l
(Pe)−1/3. (21)

The mixing efficiency in passive scalar mixing is pro-
portional to the inverse of the scalar timescale Tθ (see, for
instance, Ref. [25]), and the injected energy to mix is in the
Stokes case directly proportional to the time Tθ . Therefore we
have

�Stokes ∼ Pe1/3. (22)

The phenomenology changes radically when inertia starts
to dominate the flow. From Fig. 7 we observe that at high
Péclet numbers, the mixing becomes almost independent of
the amount of injected energy [the almost vertical drop in

Figs. 7(c) and 7(d) illustrates this]. Therefore, at large val-
ues of the Péclet number, when compared to stokes flow,
we obtain Eq. (19). These arguments yield a result which
describes our data reasonably well. Clearly, further analytical,
phenomenological, numerical, or experimental work can help
to further assess the validity of the above expression.

VI. CONCLUSIONS AND PERSPECTIVES

We showed that turbulence increases the mixing efficiency
in wall-bounded two-dimensional flows, in comparison to the
Stokes regime. The dynamical difference between turbulent
and laminar mixing is that in the Stokes case the vorticity
equation reduces to a pure diffusion equation, whereas in
the nonlinear regime vorticity generated at the boundaries or
impellers can detach and can be advected into the entire flow.

This is of crucial importance for mixing. Indeed, the fact
that vortices can detach, enter, or leave the near-wall region
allows an efficient sweeping and mixing of the near-wall
scalar field, penetrating also in regions which would be poorly
mixed in the diffusive case. Turbulence is therefore not in all
applications hostile to energy savings, and improved mixing
can be obtained for large Pe.

It is interesting in the light of the present investigation to
mention the recent study [26], where optimization algorithms
are applied to determine the most efficient stirring protocols in
a setup similar to the one in the present study. In their work,
the authors successfully optimize the mixing speed, changing
the rod shape and the trajectory. They have not yet considered
the most energetic way to mix. To optimize, energetically, the
mixing efficiency using their control strategy would certainly
be an interesting topic for future work. We think that the over-
all conclusions of the present investigation are robust, in that
turbulent mixing is more efficient than mixing in the Stokes
regime, but that changing the details of the geometry and the
rod trajectory can certainly lead to a more optimal mixing.
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