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Abstract

The product version of the 1-2-3 Conjecture, introduced by Skowronek-Kaziów in 2012,
states that, a few obvious exceptions apart, all graphs can be 3-edge-labelled so that no
two adjacent vertices get incident to the same product of labels. To date, this conjecture
was mainly verified for complete graphs and 3-colourable graphs. As a strong support to
the conjecture, it was also proved that all graphs admit such 4-labellings.

In this work, we investigate how a recent proof of the multiset version of the 1-2-3
Conjecture by Vučković can be adapted to prove results on the product version. We prove
that 4-chromatic graphs verify the product version of the 1-2-3 Conjecture. We also prove
that for all graphs we can design 3-labellings that almost have the desired property. This
leads to a new problem, that we solve for some graph classes.

Keywords: 1-2-3 Conjecture; multiset version; product version; 4-chromatic graphs.

1. Introduction

This work takes place in the general context of distinguishing labellings, where
the aim, given an undirected graph, is to label its edges so that its adjacent vertices
get distinguished by some function computed from the labelling. Formally, a k-labelling
ℓ : E(G) → {1, . . . , k} of a graph G assigns a label from {1, . . . , k} to each edge, and,
for every vertex v, we can compute some function f(v) of the labels assigned to the edges
incident to v. The goal is then to design ℓ so that f(u) 6= f(v) for every edge uv of G.
As reported in a survey [3] by Gallian on the topic, there actually exist dozens and dozens
types of distinguishing labelling notions, which all have their own particular behaviours
and subtleties.

We are here more particularly interested in the so-called 1-2-3 Conjecture, which is
defined through the following notions. Given a labelling ℓ of a graph G, we can compute
for every vertex v its sum σℓ(v) of incident labels, being formally σℓ(v) = Σu∈N(v)ℓ(uv).
We say that ℓ is s-proper if the so-obtained σℓ yields a proper vertex-colouring of G, i.e.,
σℓ(u) 6= σℓ(v) for every edge uv. Generally speaking, not only we aim at finding s-proper
k-labellings of G, but also we aim at designing such ones having k as small as possible.
Thus, for G, we are interested in determining χS(G), which is the smallest k ≥ 1 such that
s-proper k-labellings of G do exist.

Greedy arguments show that there exists only one connected graph G for which χS(G)
is not defined, and that graph is K2. This implies that χS(G) is defined for every graph
G with no component isomorphic to K2, which we call a nice graph. It is then legitimate
to wonder how large can χS(G) be in general, for a nice graph G. Karoński, Łuczak and
Thomason conjectured that this value cannot exceed 3 in general [6]:

1-2-3 Conjecture (sum version). If G is a nice graph, then χS(G) ≤ 3.
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One could naturally wonder about slight modifications of the 1-2-3 Conjecture, where
the aim would be to design labellings ℓ distinguishing adjacent vertices accordingly to a
function f that is somewhat close to the sum function σℓ. There actually exist at least
two such variants, to be described in what follows, which sound particularly interesting
due to their respective subtleties, to some behaviours they share with the original 1-2-3
Conjecture, and to general existing connections with that conjecture.

• The first such variant we consider is the one where adjacent vertices of a graph G are
required, by a labelling ℓ, to be distinguished by their multisets of incident labels.
Recall that a multiset is a set in which elements can be repeated. For a vertex v of
G, we denote by µℓ(v) the multiset of labels assigned to the edges incident to v. We
say that ℓ is m-proper if µℓ is a proper vertex-colouring of G, while we denote by
χM(G) the least k ≥ 1 such that G admits m-proper k-labellings (if any).

• The second such variant is the one where adjacent vertices of G must be, by ℓ,
distinguished accordingly to the products of their incident labels. Formally, for a
vertex v of G, we define ρℓ(v) as the product of labels assigned to the edges incident
to v. We say that ℓ is p-proper if ρℓ is a proper vertex-colouring of G. We denote by
χP(G) the smallest k ≥ 1 such that G admits p-proper k-labellings (if any).

There exist several interesting connections between the previous three series of no-
tions. For instance, it can be easily noted that an s-proper or p-proper labelling is al-
ways m-proper. As a result, χM(G) ≤ min{χS(G), χP(G)} holds for every graph G for
which the parameters are defined (see below). In general, there is no other systematic
relationship between these three notions, though some exist in particular contexts. For
instance, s-proper 2-labellings, m-proper 2-labellings and p-proper 2-labellings are equiv-
alent notions in regular graphs [2]. It can also be noted that s-proper {0, 1}-labellings
and p-proper {1, 2}-labellings are equivalent notions [10]. Another illustration is that an
m-proper k-labelling yields a p-proper {l1, . . . , lk}-labelling, for any set {l1, . . . , lk} of k

pairwise coprime integers.
Just as for the 1-2-3 Conjecture, one can wonder how large can χM(G) and χP(G) be

for a given graph G. Before providing hints on that very question, let us first mention
that, similarly as for s-proper labellings, the only connected graph admitting no m-proper
labellings and no p-proper labellings is K2. Thus, the notion of nice graph coincides for
the three types of proper labellings. It actually turns out that the straight analogue of
the 1-2-3 Conjecture is believed to hold for m-proper labellings and p-proper labellings;
namely:

1-2-3 Conjecture (multiset version). If G is a nice graph, then χM(G) ≤ 3.

1-2-3 Conjecture (product version). If G is a nice graph, then χP(G) ≤ 3.

The multiset version of the 1-2-3 Conjecture was introduced by Addario-Berry, Aldred,
Dalal and Reed in [1], while the product version was introduced by Skowronek-Kaziów
in [9]. By an argument above, recall that the sum version and the product version of
the 1-2-3 Conjecture, if true, would actually imply the multiset version. From that angle,
the multiset version does appear, at least intuitively, as the most feasible out of the three
versions. This is reinforced by unique behaviours of m-proper labellings over s-proper
labellings and p-proper labellings. In particular, by a labelling ℓ of a graph, in order to
have µℓ(u) = µℓ(v) for any two vertices u and v, note that we must have d(u) = d(v).

The most notable facts towards these three variants of the 1-2-3 Conjecture to date
are:
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• Regarding the sum version, the best result to date, proved by Kalkowski, Karoński
and Pfender in [5], is that χS(G) ≤ 5 holds for every nice graph G. The conjecture was
verified for all 3-colourable graphs [6]. Regarding 4-chromatic graphs, the conjecture
was verified for 4-edge-connected ones [12]. In [7], it was recently shown that χS(G) ≤
4 holds for every nice regular graph G.

• Regarding the multiset version, for long the best result, proved by Addario-Berry,
Aldred, Dalal and Reed in [1], was that χM(G) ≤ 4 holds for every nice graph G. A
few years ago, a breakthrough result was obtained by Vučković in [11], in which he
gave a full proof of the conjecture.

Theorem 1.1 ([11]). If G is a nice graph, then χM(G) ≤ 3.

• Regarding the product version, the best results to date were mainly obtained via
adaptations of arguments used to provide results towards the sum and multiset ver-
sions. Specifically, Skowronek-Kaziów proved in [9] that χP(G) ≤ 4 holds for all nice
graphs G. In the same article, she proved the product version of the 1-2-3 Conjecture
for 3-colourable graphs.

In this work, we provide several results towards the product version of the 1-2-3 Con-
jecture. A first (minor) reason for focusing on this version is that it is, out of the three
versions, the least investigated one to date. A second (major) reason stems from the recent
proof of Theorem 1.1 by Vučković. As pointed out earlier, m-proper labellings and p-proper
labellings tend to have alike behaviours, which gives us hope that the proof of Vučković
might be a step towards proving the product version of the problem.

Let us support this perspective further. It is first important to mention that the labels
1, 2, 3 by a 3-labelling are very special in terms of vertex products. Note in particular that
label 1 has a unique behaviour, since assigning label 1 to an edge uv by a labelling ℓ impacts
neither ρℓ(u) nor ρℓ(v). It is important, however, to emphasise that assigning label 1 to uv

is not similar to deleting uv from the graph, as, though ℓ(uv) does not contribute to ρℓ(u)
and ρℓ(v), it requires ρℓ(u) and ρℓ(v) to be different by a p-proper 3-labelling ℓ. Because 2
and 3 are coprime, this implies that, in order for ρℓ(u) 6= ρℓ(v) to hold, the decomposition
of ρℓ(u) into prime factors must differ from that of ρℓ(v). In other words, if we denote by
di(w) the i-degree of a vertex w by a labelling as the number of edges incident to w assigned
label i, then, by a 3-labelling ℓ, ρℓ(u) 6= ρℓ(v) holds if and only if either d2(u) 6= d2(v) or
d3(u) 6= d3(v).

That last property makes labels 2 and 3 by a 3-labelling ℓ very close in terms of vertex
multisets and vertex products, since also µℓ(u) 6= µℓ(v) holds as soon as d2(u) 6= d2(v)
or d3(u) 6= d3(v). Thus, the difference between m-proper 3-labellings and p-proper 3-
labellings only lies in the behaviour of label 1: for the first objects, every edge uv labelled 1
contributes to both µℓ(u) and µℓ(v), while, for the second objects, every edge uv labelled 1
contributes to none of ρℓ(u) and ρℓ(v). For that reason, m-proper 3-labellings are not p-
proper in general; however, there are contexts where this is the case, such as the following
meaningful one:

Observation 1.2. Nice regular graphs verify the product version of the 1-2-3 Conjecture.

Proof. Let G be a nice ∆-regular graph. By Theorem 1.1, there exists an m-proper 3-
labelling ℓ of G. We claim it is also p-proper. Indeed, by arguments above, if ρℓ(u) = ρℓ(v)
holds for some edge uv, then d2(u) = d2(v) and d3(u) = d3(v). Since d(u) = d(v) = ∆, this
means also d1(u) = d1(v) holds. We then deduce that µℓ(u) = µℓ(v) holds, a contradiction.
Thus, no two adjacent vertices of G have the same product of labels.
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Our main intention in this paper is to investigate how the mechanisms in the proof
of Theorem 1.1 can be used in the product setting. In Section 2, we first prove that the
product version of the 1-2-3 Conjecture holds for 4-chromatic graphs, which goes beyond
the best known such result to date for the sum version, which is, as stated earlier, that
4-edge-connected 4-chromatic graphs verify the sum version of the 1-2-3 Conjecture [12].
In Section 3, we give a result that is close to the product version of the conjecture, as we
describe how to design, for any nice graph, 3-labellings that are very close to be p-proper.
This leads us to raising a conjecture on almost p-proper 2-labellings in Section 4, that
matches an existing weakening of the sum version of the 1-2-3 Conjecture from [4]. We
finally verify our conjecture for several classes of graphs.

2. The Multiplicative 1-2-3 Conjecture for 4-chromatic graphs

For a graph G, a proper k-vertex-colouring is a partition (V1, . . . , Vk) of V (G) into
independent sets, and the chromatic number χ(G) of G is the smallest k such that there
exist proper k-vertex-colourings of G. Recall that G is k-chromatic if its chromatic number
is exactly k. Equivalently, G is k-chromatic if it admits proper k-vertex-colourings, but no
proper k′-vertex-colourings with k′ < k.

In this section, we prove the following:

Theorem 2.1. If G is a 4-chromatic graph, then χP(G) ≤ 3.

Proof. Let (V1, V2, V3, V4) be a proper 4-vertex-colouring of G. For any vertex v ∈ Vi, an
upward edge (resp. downward edge) is an incident edge going to a vertex in some Vj with
j < i (resp. j > i). Note that all vertices in V1 have no upward edges, while all vertices in
V4 have no downward edges.

Free to move vertices from part to part, we may assume that, for every vertex v in
any Vi with i ∈ {2, 3, 4}, there is an upward edge going to each of V1, . . . , Vi−1. Indeed, if
there is a j < i such that v has no upward edge to Vj , then by moving v to Vj we obtain
another 4-vertex-colouring of G that is proper. By repeating this moving process as long
as needed, we eventually reach a proper 4-vertex-colouring with the desired property. In
particular, note that the process finishes since vertices are only moved to parts with lower
index. Furthermore, since G is 4-chromatic, none of the four parts can become empty.

A p-proper 3-labelling ℓ of G will be obtained through two main stages. The first stage
will consist in considering the vertices in V4 and V3, and labelling their upward edges so that
particular types of products are obtained for their vertices, guaranteeing that none of them
are in conflict (i.e., have the same product of incident labels). In particular, these vertices
will be bichromatic, meaning that they have both 2-degree and 3-degree at least 1. On the
contrary, in general, a few cases apart, the vertices in V2 and V1 will be monochromatic,
meaning that they are not bichromatic. More precisely, for i ∈ {1, 2, 3}, a vertex v is
i-monochromatic if it is incident only to edges labelled i or 1 and di(v) > 0. In other
words, a 1-monochromatic vertex is a vertex v with ρℓ(v) = 1, while an i-monochromatic
vertex with i ∈ {2, 3} is a vertex v with ρℓ(v) = ix for some x ≥ 1. Right after the first
stage, in a second stage, we will label the edges joining vertices in V2 and V1 to get rid of
all remaining conflicts.

As mentioned in the introductory section, recall that two vertices can only be in conflict
if they have the same 2-degree and the same 3-degree. This means that an i-monochromatic
vertex and a j-monochromatic vertex can only be in conflict if i = j, and that a monochro-
matic vertex and a bichromatic vertex can never be in conflict. More generally speaking,
a vertex with 2-degree i and 3-degree j and a vertex with 2-degree i′ and 3-degree j′ can
only be in conflict if i = i′ and j = j′.
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To ease the understanding of the proof, we start from ℓ being the labelling of G assigning
label 1 to all edges. We then modify some labels so that particular products are obtained
for some vertices. We describe this modification process step by step, so that, after each
of these steps, we can point out the consequences of our modifications. In particular, the
reader should keep in mind that, at any point, any existing conflict is intended to be dealt
with in later stages of the modification process. In, particular, note that, at the beginning,
all vertices are 1-monochromatic and are thus all in conflict.

Step 1: Labelling the upward edges of V4 and V3.

We first relabel all upward edges of the vertices in V4. To that end, we consider every
v ∈ V4 in arbitrary order, and apply the following:

1. for every upward edge vu with u ∈ V1, we set ℓ(vu) = 2;

2. for every upward edge vu with u ∈ V3, we set ℓ(vu) = 3;

3. if currently v has odd 3-degree, then we pick an arbitrary upward edge vu with
u ∈ V2, and set ℓ(vu) = 3.

Recall that such upward edges exist by our original assumption on (V1, V2, V3, V4). Also,
note that, at this point, the vertices in V4 verify the following:

Claim 2.2. Every vertex of V4 is bichromatic with even 3-degree.

Furthermore, at this point, every vertex v in V3 has all its downward edges (if any)
assigned label 3 by ℓ. Now, for every such v ∈ V3, we modify the label of the upward edges
as follows:

1. for every upward edge vu with u ∈ V1, we set ℓ(vu) = 2;

2. if currently v has even 3-degree, then we pick an arbitrary upward edge vu with
u ∈ V2, and set ℓ(vu) = 3.

Note that Claim 2.2 is not impacted by these modifications. Furthermore, it can be
checked that the vertices in V3 fulfil the following:

Claim 2.3. Every vertex v of V3 is bichromatic with odd 3-degree.

Proof of the claim. If v has downward edges to V4, then they are labelled 3 in which case v

is bichromatic (regardless of whether the second item applies or not). If v has no downward
edges, then the second item of the process applies, and v gets bichromatic by labelling 3
an upward edge to V2. In both cases, v has its 3-degree being of the desired parity. ⋄

Note that Claims 2.2 and 2.3 imply that any two adjacent vertices in V4 and V3 cannot
be in conflict, due to their different 3-degrees. Furthermore, it can be checked that, at this
point, the vertices in V2 and V1 meet the following properties:

Claim 2.4. For every vertex of V2:

• all downward edges to V4 and V3 are labelled 1 or 3;

• all upward edges to V1 are labelled 1.

Claim 2.5. For every vertex of V1:

• all downward edges to V4 and V3 are labelled 2;
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• all downward edges to V2 are labelled 1.

All previous claims imply that, at the moment, only vertices in V2 and V1 can be
in conflict. More precisely, every vertex of V1 is currently either 1-monochromatic or 2-
monochromatic, while every vertex of V2 is either 1-monochromatic or 3-monochromatic.
Thus, two adjacent vertices in V2 and V1 can only be in conflict if they are both 1-
monochromatic. The next stage is dedicated to getting rid of these conflicts.

Step 2: Labelling the edges between V1 and V2.

For every vertex v of G, we define its {2, 3}-degree as the sum d2(v) + d3(v) of its
2-degree and 3-degree. It is important to mention that, in all modifications we apply
to ℓ from this point on, the only way for the {2, 3}-degree of a vertex v in V3 ∪ V4 to
change is via setting to 2 the label of edges uv with u ∈ V2 ∪ V1. In particular, note that
Claims 2.2 and 2.3 are not impacted by such modifications, as they only alter 2-degrees.
Hence, through performing such modifications, adjacent vertices in V4 and V3 cannot get
in conflict.

For the whole step, we define H as the set of (connected) components induced by
the edges joining 1-monochromatic vertices of V2 and vertices of V1 (of any type). Note
that any two conflicting vertices at this point, i.e., adjacent vertices being currently 1-
monochromatic, are part of a component H of H. In what follows, we call an H containing
such a pair of conflicting vertices a conflicting component. Our main goal here is now to
apply local label modifications to get rid of all conflicting components of H.

It is important to note that two vertices from two distinct components H1 and H2 of
H cannot be adjacent. Assume indeed that uv is an edge of G, where v ∈ V (H1)∩ V2 and
u ∈ V (H2) ∩ V1. By definition of H, this means that v is 1-monochromatic, in which case
H1 and H2 altogether induce a component of H. A consequence is that we can freely treat
the conflicting components of H independently.

Consider a conflicting component H ∈ H. Note that we would be done with H if we
could get rid of all conflicts in H by relabelling its edges so that all vertices in H remain
1-monochromatic or 2-monochromatic, as, this way, no conflict with vertices in V3 or V4

would arise (by Claims 2.2 and 2.3). This is a configuration that can actually almost be
attained, in the following sense:

Claim 2.6. For every vertex v in any part Vi ∈ {V1, V2} of H, we can relabel the edges
of H with 1 and 2 so that d2(u) is odd for every u ∈ Vi \ {v}, and d2(u) is even for every
u ∈ V3−i. Similarly, we can relabel the edges of H with 1 and 2 so that d2(u) is even for
every u ∈ Vi \ {v}, and d2(u) is odd for every u ∈ V3−i.

Proof of the claim. Assume the conditions of the statement are not already met. So let us
consider any vertex u different from v that does not verify the desired condition. Since H

is connected, there is a path P from u to v in H. Now traverse P from u to v, and, as
going along, switch the label of every traversed edge from 1 to 2 and vice versa. Note that
this switching procedure has the following effects:

• for every internal vertex of P , the parity of its 2-degree is not altered;

• for each of the two ends u and v of P , the parity of its 2-degree is altered.

This way, note that u now satisfies its desired condition, while, for all vertices of H
different from u and v, the situation regarding their desired condition has not changed.
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By repeating this switching procedure as long as desired, we eventually get that all
vertices different from v have their 2-degree meeting the desired parity condition. ⋄

To deal with H, we now apply certain label modifications depending on the surround-
ings of H. We start off by considering the following three cases. In each case, it is implicitly
assumed that the previous ones do not apply.

• Case 1. There is a vertex v ∈ V (H) ∩ V2 with a neighbour w ∈ V3 ∪ V4.

Recall that v is 1-monochromatic (by definition of H), and thus vw is currently
labelled 1. According to Claim 2.6, in H we can relabel edges with 1 to 2 so that all
vertices in V (H) ∩ V1 have even 2-degree while all vertices in V (H) ∩ V2 \ {v} have
odd 2-degree. If also v has odd 2-degree, then no conflict remains in H. Otherwise,
i.e., v has even 2-degree, then we change the label of vw to 2. As a result, v now gets
odd 2-degree as well, while w remains bichromatic with the same 3-degree. Thus, no
conflict remains in H, and no new conflict is created in G.

• Case 2. There is a 1-monochromatic vertex u ∈ V (H)∩V1 with a 3-monochromatic
neighbour v ∈ V2.

Since u is 1-monochromatic, by Claim 2.5 it has no neighbour in V3 ∪ V4. Also, uv is
currently labelled 1. As in the previous case, according to Claim 2.6 we can relabel
with 1 and 2 the edges of H to reach a situation where all vertices in V (H)∩V2 have
odd 2-degree while all vertices in V (H) ∩ V1 \ {u} have even 2-degree. If u also has
even 2-degree, then we are done. Otherwise, u has odd 2-degree (thus at least 1).
In that case, we assign label 3 to uv. As a result, u gets bichromatic with no such
neighbour while v remains 3-monochromatic. Thus, no conflict remains in H, and
no new conflict was created in G.

• Case 3. There is a 1-monochromatic vertex u ∈ V (H) ∩ V1 with p ≥ 2 neighbours
v1, . . . , vp ∈ V (H) ∩ V2.

Because u is 1-monochromatic, by Claim 2.5 it has no neighbour in V3 ∪ V4. Also,
since previous Cases 1 and 2 did not apply, u has no 3-monochromatic neighbour in
V2, thus all vi’s are 1-monochromatic, and the vi’s have no neighbours in V3 ∪ V4.
We here consider H ′ = H − u. Let us denote by C1, . . . , Cr the components of H ′.
By Claim 2.6, in each Cj (1 ≤ j ≤ r) we can relabel the edges with 1 and 2 so
that all vertices in V (Cj) ∩ V1 have even 2-degree while all vertices in V (Cj) ∩ V2

but maybe one of the vi’s have odd 2-degree. Note that this can be attained since
each of the Cj’s contains at least one of the vi’s. Finally, assign label 3 to all uvi’s.
As a result, u becomes 3-monochromatic with 3-degree at least 2, while its only 3-
monochromatic neighbours are possibly some of the vi’s, in which case these have
3-degree 1. In Cj, the only vertex (one of the vi’s) that was possibly in conflict
with some vertices has turned bichromatic or 3-monochromatic, while its neighbours
remain 1-monochromatic or 2-monochromatic. Recall also that the vi’s that became
bichromatic cannot be adjacent to another bichromatic vertex, as, in particular, they
have no neighbours in V3 ∪ V4. Thus no conflict remains in H, and no new conflict
was created in G.

Consider any remaining conflicting component H ∈ H. Because Cases 1 to 3 above did
not apply to H, the following holds:

Claim 2.7. For every remaining conflicting component H ∈ H:
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• all 1-monochromatic vertices u ∈ V (H) ∩ V1 have degree 1 in G;

• all 1-monochromatic vertices of H have no bichromatic neighbours in G.

Proof of the claim. By definition of H, all vertices of V (H) ∩ V2 are 1-monochromatic,
while all 1-monochromatic vertices of V (H)∩V1 have no neighbours in V3∪V4 (Claim 2.5).
Since H did not verify Case 1 above, it has no vertex in V (H) ∩ V2 with a neighbour in
V3 ∪V4. Similarly, because Cases 2 and 3 above did not apply, H has no 1-monochromatic
vertex in V (H) ∩ V1 having a 3-monochromatic neighbour in V2 or two 1-monochromatic
neighbours in V (H) ∩ V2. Then the claim holds. ⋄

Let us now repeatedly apply the following procedure to H:

• As long as H has a 1-monochromatic vertex v ∈ V (H)∩V2 with two 1-monochromatic
neighbours u1, u2 ∈ V (H) ∩ V1, we assign label 3 to vu1 and vu2.

Note that this raises no conflict. On the one hand, u1 and u2 get 3-monochromatic
with 3-degree 1 while v is their unique 3-monochromatic neighbour, and it has 3-degree 2.
Recall that v is actually the unique 3-monochromatic neighbour of u1 and u2, since u1 and
u2 have degree 1 in the whole of G. Conversely, u1 and u2 are the only 3-monochromatic
neighbours of v, since the only 3-monochromatic vertices we create in V (H) ∩ V1 during
this procedure have degree 1 in G, and thus in H. Thus, no new conflict arises.

Once the previous procedure has been repeated as long as possible for every remaining
conflicting component H of H, note that the remaining conflicts involve disjoint edges uv

where u ∈ V1, v ∈ V2, and u and v are 1-monochromatic. Furthermore, since previous
Cases 1 to 3 did not apply to H, we deduce that u has degree precisely 1 in G, that v has
no other 1-monochromatic neighbour in H, and that v has no neighbour in V3 ∪ V4. Since
G is nice, we must have d(v) ≥ 2, which means that v has other neighbours in V (H)∩ V1.
Any such neighbour u′ ∈ V (H) ∩ V1 must be 2-monochromatic. Indeed, on the one hand,
if u′ is 1-monochromatic, then the repeated process above could have been applied once
more to H. On the other hand, note that u′ cannot be 3-monochromatic with vu′ being
labelled 1, as, in the process above, only degree-1 vertices of G, and thus of V (H) ∩ V1,
get 3-monochromatic. Now, we assign label 2 to u′v and label 3 to vu. As a result,
u′ remains 2-monochromatic, v gets bichromatic, while u gets 3-monochromatic. Then
no new conflict arises, because, in particular, u′ remains 2-monochromatic with no such
neighbours, v cannot have bichromatic neighbours by Claim 2.7, and u is only neighbouring
v.

Eventually, the 3-labelling ℓ has no remaining conflicts, and is thus p-proper.

3. Restricted product conflicts by 3-labellings

In this section, we show how the proof of Theorem 2.1 can be generalized, to prove
that all graphs admit 3-labellings ℓ that are “almost” p-proper. By that, we mean that
if there are product conflicts by ℓ, then the structures induced by the conflicting vertices
are somewhat weak. This is with respect to the following notion. Let ℓ be a labelling of
a graph G. For any x ≥ 1, we denote by Sx the set of vertices v of G with ρℓ(v) = x.
Rephrased differently, the product version of the 1-2-3 Conjecture states that every nice
graph G admits a 3-labelling such that Sx is an independent set for every x ≥ 1.

In the next result, we prove that every graph admits a 3-labelling where all Sx’s are
independent, with the exception of perhaps S1, which might induce independent edges.
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Theorem 3.1. Every graph G admits a 3-labelling such that S1 induces a (possibly empty)
matching and isolated vertices while all other Sx’s are independent sets.

Proof. We may assume that G is connected. If G is K2, then it suffices to assign label 1 to
its only edge. If G is 3-colourable, then G admits a p-proper 3-labelling (according to [9]),
by which every Sx is an independent set. The same conclusion holds if G is 4-chromatic,
by Theorem 2.1. Thus, we may suppose that G is k-chromatic for some k ≥ 5. Let us
thus consider (V1, . . . , Vk) a proper k-vertex-colouring of G, where k = χ(G). By similar
arguments as in the proof of Theorem 2.1, we may assume that every vertex v ∈ Vi with
i > 1 has upward edges to every part V1, . . . , Vi−1.

Just as in the proof of Theorem 2.1, we start from a labelling ℓ of G assigning label 1
to all edges. We then consider the vertices of Vk, Vk−1, . . . , V3 following that order and
modify the labels of their upward edges so that certain products are obtained. Eventually,
we will handle the edges joining the vertices in V1 and V2 so that additional conditions are
met to make sure that only particular conflicts remain.

During a first modification phase, we aim at having the vertices verifying the following:

• v ∈ V1: 1-monochromatic or 2-monochromatic;

• v ∈ V2: 1-monochromatic or 3-monochromatic;

• v ∈ V3: bichromatic, 2-degree 1, and even {2, 3}-degree;

• v ∈ V4: bichromatic, 3-degree 2, and odd {2, 3}-degree;

• v ∈ V5: bichromatic, 2-degree 2, and even {2, 3}-degree;

• ...

• v ∈ V2n, n ≥ 3: bichromatic, 3-degree n, and odd {2, 3}-degree;

• v ∈ V2n+1, n ≥ 3: bichromatic, 2-degree n, and even {2, 3}-degree;

• ...

We note that if we can produce a 3-labelling with the vertex properties above, then
the only possible conflicts would be along edges uv such that u ∈ V1, v ∈ V2, and both
u and v are 1-monochromatic. Indeed, two vertices u and v such that u ∈ V1 ∪ V2 and
v ∈ V3∪· · ·∪Vk cannot be in conflict since monochromatic vertices and bichromatic vertices
cannot be in conflict. Two vertices u and v with u ∈ V2n and v ∈ V2n′+1 for n ≥ 2 and
n′ ≥ 1 cannot be in conflict since vertices with different {2, 3}-degrees cannot be in conflict.
Finally, two vertices u and v with u ∈ V2n+p and v ∈ V2n′+p for n ≥ 2, n′ ≥ 3 (n 6= n′) and
p ∈ {0, 1} cannot be in conflict since bichromatic vertices can only be in conflict if they
have the same 2-degree and 3-degree.

Let us now describe how to modify ℓ so that the conditions above are met. We consider
the vertices of Vk, . . . , V3 following that order, from bottom to top, and modify labels
assigned to upward edges. An important condition we will maintain, is that every vertex
in an odd part V2n+1 (n ≥ 1) has all its downward edges (if any) labelled 3 or 1, while
every vertex in an even part V2n (n ≥ 2) has all its downward edges (if any) labelled 2
or 1. Note that this is trivially verified for the vertices in Vk, since they have no downward
edges.

Assume we are currently considering a vertex v in, say, an even part V2n with n ≥ 2.
By the hypothesis above, all downward edges of v are labelled 2 or 1. Since all upward
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edges of v are currently labelled 1, the 3-degree of v is currently 0. Let us consider each of
the n parts V2, V3, V5, . . . , V2n−1. Recall that v has a neighbour ui in each of these parts.
Then we modify the label of each such edge vui so that it becomes 3. This way, note that
the 3-degree of v becomes exactly n, as required. Note also that we do not spoil the desired
downward condition for the ui’s. Now, depending on how many downward edges of v are
labelled 2, we claim that we can always turn to 2 the label of one or two upward edges
so that v gets bichromatic with odd {2, 3}-degree as desired. Indeed, if n ≥ 3, then we
can freely change to 2 the label of an upward edge of v to each of V4 and V1 to get v as
desired. If n = 2, then note that v might be missing at most one incident edge labelled 2.
Indeed, if, on the one hand, an odd number of downward edges of v are labelled 2, then
v is already bichromatic with odd {2, 3}-degree. On the other hand, if an even number of
downward edges of v are labelled 2, then v currently has even {2, 3}-degree, in which case
we make it odd by changing to 2 the label of an upward edge to V1. This way, note that v
has to become bichromatic.

Similar arguments hold in the case when v lies in an odd part V2n+1 with n ≥ 1. Again,
all downward edges of v are labelled 3 or 1, while all upward edges are currently labelled 1.
We change to 2 the label of an upward edge of v to each of the n parts V1, V4, V6, . . . , V2n so
that v has 2-degree n. Now, we can make sure that v is bichromatic with even {2, 3}-degree
in the following way. If n ≥ 2, then we can change to 3 the label of an upward edge to V2n

and/or V2, if needed. If n = 1, then note that v currently has 2-degree 1. If an odd number
of downward edges are labelled 3, then v is already bichromatic with even {2, 3}-degree.
If an even number of downward edges are labelled 3, then we can change to 3 the label of
an upward edge to V2 to achieve the same conclusion.

By arguments above, only adjacent 1-monochromatic vertices in V1 and V2 can be
in conflict. More precisely, recall that the vertices of V1 are 1-monochromatic or 2-
monochromatic, while the vertices of V2 are 1-monochromatic or 3-monochromatic. An-
other important property of the vertices in V3, . . . , Vk is that none of them has both 3-
degree 1 and odd {2, 3}-degree at least 3 (bichromatic). In particular, assuming that, later
on, we only turn vertices in V1 into this special type, no conflict can involve special vertices.

As in the proof of Theorem 2.1, let us define H as the set of components induced by
the upward edges (all of which are currently labelled 1) of the 1-monochromatic vertices of
V2. If H has no component on more than two vertices, then we are done. So let us focus
on H ∈ H, a component with order at least 3. Here as well, no vertex of H is adjacent to
a vertex in another component of H, so we can again freely deal with H without minding
the other components. If no two 1-monochromatic vertices in H are adjacent, then we are
done with H. So let us assume some adjacent vertices of H are 1-monochromatic, and some
of these 1-monochromatic vertices actually have at least two 1-monochromatic neighbours
(as otherwise we would be done as well).

We start by performing the following process:

1. As long as H has a 1-monochromatic vertex v ∈ V (H) ∩ V2 with at least two 1-
monochromatic neighbours u1, u2 ∈ V (H) ∩ V1, we do the following:

• If v has a 2-monochromatic neighbour u′ in V1 with d2(u
′) = 2, then we set

ℓ(u′v) = 3.

• Otherwise, we set ℓ(vu1) = ℓ(vu2) = 2.

By this process, every considered vertex v of V2 becomes either 3-monochromatic (first
case), or 2-monochromatic with 2-degree 2 (second case). In the first case, all neighbours of
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v in V1 are special, 1-monochromatic or 2-monochromatic, thus not in conflict with v. In the
second case, the neighbours of v in V1 are all special, 1-monochromatic or 2-monochromatic
with 2-degree different from 2, thus not in conflict with v.

We go on with the following process:

2. As long as H has a 1-monochromatic vertex u ∈ V (H) ∩ V1 with at least two 1-
monochromatic neighbours v1, v2 ∈ V (H) ∩ V2, we do the following:

• If u does not have a 3-monochromatic neighbour in V2, then we set ℓ(uv1) =
ℓ(uv2) = 3.

• Otherwise, we do nothing.

Note that by repeatedly applying the first of these steps, no new conflict arises. This
is because all 3-monochromatic vertices we create in V (H) ∩ V2 have 3-degree 1, while
all 3-monochromatic vertices we create in V (H) ∩ V1 have 3-degree 2 while all their 3-
monochromatic neighbours have 3-degree 1.

Let us now have a look at the subgraph B of H induced by its remaining 1-monochromatic
vertices. Let us more particularly focus on the components of B. If no such component has
order greater than 2, then we are done. So let us focus on one component B with order at
least 3. Since previous Steps 1 and 2 have been performed as long as possible, B must be
a star with center u ∈ V1 and at least two leaves v1, v2 in V2, and u has 3-monochromatic
neighbours in V2.

Consider now the subgraph C of G obtained from the vertices in B by adding the
incident edges to their 3-monochromatic neighbours in V2. Note that this graph might
have several components; let us focus on one of these components, say C. By construction,
all vertices in V (C)∩V1 are 1-monochromatic. Also, C contains a 1-monochromatic vertex
u ∈ V1 with two 1-monochromatic neighbours v1, v2 ∈ V2. Note furthermore that v1 and
v2 have degree 1 in C (as otherwise Step 1 above could have been applied once more). We
now modify the labelling using the following analogue of Claim 2.6 (we omit a proof, as it
would go along the exact same lines):

Claim 3.2. For every vertex v in any part Vi ∈ {V1, V2} of C, we can relabel the edges
of C with 1 and 3 so that d3(u) is odd for every u ∈ Vi \ {v}, and d3(u) is even for every
u ∈ V3−i. Similarly, we can relabel the edges of C with 1 and 3 so that d3(u) is even for
every u ∈ Vi \ {v}, and d3(u) is odd for every u ∈ V3−i.

We now use Claim 3.2 as follows:

• If |V (C)∩V2| is even, then, by Claim 3.2, we can relabel the edges of C with 1 and 3
so that all vertices in V (C) ∩ V1 have even 3-degree, while all vertices in V (C) ∩ V2

have odd 3-degree.

• If |V (C) ∩ V2| is odd, then the same conclusion can be achieved in the subgraph
C − v2, since |V (C − v2) ∩ V2| is even.

By this modification, note that any two adjacent 3-monochromatic vertices of C have
their 3-degrees being of distinct parity, and are thus not in conflict. Recall in particular
that, in earlier Step 2 above, all 3-monochromatic vertices created in V1 have even 3-degree
exactly 2 while all 3-monochromatic vertices created in V2 have odd 3-degree exactly 1.
Similarly, in earlier Step 1 above, every created 3-monochromatic vertex was created in V2

and has odd 3-degree exactly 1. Thus, no conflict can involve 3-monochromatic vertices.
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Finally, we note that, in the process above, the only possible remaining conflict is
actually in the second case, along the edge uv2 since v2 remains 1-monochromatic while u

might have 3-degree 0, and thus be 1-monochromatic as well.

To finish off this section, let us mention that the labelling scheme developed in the proof
of Theorem 3.1 has another implication for the product version of the 1-2 Conjecture,
raised by Przybyło and Woźniak in [8]. The 1-2 Conjecture asks whether every graph
has an s-proper 2-total-labelling ℓ, i.e., a 2-total-labelling (assigning labels to edges and
vertices) so that σt

ℓ(u) 6= σt
ℓ(v) for every edge uv, where σt

ℓ(w) = σℓ(w) + ℓ(w) for every
vertex w. In other words, in this type of labelling we are also allowed to locally alter vertex
sums (via vertex labels) without spoiling neighbouring ones.

In [9], Skowronek-Kaziów also introduced and studied the product version of the 1-
2 Conjecture. By adapting existing proofs for the sum version of the 1-2 Conjecture,
she mainly proved that every graph admits a p-proper total-labelling assigning labels in
{1, 2, 3} to the edges and labels in {1, 2} to the vertices. By modifying the last stage of
our labelling scheme in the proof of Theorem 3.1, we get another proof of that result.

Theorem 3.3. Every graph G admits a p-proper total-labelling assigning labels in {1, 2, 3}
to the edges and labels in {1, 2} to the vertices.

Proof. Mimic the proof of Theorem 3.1, until the last stage, i.e., to the point where
vertices in V1 are 1-monochromatic or 2-monochromatic, while the vertices in V2 are 1-
monochromatic or 3-monochromatic. Assign label 1 to all vertices, so that the products
are not altered. To get a total-labelling as desired, we get rid of all remaining conflicts by
just making sure that all vertices of V1 become 2-monochromatic. To that end, we simply
change to 2 the label of every vertex in V1.

4. A conjecture for 2-labellings with restricted product conflicts

From a more general perspective, according to Theorem 3.1, for every graph G we can
design a 3-labelling such that G[Sx] is a forest for every x ≥ 1. One can naturally wonder
whether 2-labellings are powerful enough to achieve the same goal. As we did not manage
to come up with any obvious reason why this could be wrong, we raise:

Conjecture 4.1. Every graph G can be 2-labelled so that G[Sx] is a forest for every x ≥ 1.

It is worth noting that Conjecture 4.1 matches a similar conjecture raised in [4] by
Gao, Wang and Wu in the sum context. They notably proved that the sum version of
Conjecture 4.1 holds for graphs with maximum average degree at most 3 and series-parallel
graphs. In what follows, as support, we prove Conjecture 4.1 (sometimes in an actually
stronger form) for three classes of graphs: complete graphs, bipartite graphs, and subcubic
graphs.

Theorem 4.2. Every complete graph Kn admits a 2-labelling such that one of the Sx’s
induces an edge, while all other Sx’s are independent sets.

Proof. We give an iterative labelling scheme which, starting from K2, yields a desired
2-labelling for larger and larger complete graphs Kn. To that end, we need a stronger
hypothesis, namely that for every complete graph Kn there is a desired 2-labelling with
the additional requirement that either there is no vertex incident only to edges labelled 1,
or there is no vertex incident only to edges labelled 2.
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This is true for K2: by assigning label 1 to the only edge, we get a 2-labelling where
S1 induces an edge (while there are no other Sx’s) and no vertex is incident only to edges
labelled 2. Assume now our stronger claim is true for Kn−1 for some n ≥ 3, and consider
a 2-labelling of Kn−1, with vertex set {v1, . . . , vn−1}, obtained by induction (thus with the
desired properties). Let us extend this labelling to the incident edges of a newly-added
vertex vn joined to all vertices in {v1, . . . , vn−1}, by assigning label 1 to all edges incident to
vn if no vertex in {v1, . . . , vn−1} is incident only to edges labelled 1, or by assigning label 2
to all edges incident to vn if no vertex in {v1, . . . , vn−1} is incident only to edges labelled 2.
Note that the 2-degree of all vertices in {v1, . . . , vn−1} grows by the same amount, either 0
or 1. Thus, no new conflict involving two vertices in {v1, . . . , vn−1} arises. Now, regarding
vn, its 2-degree is either the smallest possible (0) or the largest possible (n−1) for a vertex
with degree n−1. By our choice of making vn incident to either only edges assigned label 1
or only edges assigned label 2, we deduce that vn cannot be involved in a conflict. Thus,
there remains only one conflict, and there is either no vertex in {v1, . . . , vn} incident only
to edges labelled 2, or no vertex in {v1, . . . , vn} incident only to edges labelled 1. This
concludes the proof.

Theorem 4.3. Every connected bipartite graph G admits a 2-labelling such that one of the
Sx’s induces at most one star and isolated vertices, while all other Sx’s are independent
sets.

Proof. Let v∗ be any vertex of G. From v∗, we get a partition V0 ∪ · · · ∪ Vd of V (G) where
each Vi contains the vertices at distance i from v∗. Note that V0 = {v∗}. Since G is
bipartite, none of the Vi’s contains an edge. Furthermore, for every edge uv we have u ∈ Vi

and v ∈ Vi+1 for some i. A part Vi is said even if i is even, while Vi is said odd otherwise.
We produce a 2-labelling ℓ of G where every vertex in an even Vi different from V0 has

even 2-degree, while every vertex in an odd Vi has odd 2-degree. Note that the existence
of ℓ proves the claim, since, by such a labelling, v∗ is the only vertex from an even Vi that
can be involved in conflicts. In particular, if one of the Sx’s induces a graph containing a
star, then that star must be centered at v∗.

We consider the vertices of G different from v∗ successively, starting from those in the
deepest Vi’s, and, as going up, finishing with those in V1. In the course of this process, let
us consider v ∈ Vi, a vertex in some Vi all of whose incident edges going to Vi+1 (if any)
have been labelled. By definition of the Vi’s, there is at least one edge incident to v going
to Vi−1. We assign label 2 to every such edge going to Vi−1, but maybe to one of them (to
which we instead assign label 1) so that the 2-degree of v is of the desired parity.

Once all vertices different from v∗ have been treated that way, we end up with ℓ having
the desired properties.

Theorem 4.4. Every subcubic graph G admits a 2-labelling such that all Sx’s induce a
forest.

Proof. We prove the claim by induction on |V (G)| + |E(G)|. As the claim can easily be
proved when G is small, we focus on proving the general case, which we do by considering
the possible cases for the minimum degree δ(G) of G.

• First assume δ(G) = 1, and let v be a degree-1 vertex of G. Let us consider G′ = G−v.
By the induction hypothesis, there is a 2-labelling of G′ which is as desired. We extend
this labelling to G by assigning label 1 to the edge incident to v. This way, note that
the resulting labelling is as desired, since G′[S1] gets added a pending or isolated
vertex.
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• Next assume δ(G) = 2, and let u be a degree-2 vertex with neighbours v and w of
degree at least 2. We here consider G′ = G − u, which has a 2-labelling with the
desired properties. Let us first try to extend this labelling to G by assigning label 1 to
uv and uw. Note that if the desired properties are not met, then it must be because
G′[S1] has a path from v to w. In particular, both v and w have product 1, and each
of these two vertices is adjacent, in G′[S1], to another vertex. Then, assign label 2 to
uv and label 1 to uw. Now the resulting labelling of G must be as desired, since this
removed v from G′[S1], and added a pending or isolated path of length 2 to G′[S2].
This is because G is subcubic, which, at this point, implies that v has at most one
neighbour in S2.

• Lastly assume δ(G) = 3, i.e., G is cubic, and consider u a degree-3 vertex with
neighbours v,w, x of degree 3. We consider G′ = G − u, which, again, has a 2-
labelling with the desired properties. If we do not obtain a desired labelling of G

when assigning label 1 to uv, uw and ux, then it must be because, say, v and w

have product 1 and are joined by a path in G′[S1]. By arguments above, due to
the bounded maximum degree of G, if we do not obtain a desired labelling when
assigning label 2 to uv and label 1 to uw and ux, then this must be because x has
product 2, and G′[S2] contains a path from x to a neighbour of v. Then we deduce
that, by the labelling of G′, in G′ the two remaining neighbours of v have product 1
and 2, and x has a neighbour with product 2. Then note that we are done when
assigning label 2 to uv and ux, and label 1 to uw. Indeed, this removes v from G′[S1]
and x from G′[S2], adds to G′[S2] a pending or isolated edge (attached to v), and
adds to G′[S4] a pending or isolated path of length 2 (attached to u).

This concludes the proof.

References

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, B.A. Reed. Vertex colouring edge parti-
tions. Journal of Combinatorial Theory, Series B, 94(2):237-244, 2005.

[2] O. Baudon, J. Bensmail, T. Davot, H. Hocquard, J. Przybyło, M. Senhaji, É. Sopena,
M. Woźniak. A general decomposition theory for the 1-2-3 Conjecture and locally
irregular decompositions. Discrete Mathematics and Theoretical Computer Science,
21(1), 2019, #2.

[3] J.A. Gallian. A dynamic survey of graph labeling. Electronic Journal of Combinatorics,
6, 1998.

[4] Y. Gao, G. Wang, J. Wu. A Relaxed Case on 1-2-3 Conjecture. Graphs and Combi-
natorics, 32:1415–1421, 2016.

[5] M. Kalkowski, M. Karoński, F. Pfender. Vertex-coloring edge-weightings: towards the
1-2-3 Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[6] M. Karoński, T. Łuczak, A. Thomason. Edge weights and vertex colours. Journal of
Combinatorial Theory, Series B, 91:151–157, 2004.

[7] J. Przybyło. The 1-2-3 Conjecture almost holds for regular graphs. Preprint, 2018.
Available online at https://arxiv.org/abs/1809.10761.

14



[8] J. Przybyło, M. Woźniak. On a 1,2 Conjecture. Discrete Mathematics and Theoretical
Computer Science, 12(1):101-108, 2010.

[9] J. Skowronek-Kaziów. Multiplicative vertex-colouring weightings of graphs. Informa-
tion Processing Letters, 112(5):191-194, 2012.

[10] K. Szabo Lyngsie. On neighbour sum-distinguishing {0, 1}-weightings of bipartite
graphs. Discrete Mathematics and Theoretical Computer Science, 20(1), 2018, #21.

[11] B. Vučković. Multi-set neighbor distinguishing 3-edge coloring. Discrete Mathematics,
341:820-824, 2018.

[12] Y. Wu, C.-Q. Zhang, B.-X. Zhu. Vertex-coloring 3-edge-weighting of some graphs.
Discrete Mathematics, 340:154-159, 2017.

15


