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Abstract

Inspired by the pioneering work of H. Yilmaz, we propose in this paper a mathematical
formalization of the relativistic nature of color perception that relies on a single axiom: the
space of perceived colors is the positive cone of a three dimensional formally real Jordan
algebra. If this Jordan algebra is taken to be the spin factor R ⊕ R2, then we get a natural
description of a perceived color as a real positive magnitude, which encodes an information
related to luminance, together with a chromatic vector, that carries an information related
to hue and saturation. We show that chromatic vectors follow the relativistic addition rule,
which turns out to be equivalent with the use of the Hilbert metric to measure chromatic
differences. This metric is shown to be compatible with experimental data. Up to authors’
knowledge, this work proofs that color perception is the first relativistic phenomenon not
related to movement ever discovered in nature.

1 Introduction

In 1962, H. Yilmaz proposed in [5] a description of color perception that shown analogies with
Einstein’s special theory of relativity. Although very original and ahead of his time, Yilmaz’s
analysis was based on quite questionable experimental results. In this paper, we prove that a
relativistic theory of color perception can be developed in a well-defined mathematical context,
without the necessity to resort to any empirical data.

Our working framework is based on a single assumption, called trichromacy axiom, in which
perceived colors are assumed to be elements of the positive cone of a formally real Jordan algebra
of dimension 3. Thanks to the classification of such algebras, the only non-trivial one satisfying the
trichromacy axiom is the spin factor R⊕ R2, or its naturally isomorphic counterpart represented
by H(2,R), the Jordan algebra of 2× 2 real symmetric matrices.

The interplay between these Jordan algebras has major consequences for our theory. On one
side, the positive cone of H(2,R) contains density matrices that reveal a hidden link between color
perception and algebraic quantum theories. On the other side, the positive cone of R⊕R2 allows
us to describe perceived colors through positive real magnitudes α together with chromatic vectors
v satisfying the relativistic addition rule. Moreover, we prove that the Hilbert metric is the only
perceptual color distance compatible with the relativistic behavior of chromatic vectors.

The structure of the paper is as follows: in section 1, after a brief historical introduction, we
introduce a suitable mathematical framework for the formalization of Yilmaz’s results (quoted in
the appendix), describing its assets and drawbacks. In section 2 we introduce the quantum setting
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for the study of color perception and Hering’s opponency. We start section 3 by introducing a
novel nomenclature and we use it to set up the proof of the relativistic behavior of chromatic
vectors, which turns out to single out the Hilbert metric to measure chromatic differences. We
end section 3 by showing that this metric is compatible with experimental data. Finally, in section
4, we show how to interpret the third, most puzzling, result of Yilmaz’s experiments in terms of
relativistic aberration and boost maps. Conclusions and perspectives future works will end the
paper.

1.1 On color perception

The first noticeable mathematical contribution on color perception dates back to Newton and his
celebrated 1704 book “Opticks” [1]. Newton noticed that the set of perceived colors has the struc-
ture of a cone, which has been proven to be convex and embedded in a linear space of dimension
3 (for trichromatic vision) by Grassmann one century and a half later [2]. In the same years,
Riemann pointed out, in his famous 1854 Habilitation lecture [3] that the only simple examples of
abstract manifolds that one can practically encounter are those of positions of perceived objects
and colors. Finally, in 1920, Schrödinger [4] recasted the previous findings on color perception
in a coherent set of axioms that can be resumed in a modern language by saying that the space
of perceived colors has the structure of a regular convex cone of dimension 3. Schrödinger also
emphazised the importance of the ‘infinitesimal line element’ to compute color differences.

In the same years, the recently formed International Commission on Illumination, or CIE, for
“Commission Internationale de l’Éclairage”, concerned by the expanding industrial needs, started
a more pragmatically and less mathematically rigorous approach to model color perception. This
marked a significant bifurcation with respect to the analysis of Schrödinger and his predecessors
and eventually led to the organisation of perceived colors into empirical spaces with several ad-
hoc parameters, whose validity is limited to very restrictive conditions, almost never verified by
natural visual scenes. The influence of CIE on color spaces has been so pervasive that we have
to wait until 1962 to find a significant alternative to CIE recommendations. To the best of our
knowledge, Yilmaz’s paper [5] seems to be the first, and the only contribution that investigates
the geometry of color perception from the point of view of relativity. The main aim of its author
was to obtain colorimetric Lorentz transformations by interpreting mathematically the results of
three basic experiments.

1.2 Yilmaz experiments

In order to analyse the results of color matching experiments, Yilmaz considers the following space:

C = {(α, x, y) ∈ R3, Σ2 − ‖v‖2 ≥ 0, α ≥ 0} , (1)

where v = (v1, v2) = (x/α, y/α) with α > 0; if α = 0, then also v is null. A color1 c of C can
be viewed both as a point of R3 with coordinates (α, x, y) and as a couple (α,v), where α is a
positive real number and v is a vector of R2 of Euclidean norm v = ‖v‖ less or equal to Σ. The
norm v is the saturation of the color c, the angle defined by φ = arctan(y/x) its hue, and the
positive real α its lightness. The existence of a positive real Σ, which plays the role of a limiting
saturation ‘reached by spectral colors’, is one of the fundamental assumptions of Yilmaz.

Notice that the definition of saturation given above is the analogue of speed (the magnitude
of the velocity vector) in mechanics, thus it seems coherent to interpret the limiting saturation Σ
as an analogue of the light speed.

Roughly speaking, the purpose of the three experiments described in [5] is to show that:

1. color perception is a relativistic phenomenon;

2. the limiting saturation is constant under ‘illuminant changes’;

1To avoid all possible misleading interpretation, we underline that, throughout the whole paper, we use the word
color to mean a perceived color.
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3. there exists a colorimetric aberration effect which is the analogue of the relativistic one.

It is worth mentioning that Yilmaz does not use any information related to a hypothetical invariant
quadratic form. The goal of the third experiment is precisely to bypass the introduction of an
invariant metric whose existence is very difficult to justify experimentally.

In order to strengthen and formalize the analogy between color perception and relativity,
setting up a suitable nomenclature and notation is an essential step. For this reason, we introduce
here some complementary definitions borrowed from mechanics and adapted to our framework.

Without any further specification, we consider a color c as an abstract coordinate-free element
of the space C. This interpretation is the exact analogue to what we do in Galileian mechanics
when we consider the position as an abstract element of the space R3 without coordinates.

A coordinate system can be introduced on C by considering an illuminant2 which allows us to
identify c and to perform measurements on it, for this reason, here we define an illuminant to be
a reference frame I of the space C. It is well-known, see e.g. [21, 18], that when an observer is
embedded for a sufficient time in a visual scene illuminated by I, he/she will perceive the surface
of an object characterized by non-selective reflectance properties without a color saturation. In
this case, we call that observer adapted to I. This consideration naturally leads us to call any
couple o = (c, I), such that the color c ∈ C has zero saturation in the reference frame I, an observer
adapted to an illuminant I, or simply an observer from now on. Given the analogy between the
saturation of a color and the speed of a velocity vector for a mechanical system, an observer
o = (c, I) is characterized by the fact that the color c appears ‘at rest’ in the reference frame I.

Carrying on the analogy with mechanics, we will call o1 = (c1, I1) and o2 = (c2, I2) two inertial
observers. Given i, j = 1, 2, cj will be described by oi with a color cij = (α,vij), for a certain

vector vij such that ‖vij‖ ≤ Σ and, by definition of observer, cii = (α,0), being cii the coordinate
representation of ci w.r.t. Ii, i = 1, 2.

Given two inertial observers o1 and o2, we denote by (α1, x1, y1) the coordinates of the reference
frame I1 and by (α2, x2, y2) the coordinates of the reference frame I2.

We refer to [5], or to the appendix, for the description of the three experiments under discussion,
in which Yilmaz considers only the case of one non zero component of the v vector: vc1 = (vc1 , 0),
vc2 = (vc2 , 0), and v12 = (v12, 0).

The result of the first experiment can be expressed mathematically by the following equalities:

vc12 = v12, vc21 = −v12 . (2)

Since, for i, j = 1, 2, i 6= j, the saturation of ci is null in the reference frame Ii and different
from zero in the reference frame j, eq. (2) clearly shows that color perception is a relativistic
phenomenon.

Also the second experiment involves two inertial observers o1 = (c1, I1) and o2 = (c2, I2), both
describing the same color c. The result of the second experiment can be summarized as follows:

vc1 = (Σ, 0) =⇒ vc2 = (Σ, 0) , (3)

i.e., colors with limiting saturation are perceived as such by all inertial observers.
As already mentioned, the third experiment is meant to mimic the relativistic aberration effect.

Once again, it involves two inertial observers o1 and o2, both observing the same color c, different
from the previous one. The result of the third experiment is the following:

vc1 = (0,Σ) =⇒ vc2 = (−Σ sinϕ,Σ cosϕ) , (4)

with sinϕ = v12/Σ. As we will see, this experiment is crucial for the derivation of the colorimetric
Lorentz transformations.

2More precisely, we should call it a broadband illuminant, i.e. a light source extended over the entire visible
spectrum. The reason is that, if we consider a narrow-band illuminant, the so-called Helson-Judd effect enters into
play and an observer will experience an incomplete adaptation, see e.g. [21]. For the sake of simplicity, we will
implicitly consider an illuminant as broadband without further specifications.
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1.3 Derivation of colorimetric Lorentz transformations

We explain now how to obtain the colorimetric Lorentz transformations from eqs. (2), (3) and
(4). In [5] the coordinate change between o1 and o2 is supposed to be linear. It is easy to check
that taking into account the specific choices made by Yilmaz, the coordinate change is given by: α2

x2

y2

 =

 a11 a12 0
a21 a22 0
0 0 1

 α1

x1

y1

 . (5)

Consequently, we have:

x2

α2
=
a21α1 + a22x1

a11α1 + a12x1
,

x1

α1
=
−a21α2 + a11x2

a22α2 − a12x2
. (6)

The two equalities of eq. (2) are equivalent to:

a21

a11
= −v12,

−a21

a22
= v12 . (7)

This shows that: a11 = a22 and a21 = −v12a22.
The result of the second experiment, eq. (3), is equivalent to:

Σ =
a21 + a22Σ

a11 + a12Σ
, (8)

which gives: a12 = −(v12a22)/Σ2.
From the third experiment, eq. (4), we have:

− tanϕ =
a21α1 + a22x1

y1
=
a21

Σ
. (9)

Since sinϕ = v12/Σ, this implies:

a22 =
1√

1− (v12/Σ)2
. (10)

Finally:  α2

x2

y2

 =


1√

1−(v12/Σ)2
−v12/Σ2√
1−(v12/Σ)2

0

−v12√
1−(v12/Σ)2

1√
1−(v12/Σ)2

0

0 0 1


 α1

x1

y1

 . (11)

It is worth noticing that the derivation of these colorimetric Lorentz transformations proposed
by Yilmaz relies only on information given by the v-component of colors3, the only one appearing
in eqs. (2), (3) and (4).

1.4 Towards a relativistic theory of color perception

Without calling into question the great originality of Yilmaz’s ideas and the relevance of his results,
we deem necessary to underline some issues about the approach that we have reported above. As
mentioned before, the derivation of the colorimetric Lorentz transformations is essentially based
on the following assumptions:

1. the space of perceived colors is the cone C, and, in particular, there exists a limiting saturation
Σ;

2. the coordinate changes between inertial observers are linear transformations;

3In the sequel we will emphasize the crucial role of these chromatic vectors.
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3. the results obtained from the three experiments are considered as valid.

However, no experimental result, nor apparatus description is available in [5] and this naturally
raises doubts about the actual implementation of the three experiments. Furthermore, while the
results of first two seem convincing, the outcome of the third seems completely illusory. In fact,
Yilmaz defines the limiting saturation of a color c = (α,v) ∈ C as a value Σ of ‖v‖ that cannot be
perceptually matched with that of any Munsell chip, thus, while this definition permits to identify
the limiting saturation of a color, it does not allow its measurement. As a consequence, eq. (4),
with its precise analytical form, seems to be an ad-hoc formula used to single out the colorimetric
Lorentz transformations (11), more than the real outcome of a psycho-physical experiment.

It may be tempting to adopt a more conventional approach to obtain the desired transforma-
tions starting, for instance, from the fact that there exists a limiting saturation invariant under
observer changes and that the color space is isotropic and homogeneous. But to go further, it is
necessary to introduce an analogue of the Minkowski metric, which Yilmaz precisely circumvents.
One may choose to follow the standard path used in special relativity, see e.g. [19, 20], to justify
the existence of such a metric. However, while the assumptions that go along with this approach
rely on a solid experimental basis for what concerns the Minkowski spacetime, they are far from
being either obvious or simple to be tested for the space of perceived colors. For this reason, we
consider a better solution to follow less conventional, but fully equivalent, approaches to special
relativity as, e.g., that of the remarkable Mermin’s paper [6], whose main focus is the Einstein-
Poincaré velocity addition law and not the Lorentz transformations. This alternative path can
be considered as a mathematical analogue of Yilmaz’s experimental approach to the relativity of
color perception and it is in this sense that we consider the present work to be a formalization of
his groundbreaking ideas ahead of his time.

1.5 Outline of the paper

Section 2 is devoted to the geometric structure of the space of perceived colors. We resume the
main results of [7] and [8]. The only assumption we make is formulated in the form of a trichromacy
axiom which is based on the axioms of Schrödinger. We recall, for instance, how to recover the
color opponency from a quantum point of view. In section 3 we explain how to obtain Einstein-
Poincaré addition law for chromatic vectors in a very simple and natural way. This allows, in
particular, to justify that the relevant metric on the space of chromatic vectors is the Hilbert
metric, which is proven to be confirmed by psychovisual measurement data reported in [16] and
[17]. We show in section 4 how chromatic states generate one-parameter subgroups of Lorentz
boosts. By studying the action of these boosts of the space of chromatic vectors we recover the
colorimetric aberration effect from the sole trichromacy axiom.

2 The space of perceived colors

This section is devoted to recall some basic information about the geometry of the space of
perceived colors. We refer to [7], [8] and [9] for more details and references, especially for a
description of the seminal work of Resnikoff [10].

2.1 The thrichromacy cone

We are going to introduce our only axiom for the space of perceived colors. The path that
leads to this axiom can be succinctly summarized as follows. The classical, and well established,
colorimetric experiences of Newton, Grassmann and Helmholtz have been resumed by Schrödinger
in a set of axioms that can be mathematically translated by stating that the space of perceived
colors by a standard trichromatic observer is a regular convex cone of real dimension 3. In [10],
Resnikoff analyzed the consequences of the hypothesis of homogeneity, i.e. of the existence of a
transitive group action, on this space. He also had the remarkable idea of recasting this assumption
in the setting of Jordan algebras, but he did not fully exploit the powerful results available from
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the general theory of these algebras. This was done by Berthier in [7] and the result is the following
axiom.

Trichromacy axiom [7]: – The space of perceived colors is the positive cone4 of a formally
real Jordan algebra of real dimension 3.

It can be shown that such a Jordan algebra is isomorphic either to the sum R ⊕ R ⊕ R or to
the Jordan algebra H(2,R) of 2 by 2 symmetric matrices with real entries [11]. The positive cone
of the former is the product R+ × R+ × R+. When equipped with the so-called Helmhotz-Stiles
metric:

ds2 =

3∑
i=1

ai (dξi/ξi)
2
, (12)

ai, ξi ∈ R+, it is the metric space used in standard colorimetry. Since this space has been exten-
sively studied, in the sequel we will concentrate only on the second possibility which, as we will
see, has a much richer structure.

A crucial remark is that H(2,R) is isomorphic, as a Jordan algebra, to the spin factor R⊕R2

whose Jordan product is defined by:

(α1 + v1) ◦ (α2 + v2) = (α1α2 + 〈v1,v2〉+ α1v2 + α2v1) , (13)

where α1 and α2 are reals, v1 and v2 are vectors of R2 and 〈 , 〉 denotes the Euclidean scalar
product on R2. An explicit isomorphism of Jordan algebras is given by:

χ : (α+ v) ∈ R⊕ R2 7−→
(
α+ v1 v2

v2 α− v1

)
∈ H(2,R) , (14)

where v = (v1, v2).
The positive cone of the Jordan algebra H(2,R) is the set of positive semi-definite 2 by 2

symmetric matrices with real entries. Via the isomorphism χ it corresponds to the positive cone
of the spin factor R⊕ R2. This latter is given by:

C = {(α+ v) ∈ R⊕ R2, α2 − ‖v‖2 ≥ 0, α ≥ 0} . (15)

In the following, C is called the trichromacy cone. Notice that the trichromacy cone defined above
differs from the cone introduced in (1) by the fact that R⊕ R2 is endowed with a Jordan algebra
structure.

2.2 Trichromacy and quantum color opponency

H(2,R) is the algebra of observables of the real analogue of a qubit called a rebit. The states of
this quantum system are characterized by density matrices, i.e. positive elements of H(2,R) with
trace equal to 1. It is clear that a matrix of H(2,R) written as in eq. (14) is a density matrix if
and only if v = (v1, v2) ∈ D = {v ∈ R2, ‖v‖ ≤ 1} and α = 1/2. Two explicit expressions for the
density matrices are:

ρ(v) =
1

2

(
1 + v1 v2

v2 1− v1

)
, (16)

and

ρ(v) =
1

2
(Id2 + v · σ) =

1

2
(Id2 + v1σ1 + v2σ2) , (17)

where Id2 is the 2× 2 identity matrix and σ = (σ1, σ2), with:

σ1 =

(
1 0
0 −1

)
σ2 =

(
0 1
1 0

)
. (18)

4The positive cone of a formally real Jordan algebra A is the set of squares of A. According to the Koecher-
Vinberg theorem [11], this axiom is equivalent to requiring that the interior of the space of perceived colors to be a
symmetric cone of real dimension 3. Indeed, the trichromacy axiom differs from those of Schrödinger only by the
fact that a symmetric cone is self dual and homogeneous.
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If we consider the state vectors written in Dirac’s notation as the following set of ‘ket’:

|u1〉 =

(
1
0

)
|d1〉 =

(
0
1

)
|u2〉 =

1√
2

(
1
1

)
|d2〉 =

1√
2

(
−1
1

)
, (19)

then, by denoting with 〈 | = | 〉t the corresponding set of ‘bra’, we have:

σ1 = |u1〉〈u1| − |d1〉〈d1| and σ2 = |u2〉〈u2| − |d2〉〈d2| . (20)

This shows that the state vectors |u1〉 and |d1〉, resp. |u2〉 and |d2〉, are eigenstates of σ1, resp.
σ2, with eigenvalues 1 and -1.

The two matrices σ1 and σ2 are Pauli-like matrices that give a two direction opponency mecha-
nism. More precisely, representing (v1, v2) in polar coordinates (r, θ), with r ∈ [0, 1] and θ ∈ [0, 2π),
the density matrix ρ(v) can be written in three equivalent forms:

ρ(r, θ) =
1

2

(
1 + r cos θ r sin θ
r sin θ 1− r cos θ

)
, (21)

or:

ρ(r, θ) =
1

2
((1 + r cos θ)|u1〉〈u1|+ (1− r cos θ)|d1〉〈d1|

+(r sin θ)|u2〉〈u2| − (r sin θ)|d2〉〈d2|) ,
(22)

or, by noticing that σ1 = ρ(1, 0)− ρ(1, π) and σ2 = ρ(1, π/2)− ρ(1, 3π/2) and using eq. (17):

ρ(r, θ) = ρ0 +
r cos θ

2
(ρ(1, 0)− ρ(1, π)) +

r sin θ

2
(ρ(1, π/2)− ρ(1, 3π/2)) , (23)

where ρ0 = Id2/2 and ρ(r, θ) = ρ0 if and only if r = 0. A useful representation of the rebit states
is provided by the Bloch disk, see Fig. 2.2.

Figure 1: The Bloch disk of the rebit illustrating the opponency mechanism. The density matrix
ρ(1, π/4) is given by: ρ(1, π/4) = |1, π/4〉〈1, π/4| = (|u1〉 + |u2〉)(〈u1| + 〈u2|)/(2 +

√
2) . The

mixture (ρ(1, 0) + ρ(1, π/2))/2 is the density matrix: ρ(
√

2/2, π/4) = ρ0 + 1
4 (ρ(1, 0) − ρ(1, π)) +

1
4 (ρ(1, π/2)− ρ(1, 3π/2)).

The density matrices parameterized by r = 1, independently on θ ∈ [0, 2π), i.e. ρ(1, θ),
correspond to pure states. They are characterized by either the equation:

ρ(1, θ) ◦ ρ(1, θ) = ρ(1, θ) , (24)
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or, recalling that the von Neumann entropy of a generic density matrix ρ is defined as−Trace(ρ log ρ),
by:

− Trace(ρ(1, θ) log ρ(1, θ)) = 0 , (25)

which means that their von Neumann entropy is zero. These pure state density matrices are the
projector matrices:

ρ(1, θ) = |1, θ〉〈1, θ| , (26)

with |1, θ〉 = cos(θ/2)|u1〉 + sin(θ/2)|d1〉. The density matrix ρ0 that corresponds to the state of
maximal Von Neumann entropy is ρ0 = Id2/2 and it can be written as the mixture:

ρ0 =
1

4
ρ(1, 0) +

1

4
ρ(1, π) +

1

4
ρ(1, π/2) +

1

4
ρ(1, 3π/2) . (27)

Eq. (23) shows that every density matrix is the sum of the state of maximal entropy with two
other components that describe the opponency with respect to the two directions (ρ(1, 0), ρ(1, π))
and (ρ(1, π/2), ρ(1, 3π/2)). Given a density matrix ρ(r, θ), one can evaluate the contribution of
the opposition (ρ(1, 0), ρ(1, π)) given by σ1 by computing:

〈σ1〉ρ(r,θ) = Trace(ρ(r, θ) ◦ σ1) = r cos θ , (28)

and the same for the other direction. It is quite remarkable that the Block disk of Fig. 2.2 gives a
quantum analogue of the Hering disk that describes the color opponency mechanism resulting from
the activity of certain retinal neurons [12]. The matrix σ1 encodes the opposition red/green, while
the matrix σ2 encodes the opposition yellow/blue. We underline that this quantum justification
of the color opponency derives only from the trichromacy axiom when considering the algebra
H(2,R).

2.3 Colorimetric definitions

We introduce now some definitions that are used in the sequel. A perceived color c is an element
of the trichromacy cone C: c = (α + v) with α2 − ‖v‖2 ≥ 0 and α ≥ 0. The positive real α is
called the magnitude5 of c.

The case when c has magnitude α = 1/2 is special, in fact, as previously seen, thanks to the
isomorphism defined in eq. (14), c can naturally be associated to a density matrix representing
its state. For this reason, in the sequel, a color with magnitude 1/2 will be called a color state.
To emphasize that a perceived color c is a color state we add the subscript s, so that the symbol
cs will denote a color (1/2 + v), with ‖v‖ ≤ 1/2.

We can associate to any other color c with arbitrary magnitude α ≥ 0 a density matrix by
considering the projection obtained by dividing c with respect to twice its first component, i.e.
c/2α = (1/2 + v/2α), which belongs to D1/2 = {c ∈ C, α = 1/2}, the set of all perceived colors
whose magnitude is fixed to 1/2.

The vector vc ∈ D1/2 is called the chromatic vector of the color c because it carries only
information about the chromatic attributes of c and not about its magnitude.

By using eq. (16), we can associate a density matrix to every chromatic vector vc = (vc,1, vc,2) ∈
D1/2 simply by considering 2vc ∈ D, which allows us to write:

ρ(2vc) =
1

2

(
1 + 2vc,1 2vc,2

2vc,2 1− 2vc,1

)
. (29)

For every perceived color c ∈ C, the density matrix ρ(2vc) characterizes the chromatic state of c.
The difference between a color and a chromatic state is represented by the fact that, in the first
case, the density matrix associated to a color c with magnitude 1/2 contains all the information
about the state of c, magnitude included, which is not the case for a chromatic state, where the
magnitude α of c does not play any role.

5We prefer not to use the term lightness because of possible confusion. See for instance [13] for a discussion on
the meaning of this word.
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Two noticeable conditions about chromatic states can be singled out: the first is when the
density matrix ρ(2vc) describes a pure chromatic state, in this case, c ∈ C is said to be a pure
perceived color. This condition is equivalent to ‖vc‖ = 1/2, so that pure perceived colors are in
one-to-one correspondence with the points of the perimeter of the disk D1/2. The second noticeable
condition is when ρ(2vc) describes the state of maximal von Neumann entropy, in this case c ∈ C
is said to be an achromatic perceived color. Since the condition ρ(2vc) = ρ0 = Id2/2 is equivalent
to vc,1 = vc,2 = 0, it follows that the center of the disk D1/2 represents achromatic colors.

3 The addition law of chromatic vectors

This section is mainly devoted to deriving the Einstein-Poincaré addition law for chromatic vectors.
As a consequence, this allows us to endow coherently the space of chromatic vectors with the
Hilbert metric. We will show in 3.4 that this metric has a psychovisual counterpart.

3.1 Chromaticity descriptors: purities and quantities

For the sake of simplicity, we will consider only colors c whose chromatic vectors are of the form
vc = (vc, 0) with −1/2 ≤ vc ≤ 1/2. The two chromatic vectors v+ = (1/2, 0) and v− = (−1/2, 0)
are pure opponent chromatic vectors. Given a color c, its chromatic vector vc divides the segment
connecting v− and v+ (extremes excluded) in two parts, whose lengths are denoted by p−(c) and
p+(c), where:

p−(c) =
1

2
− vc =

1− 2vc
2

, (30)

will be called the − purity of c and

p+(c) = vc −
(
−1

2

)
=

1 + 2vc
2

, (31)

will be called the + purity of c. The sum of the − and + purity of c is 1, so vc can be written as
the convex combination of the pure opponent chromatic vectors v− and v+ with weights given by
p− and p+, respectively, i.e. vc = p−(c)v− + p+(c)v+.

The term ‘purity’ is particularly appropriate, not only because it involves the pure opponent
chromatic vectors, but also because it is reminiscent of the same term appearing in classical CIE
(Commission International de l’Éclairage) colorimetry. Indeed, also the definition of excitation
purity pe of a color c carries the information about its position on a straight line, precisely the
one joining the equienergy point w (achromatic color) of the CIE 1931 chromaticity diagram with
the so-called dominant wavelength of c (represented by a point belonging to the border of the
chromaticity diagram). See [22] for more details.

Let also denote

r(c) =
p−(c)

p+(c)
=

1− 2vc
1 + 2vc

, (32)

the purity ratio of the color c. We have:

vc =
1

2

(
p+(c)− p−(c)

p+(c) + p−(c)

)
. (33)

It is obvious that, given two colors c and c′, we have:

vc = vc′ ⇐⇒ p+(c) = p+(c′) ⇐⇒ p−(c) = p−(c′) . (34)

Two colors with the same purity differ only by their magnitude. For this reason, it is useful
to define a color attribute analogue to purity but which takes into account also the magnitude
information that has been lost after the projection on D1/2. This is done as follows: we define the
− quantity of a color c by:

q−(c) = 2αcp
−(c) = αc(1− 2vc) , (35)
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and similarly the + quantity by:

q+(c) = 2αcp
+(c) = αc(1 + 2vc) , (36)

where αc is the magnitude of c.
Of course, perceived colors with magnitude equal to 1/2, i.e. color states, are characterized by

the fact that their purities and quantities coincide.

3.2 Einstein-Poincaré addition law

Now, we discuss our main issue: how can we describe a given color c relatively to another given
color d? One intuitive way to do it is to compare q−(c) with q−(d) and q+(c) with q+(d), that is
to compare their − and + quantities. For this, we can consider the quantity ratios:

s+(c, d) =
q+(c)

q+(d)
and s−(c, d) =

q−(c)

q−(d)
. (37)

If we only know the numerical values of q±(c), q±(d) and not their explicit expressions (35) and
(36), then using the quantity ratio to compare c and d makes sense only if d is a color state. In
fact, and to take an example, if c and d are two perceived colors with the same chromatic vector,
the ratio, for instance, s+(c, d) does not give any information about the description of c relatively
to d since we do not know the magnitude of d.

Let us consider two arbitrary colors c and d whose magnitudes and chromatic vectors are
respectively αc and αd, and vc and vd, with vc > vd. We have:

s+(c, d) =
αcp

+(c)

αdp+(d)
and s−(c, d) =

αcp
−(c)

αdp−(d)
. (38)

In order to describe c with respect to d, we have to perform quantity ratios between c and ds, this
latter being the color state whose chromatic vector equals vd. We write:

s+(c, d) =
q+(c)

2αdp+(ds)
=

q+(c)

2αdq+(ds)
=

1

2αd
s+(c, ds) , (39)

and the same with the minus sign.
Now we arrive to the key definition of a chromatic vector, that we will denote with vcd, that

describes the color c with respect to d. In order to do that, we take inspiration from eq. (33) with
quantity ratios playing the role of purities, thus obtaining:

vcd =
1

2

(
s+(c, ds)− s−(c, ds)

s+(c, ds) + s−(c, ds)

)
. (40)

We have:

vcd =
1

2

(
q+(c)q−(d)− q−(c)q+(d)

q+(c)q−(d) + q−(c)q+(d)

)
, (41)

that is:

vcd =
1

2

(
p+(c)p−(d)− p−(c)p+(d)

p+(c)p−(d) + p−(c)p+(d)

)
. (42)

Now we compute:

vc − vd
1− 4vcvd

=

1
2

(
p+(c)−p−(c)
p+(c)+p−(c)

)
− 1

2

(
p+(d)−p−(d)
p+(d)+p−(d)

)
1− p+(c)−p−(c)

p+(c)+p−(c) ·
p+(d)−p−(d)
p+(d)+p−(d)

. (43)

We have:

vc − vd
1− 4vcvd

=
1

2

(
(p+(d) + p−(d))(p+(c)− p−(c))− (p+(d)− p−(d))(p+(c) + p−(c))

(p+(c) + p−(c))(p+(d) + p−(d))− (p+(c)− p−(c))(p+(d)− p−(d))

)
(44)
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This shows that:

vcd =
vc − vd

1− 4vcvd
, (45)

or equivalently:

vc =
vcd + vd

1 + 4vcdvd
. (46)

This means that chromatic vectors can be considered as the analogue of relativistic velocities.
Note that the factor 4 in eq. (46) is due to the fact that chromatic vectors have norms less or
equal to 1/2, i.e. that in our model the limiting saturation Σ (or the speed of light in mechanics)
is equal to 1/2. It is clear that if vcd = (Σ, 0) in eq. (46), then vc = (Σ, 0), which is precisely the
mathematical expression of the result of Yilmaz second experiment.

3.3 Hilbert metric and Einstein-Poincaré addition law

The fact that chromatic vectors verify the addition law given by Eq. (46) allows to express a
constancy property in terms of Hilbert distances.

Let us first recall that given four collinear points a, p, q, and b of R2, the cross ratio [a, p, q, b]
is defined by [14]:

[a, p, q, b] =
‖q − a‖
‖p− a‖

· ‖p− b‖
‖q − b‖

, (47)

where ‖·‖ denotes the Euclidean norm. Given two points p and q of the closed disk D1/2 such that
the points (−1/2, 0) = a−, p, q, and (1/2, 0) = a+ are collinear, with the segment [p, q] contained
in the segment [a−, a+], the D1/2-Hilbert distance dH(p, q) is given by [14]:

dH(p, q) =
1

2
ln [a−, p, q, a+] , (48)

where the choice of the points involved in the cross ratio above guarantees that the argument of
ln is strictly positive.

We consider now three chromatic vectors vc, vd and vcd of D1/2 with vc = (vc, 0), vd = (vd, 0)
and vcd = (vcd, 0). We have the following elementary result (see for instance [15] for related topics).

Proposition 3.1 With the above notations:

dH((0, 0), (vcd, 0)) = dH((vd, 0), (vc, 0)) ⇐⇒ vc =
vcd + vd

1 + 4vcdvd
. (49)

Proof. By definition, the equality dH((0, 0), (vcd, 0)) = dH((vc, 0), (vd, 0)) holds if and only if
[a−, (0, 0), (vcd, 0), a+] = [a−, (vd, 0), (vc, 0), a+]. Equivalently:

dH((0, 0), (vcd, 0)) = dH((vc, 0), (vd, 0)) ⇐⇒ 1/2− vc
1/2 + vc

=
1/2− vcd
1/2 + vcd

· 1/2− vd
1/2 + vd

. (50)

By direct computation, it can be checked that this last equation is equivalent to eq. (49). 2

The colorimetric interpretation of the relation:

dH(0,vcd) = dH(vd,vc) ⇐⇒ vc =
vcd + vd

1 + 4vcdvd
(51)

is the following. The vector vcd appears in the relativistic sum equation expressed by (46) together
with the chromatic vectors vc and vd if and only if the Hilbert length dH(0,vcd) of vcd is equal
to the Hilbert distance between vc and vd. Since vcd describes the color c with respect to the
color d, this result implies that the Hilbert distance is a mathematically coherent candidate for a
perceptual metric of chromatic attributes.
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A geometric representation of this result is provided by the so-called Chasles theorem on
cross ratios of cocyclic points, see Fig. 3.3, which provides a graphical method to construct
the relativistic sum of two vectors in one dimension. Although elementary, this result reveals a
meaningful link between the Einstein-Poincaré addition law of chromatic vectors and the Hilbert
metric, which, on D1/2, coincides precisely with the Klein hyperbolic metric defined by:

ds2
D1/2

=
(1/4− v2

2)dv2
1 + 2v1v2dv1dv2 + (1/4− v2

1)dv2
2

(1/4− ‖v‖2)2
. (52)

The geodesics with respect to this metric are straight chords of D1/2.

Figure 2: Illustration of the result of Prop. (3.1) by Chasles theorem on the cross ratios of cocyclic
points. vc, vd and vcd satisfy eq. (51).

3.4 Compatibility of the Hilbert metric with psycho-physical experi-
mental data

Now we address the important issue of the compatibility between the Hilbert metric on D1/2 and
psychovisual measurements. This is not an easy task because of two reasons: firstly, experimental
data on color perception are very scarce, secondly, psychovisual measurements are always affected
by subjective variations which imply the use of averaging procedures that inevitably reduce the
measure accuracy.

The only psychovisual results consistent with our framework that we were able to find are
those reported in [16] and [17]. The authors conducted their tests with the help of the stan-
dard CIE illuminants C (near-daylight, (xC , yC) = (0.3125, 0.3343)) and A (tungsten, (xA, yA) =
(0.4475, 0.4084)) and added a third one, denoted with G (greenish, (xG, yG) = (0.3446, 0.4672)).
The values (x, y) represent the CIE xyY chromaticity coordinates of C, A and G, respectively,
Fig. 3.4 shows their position in the chromaticity diagram.

In what follows, observers adapted to the illuminants C, A and G, respectively, will be denoted
by o1 = (c, C), o2 = (a,A) and o3 = (g,G).

A haploscope is used to compare the color perception of one eye always adapted to the illumi-
nant C and the other eye adapted to C, A and G.

Fig. 3.4 shows, in the xyY diagram, three families of curves obtained by the tests performed
in [17]:

1. the first is composed by three contours surrounding C that correspond to color stimuli with
fixed Munsell value, different hue but with the same perceived Munsell chroma in {2, 4, 8}.

12



By normalizing these data between 0 and 0.5 we obtain {0.1, 0.2, 0.4}, which are the norms
of the chromatic vectors v1

c of the colors associated to the corresponding stimuli observed
by o1;

2. the second and the third are given by two contours surrounding A, resp. G, that correspond
to colors c with varying hues and whose Munsell chroma belong to the set {2, 4}. The
chromatic vectors v2

c , resp. v3
c , of these colors observed from o2, resp. o3, have norms

belonging to the set {0.1, 0.2}.

Figure 3: The iso Munsell chroma contours found by [17] in the xyY diagram.

As discussed above, the psychovisual data reported in [16] and [17] are only averaged, thus,
the only kind of information that we have from Fig. 3.4 is, for example, that the xyY coordinates
of standard illuminant A are between the curves of chroma 4 and 8 of the observer o1. Thus,
the norm of the chromatic vectors is not possible to achieve with accuracy. However, in order to
test our mathematical theory, as a first approximation, we perform a linear interpolation from the
data appearing in the figure, which gives ‖v1

a‖ ' 6.76/20 = 0.338.
In Fig. 4(a), we denote by F and F ′ the xyY coordinates of the points in the xyY diagram

obtained by the intersection between the line connecting A and C with the iso-chroma contours
for o1 and o2, respectively.

The color F is perceived by o1 as having a chromatic vector v1
f with norm ‖v1

f‖ = 0.2. By

construction, we determine F ′, the color perceived by o2 with chromatic vector v2
f ′ such that

v2
f ′ = v1

f . Again, by linear interpolation, the norm of the chromatic vector v1
f ′ corresponding to

the color F ′ perceived by o1, is approximated by ‖v1
f ′‖ ' 3.76/20 = 0.188. Fig. 4(b) shows all

the chromatic vectors in the disk D1/2.
One can easily check, as illustrated by Chasles theorem, that:

dH(v1
f ,v

1
c) = dH(v2

f ′ ,v
2
a) = dH(v1

f ′ ,v
1
a) . (53)

The same reasoning applied to the situation depicted in Fig. 5(a), where the points F2 and
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(a) The illuminants C and A and the colors F and F ′

in the xyY diagram.
(b) Illustration of the equalities of eq. (53) in
the disk D1/2.

Figure 4: Invariance of the Hilbert distance under observer changes: illuminants C and A, and
colors F and F ′.

F2′ belong to another iso-chroma contour, leads to:

dH(v1
f2,v

1
c) = dH(v2

f2′ ,v
2
a) = dH(v1

f2′ ,v
1
a) , (54)

see Fig. 5(b).

(a) The illuminants C and A and the colors F and F ′,
and F2 and F2′ in the CIE xyY diagram.

(b) Illustration of the equalities of Eq. (54) in
the disk D1/2.

Figure 5: Invariance of the Hilbert distance under observer changes: illuminants C and A, and
colors F , F ′, F2, and F2′.

Finally, we consider the quite more complicated situation depicted in Fig. 6(a). It is precised in
[16] that ‘A change from a blue (C) adaptation to a yellow (A) adaptation shows vectors running
in a blue-yellow direction, a change from a blue (C) adaptation to a green (G) adaptation shows
vectors running in a blue-green direction.’ This means that the angle between v1

a and v1
g is equal

to π/4.

14



From Fig. 6(a) we can approximate the norm of the chromatic vector v1
g: ‖v1

g‖ ' 0.32. The
chromatic vectors v1

h and v3
h′′ of the two colors H and H ′′ marked on Fig. 6(a) are equal. Once

again, one can easily check that:

dH(v1
h,v

1
c) = dH(v3

h′′ ,v
3
g) = dH(v1

h′′ ,v
1
g) , (55)

see Fig. 6(b).

(a) The three illuminants C, A and G, and the colors
F and F ′, F2 and F2′, and H and H′′ in the xyY
diagram.

(b) Illustration of the equalities of Eq. (55) in
the disk D1/2.

Figure 6: Invariance of the Hilbert distance under observer changes: illuminants C and G, and
colors H and H ′′, compared with illuminants C and A, and colors F and F ′.

These discussions show clearly that the Hilbert metric is compatible with the only psychovisual
data that we have at disposal. Here we have reported only three cases, but other three configura-
tions related to Fig. 3.4 can be studied and our computations showed that they give rise to the
same conclusions.

We have only treated the case when colors, e.g. F and F ′, have chromatic vectors collinear
to the new observer chromatic vector, e.g. v1

f and v1
f ′ are collinear to v1

a in this first situation.
Dealing with arbitrary colors needs the introduction of more sophisticated mathematical tools to
take into account the general addition law for non-collinear vectors. We prefer to not enter in such
details in the present work and to postpone the general case for future research.

4 Chromatic states and boost maps

In order to recover the colorimetric aberration effect from the trichromacy axiom, we explain how
pure chromatic states generate Lorentz boost maps and study the action of these boost maps on
the space of chromatic vectors.

4.1 One parameter subgroups of boost maps

Let us recall that the pure chromatic states are given by density matrices of the form:

ρ(v) =
1

2
(Id2 + v · σ) =

1

2

(
1 + v1 v2

v2 1− v1

)
, (56)

where v = (v1, v2) is a unit vector of R2. We have the following result.
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Proposition 4.1 Every pure chromatic state generates a one-parameter subgroup of Lorentz boosts
[7].

Proof. The matrix

A(v, ζ0) = exp
(
ζ
v · σ

2

)
, (57)

with ζ0 a real parameter, is an element of the group PSL(2,R). Using the action of PSL(2,R)
on H(2,R) we can consider the matrices given by:

σi 7−→ A(v, ζ0)σiA(v, ζ0) , (58)

for i = 0, 1, 2 with σ0 = Id2. The matrix with entries

M(v, ζ0)ij =
1

2
Trace (σiA(v, ζ0)σjA(v, ζ0)) , (59)

is the matrix

M(ζ) =

 cosh(ζ0) v1 sinh(ζ0) v2 sinh(ζ0)
v1 sinh(ζ0) 1 + v2

1(cosh(ζ0)− 1) v1v2(cosh(ζ0)− 1)
v2 sinh(ζ0) v1v2(cosh(ζ0)− 1) 1 + v2

2(cosh(ζ0)− 1)

 , (60)

with ζ = tanh(ζ0)(v1, v2). 2

For instance, if v = (1, 0) then:

M(ζ) =

 cosh(ζ0) sinh(ζ0) 0
sinh(ζ0) cosh(ζ0) 0

0 0 1

 . (61)

One can easily check that, in this case, the pure chromatic vector (cos θ, sin θ)/2 is sent to the
pure chromatic vector w = (w1, w2) with:

2w1 =
tanh(ζ0) + cos θ

1 + tanh(ζ0) cos θ

2w2 =
(1− tanh(ζ0)2)1/2 sin θ

1 + tanh(ζ0) cos θ
.

(62)

4.2 On Yilmaz’s third experiment [5]

The dynamics given by eq. (62) is nothing else than the dynamics of the relativistic aberration
effect. It allows, as already suggested by Yilmaz, to explain the results of the third experiment
described in [5].

The pure chromatic vector (0, 1)/2 is sent to the pure chromatic vector with coordinates
(tanh(ζ0), (1 − tanh(ζ0)2)1/2)/2 whereas the pure chromatic vector (1, 0)/2 remains unchanged.
When the rapidity ζ0 increases, tanh(ζ0) approaches 1 and the vector (tanh(ζ0), (1−tanh(ζ0)2)1/2)/2
approaches the vector (1, 0)/2. At the limit tanh(ζ0) = 1, every pure chromatic vector (cos θ, sin θ)/2
is sent to the vector (1, 0)/2, except the vector (−1, 0)/2.

This means that every pure chromatic vector, except the green pure chromatic vector, can be
transformed to a pure chromatic vector arbitrarily close to the red pure chromatic vector under
the Lorentz boost of eq. (61) if the rapidity ζ0 is sufficiently great. To explain the results of
Yilmaz third experiment in view of eq. (62), note that w1 is the cosine of the angle of the ray
from the achromatic vector to the image of the chromatic vector (cos θ, sin θ)/2 viewed under the
initial illuminant I, whereas

w1 =
− tanh(ζ0) + cos θ

1− tanh(ζ0) cos θ
(63)

is the cosine of the angle of the ray from the achromatic vector to the image of the chromatic
vector (cos θ, sin θ)/2 viewed under the illuminant I ′. In consequence, under the illuminant I ′, the
expected yellow chromatic vector given by θ = π/2 is in fact the greenish chromatic vector given
by cos θ = − tanh(ζ0).
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5 Conclusion

At the end of this study, it clearly appears that the best way to report psychovisual experiments
of color matching type is to consider chromatic vector transformations. The space of chromatic
vectors is the disk D1/2. We have shown that this space is a colorimetric analogue of the special
relativity space of velocities. It is endowed with the Riemannian hyperbolic Klein metric. Reports
on experiments using real data have proven the soundness of our proposal. Moreover, we have
explained that this approach, which relies on the sole trichromacy axiom, also takes into account
color opponency from a quantum point of view. This means that color perception is a kind of
quantum relativistic phenomenon in which hyperbolicity plays a crucial role. The mathematical
and rigorous model that we have described seems to be a very relevant alternative to the model
commonly used in colorimetry.

We are currently investigating the mathematical details of the extension of our proposal from
collinear chromatic vectors to the general case in which chromatic vectors do not necessarily lie
on the same axis.

We also consider interesting to study how the novel objects and formalism that we have in-
troduced in this work can be used in practice for colorimetric purposes and how they relate to
existing color spaces represented in cylindrical coordinates such as the HSV space.

To this aim, and also to more finely test our proposal, it is paramount to complement the
exiguous psychovisual data that we currently have at disposal and possibly to design new kind of
experiments.

6 Appendix - Description of Yilmaz experiments

The generic apparatus for the experiments is shown in Fig. 7, where we can see two identical
rooms R1 and R2, separated by a common wall with a thin hole and illuminated by the sources
of light S1 and S2. Both rooms are painted with a non-selective Lambertian white paint. A piece
of white paper is divided in two parts and they are placed in the rooms, so that an observer
can perceive them simultaneously. The key point is that one piece is seen directly and the other
through the hole.

Figure 7: The experimental apparatus considered by Yilmaz.

The illumination S1 of room R1 will always be provided by near-daylight broadband illumi-
nants. Instead, the illumination of room R2 will be provided by a light source S2 that can also be
narrow-band. The perceived colors are compared with the help of a set of Munsell chips enlighted
by the same illuminant under which the observer is adapted.

In order for the reader to make up his or her own mind about the interpretation and feasibility
of the experiments, we quote Yilmaz [5].
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6.1 The first experiment

‘If the sources S1 and S2 are chosen to be two different illuminants of near-daylight chromaticity,
I and I ′, then the wall of each room is perceived as white by the observer in the room but the
wall of the other room, as seen through the hole, appears chromatically colored. Furthermore, if
R2 appears with the saturation σ from R1, then R1 appears with the saturation approximately −σ
from R2, the minus sign indicating that the hue is complementary to the former hue.’

6.2 The second experiment

‘If S2 is chosen to be a single-frequency source, say, that corresponding to the long-wave (red)
extreme of the visible spectrum R, then the saturation Σ observed through the hole (observer being
in R1) is too high to be duplicated by any of the Munsell chips, and remains practically the same
if we change the illuminant from I to I ′ in R1.’

6.3 The third experiment

‘Let S2 be a source of frequency corresponding to the yellow part of the spectrum, Y , separated in
the hue circle by 90 degrees from spectrum red, R. Then if we change the illuminant in R1 from I
to I ′, the hue of Y is seen to change by an amount ϕ such that sinϕ ' σ/Σ. No variation seems
to take place in its saturation.’
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