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Abstract— We present the Ariadne String against Covid applic-
ation, whose aim is to recommend safe outdoor path inside cities
in order to limit the exposure to virus propagation. The main
idea is to make a load balancing between streets via space-time
diversity. The application is shown to be efficient at the very first
user, and lead to an optimal Nash equilibrium when there is a
majority of user. We have tried a performance analysis over prior
lock-down pedestrian traffic estimates over Paris, Manhattan and
Rome. It is shown that application reduces the user exposure
cumulative time by a factor 3.

I. INTRODUCTION AND MOTIVATION

The main issue in fighting a pandemic virus propagation
is the limitation and reduction of contact between susceptible
people and infected people, in particular during lock-down
period.

Since the exceptionally long incubation period of Covid-19,
it is in general difficult to distinguish between infected and
susceptible people. Therefore lockdown periods have been set
in most part of the planet in order to limit the contacts between
people in the ignorance of their status (infected, susceptible,
immunized).

The virus Covid-19 is supposed to have some probability
to be transferred when an infected person is within 1 m of
another person during a certain time. The larger is this time
the higher will be the probability (for very infected people it
is around 30 mn). Therefore we call "contact" the event when
two persons are within 1m of each other. We call exposure
cumulation the cumulated time a person is within 1m of any
other person monitored during a certain interval time. We call
exposure rate the fraction of the cumulated time divided by the
total monitored time. We call outdoor exposure, the exposure
during contact happening in outdoor situation.

Now (early April 2020) a large part of mankind is under
institutional lock-down to slow down the propagation. In
Europe and in the US most of the countries have adopted a
flexible lock-down were people are allowed a daily derogative
excursion outside their home. In France it is currently one
excursion of one hour per day within a radius of one kilometer
from home.

The problem with this kind of lock-down is that walkers
(or jogger) shows a social trend to gather in the same streets,
making the exposure rate still too high. We have no data after
lock-down start, but data sampled via Google Street View
show that the social trends have indeed an impact on exposure

rate. We don’t know if the social trends have the same profile
as before the lock-down but it is probably very similar, to
the exception of commercial areas which may become less
attractive than parks or riverbanks or sea sides. Recently
administrative authorities have closed the access to sea, river
and forests in order to avoid gathering in this place, with
the consequence of limiting again the path-length devoted to
pedestrians or joggers. In the paper we will call social walkers
(or social joggers) the pedestrian who follows the social trends
in the outdoor excursion in the city.

The mythological heroin Ariadne offered Theseus a string
in order to fight Minotaur in the Labyrinth. The idea of our
modern Ariadne is to offer a numerical string for the walker
in the city, not to fight Minotaur, but to avoid the exposure to
the coronavirus.

There are 2,900 km of cumulative pedestrian path length
in Paris for a population of 2.2 million inhabitants [1], [2].
Therefore there is ample room for all of the inhabitants to
walk 24/24h within safe distance. Since only a fraction of
the inhabitant are expected to be walking at the same time, it
should be easy to get the safe spacing.

To get the safe spacing or minimizing the exposure rate
we propose the Ariadne Covid application concept. Its aim is
to make a load balancing over street via random walks. That
way if all walkers and jogger are using the application, we
get the optimal density over the streets namely the uniform
distribution. Furthermore, if the Ariadne String against Covid
application user are not in majority, each of the user will get an
exposure reduction even larger than if all the population was
using the application. In fact the advantage is given as soon
as there one Ariadne Covid user. It can be shown that Ariane
Covid can in theory reduce the exposure time by a factor 3.
Of course in order to have an impact on the propagation of the
epidemy there would be a need for a majority of user, but at
least each user will get a tangible advantage by reducing the
exposure at the very beginning. This is like a Nash optimal
equilibrium, the aim of the Ariadne Covid application is break
the lethal social trend in street gathering.

The plan of this paper is the following. In section II
we describe the Ariadne Covid application: its embedded
component on smartphone and its server component. The
section III describes the model and theoretical aspects and
their application city data such as Paris, Manhattan and Rome.
Since the city data are prior to lock-down, a steeper projection



of lock-down data has been extrapolated under the title Paris
Zipf 1.

II. ARIADNE STRING PROTOCOL DESCRIPTION

The application consists into delivering to the user who
requests it, a random path for the excursion and the time
slot in the day. This path will avoid the dangerous areas in
proportion of the risks (not necessarily due to the virus, i.e.
accident, fire, or work areas), or the areas with an actual
density due to people at regular work or still submitted to
their social tendencies. In its most basic setting the path will
be purely random, since it has been shown to actually reduce
the exposure rate even if the user is alone in Paris to do that.
Indeed it is shown that the exposure is even more reduced
compared to the situation where all Parisians would use the
application Ariadne Covid.

During the excursion the user will have his/her own position
displayed on her/his mobile phone. (S)he may receive vocal
indications and receive warning when the walker leaves the
path. At half of the time the walker will receive an alert asking
to reverse the path (the only way to keep path uniformization).
The path may contain loops, because it is necessary in order
to get the uniform density. If it is the case the walker will
proceed with the loop. The walker may skip the loop in the
way back but this will shorten the delay of the excursion, thus
(s)he would be better proceed again with the loop in the way
back.

The application terminates (at least its embedded mobile
part) when the user is back home.

A. Description of the algorithm in the mobile embedded part

The user should have to register to the server part, to request
for a path the user will login and enter a time schedule
with a reasonably large time span when (s)he can have its
excursion scheduled that day. In particular the user should
enter its own street address if the data is not included in the
registration data or if it differs. Equivalently, at the choice of
the user the embedded part of the application could directly
send to the server the GPS coordinate of the phone. The server
will compute and return a time slot, a path, and an advised
excursion duration to be displayed on the smartphone.

If there is time before the excursion, the application will
disactivate to save battery. The user will reactivate the applic-
ation at the time of the excursion. The application will display
a map with the path together with the tracking of the position
of the smartphone.

During the excursion the user will have his/her own position
displayed on her/his mobile phone. (S)he may receive vocal
indications and receive warning when the walker leaves the
path. At half of the time the walker may receive an alert asking
to reverse the path. It must be noted that none of these warning
and alerts will be returned to the server to preserve the privacy,
they could also be disabled if the user wants to. The path may
contain loops, if it is the case the walker will proceed with
the loop. Thus, the display should be adapted to show segment
(eg next segment) to make readable the path during loops. The

walker may skip the loop in the way back but this will shorten
the delay of the excursion, thus (s)he would rather proceed
again with the loops in the way back.

B. Description of the application on the server side

When the server receives the request from the user, it first
project the initial position on the main local component of the
google street map network (a priori pre-processed for once).
Then from this position it computes the random path. The
random path will larger than needed because we don’t know
a priori if the excursion will be for walking or jogging. The
random walk should be extended to a maximum length (e.g.
5km).

1) Computation of the excursion time slot: The time slot is
selected uniformly on the time schedule proposed by the user
in his/her request. If recurrent district pedestrian density or
risk information is available, the time slot selection will take
into account the information to make more likely the time slots
with lower density and risk.

2) Computation of the random walk: The first step is
to randomly select the initial direction: left or right with
probability 1/2, 1/2 on the street of the home address.
Until five kilometers is attained the algorithm proceed to the
determination of the random walk.

a) Non-backtracking algorithm:: at each intersection the
algorithm randomly selects the exit road excluding the current
street. If the intersection has four roads, thus three eligible
exits, the weight of each exit is 1/3, 1/3, 1/3. In case of
dead-end, the algorithm selects the U turn. This guarantees
the uniformisation of the densities

If the cartesian distance to home address exceeds the
authorized distance from home (1km in France), the path
should make a U-turn.

b) Non backtracking algorithm with reduced path diver-
sions:: if the intersection has an even number of streets (thus
an odd number of exits) more weight will be given to the exit
street facing the entry street, i.e. the median exit. For example,
the median exit has 1/2 probability to be selected, and the
other exit are selected uniformly. This keep the uniformization
of the densities.

c) Further options:: when density or risk factor is
available at street level, the weight of the exit streets at each
intersection could be made non uniform. In this case the
weight should be adapted to make the risk identical for each
street (by reducing the density). The non-backtracking random
path calculation would need to be adapted in order to cope
with this situation.

3) Advised excursion time duration: At the time of the
excursion, the excursion duration should be advised according
to up to date density and risk information, in order to make it
equivalent to one hour of virus exposure in normal situation.

a) Remark:: it could be made larger than one hour, if
densities and risk are low and if legislation allows it.



III. PERFORMANCE ANALYSIS OF THE ARIADNE STRING
AGAINST COVID

We split the whole pedestrian path into a segment set S.
A segment s ∈ S at time t has a linear density λ(s, t) and
a length `(s). The total length of the pedestrian network is
L =

∑
s∈S `(s). The total pedestrian population at time t is

N(t) =
∑
s∈S λ(s, t)`(s). The probability that a pedestrian

walk on segment s at time t is ρ(s, t) = `(s)λ(s,t)
N(t) . If we

assume that the distribution on every segment is uniform (and
ignoring side effects) the probability that a given pedestrian
on segment s is within distance r to another given pedestrian
on the same segment is 2r

`(s) which could be reduced to r
`(s)

if the dangerous zone stands forward to the pedestrian.
Thus if a total population of N pedestrians are present on

the streets, each independently following the density pattern
of the λ(s, t), the probability that a pedestrian on segment s

is not on situation of contact at time t is
(
1− ρ(s, t) 2r

`(s)

)N
or equivalently

(
1− 2r λ(s,t)N(t)

)N
.

Let NT the total population of the city. If the proportion
of inhabitants walking outdoor is ν, the average exposure rate
EG(ν) satisfies

EG(ν) = 1−
∑
s∈S

ρ(s)

(
1− ρ(s) 2r

`(s)

)νNT

. (1)

assuming that ρ(s) := ρ(s, t) does not vary (too much) during
the day. If ρ(s, t) varies during the day and ρ(s) is its average
on segment s, then by concavity the above expression is an
upper bound of the exposure rate.

We have sampled 55 km of Paris street via Google Street
View. We have made 11 independent random walks starting
in different arrondissement. A segment (30 m) of pedestrian
path is sampled every 100 m. Figure 1 the histogram of
segment densities sampled in Paris. The Street View pictures
date before the lockdown, and mixe several periods belonging
to different months and years, sometimes the switches occur in
the same street. Anyhow the histogram shows a profile close
to a Zipf distribution of coefficient around 0.75. We have no
yet records for the period during the lockdown, but we expect
a more concentrated distribution with a larger Zipf coefficient,
since the most of the commercial areas are closed and therefore
attraction streets are reduced.

First we prove that the random walk correctly balances the
loads among the street

Theorem III.1. The stationary distribution of the non-
backtracking random walk is the uniform distribution
density.

By uniform distribution we mean that the average through-
put in every street are identical.

Proof: This is mainly a state of the art result. Let consider
a given intersection point A where m streets arrives with
m > 1. We assume that at time t every street input rate at
intersection A are all identical to x, we will show that the
input rate are also all identical to x, and thus the steady state

Fig. 1: Histogram of Pedestrian densities in Paris

distribution are all uniform. Indeed each street contributes to
x

m−1 other streets, since the random walk divert to the other
streets with equal probabilities. Therefore each street receives
input from all streets except itself, equal to (m− 1) x

m−1 = x.
When m = 1 (dead-end) the random walk backtracks and

the property is preserved.
But the random walk steady state may be long to converge.

In our case it is faster because the density of inhabitant in Paris
is almost uniform along each street, thanks to Hausmannian
construction rules dating from the XIXth century [3]. From
now we take the simplified assumption that walker using the
random walk are indeed in uniform density in the streets.

Let EU (ν) be the average exposure rate when all walkers
are in random walk situation. It satisfies:

EU (ν) = 1−
(
1− 2r

L

)νNT

. (2)

Indeed it suffices to consider the whole pedestrian network as
a single segment.

More interestingly we have the case when a single random
walker proceeds among νNT walkers following their social
trends. Let’s call EUG(ν) her/his exposure rate:

EUG(ν) = 1−
∑
s∈S

`(s)

L

(
1− ρ(s) 2r

`(s)

)νNT

. (3)

We can generalize to EUG(νU , νG) to estimate the exposure
rate of a random walker when the proportion of random walker
is νU and the the proportion of social walker is νG, and
conversely EGU (νU , νG) is the exposure of a social walker
in the same conditions:

EUG(νU , νG) = 1−
(
1− 2r

L

)νUNT

×
∑
s∈S

`(s)
L

(
1− ρ(s) 2r

`(s)

)νGNT

EGU (νU , νG) = 1−
(
1− 2r

L

)νUNT

×
∑
s∈S ρ(s)

(
1− ρ(s) 2r

`(s)

)νGNT

(4)
We will not use these last two expressions.

In the following figures we display the performance of the
random walk versus social walk. This apply also to jogging



since the average proportion of time spent to unsafe distance
of people is the same in running or walking.

We assume that the Parisians have an interval of time (10
hour) where they can select their select their slot time for
their outdoor excursion. The duration of the excursion is ν0
expressed as a fraction of the whole 10 h interval.

The picture 2 shows the cumulative exposure rate as a
fraction of 10 hour spend within unsafe distance to another
individual. The solid red curves shows the cumulative exposure
rate when all walkers are social walkers and they randomly
select their slot on the whole 10 hours interval: this is the
function νEG(ν). The dashed red curve is when the social
walkers have also time habit: they all select their time slot on
an interval of 5 hours instead of 10 hours (e.g. the afternoon).
This is the function νEG(2ν) (for ν < 0.5: 5 hours). The blue
curve shows the cumulative exposure rate when all walkers
are random walkers and they randomly select their slot on the
whole 10 hours interval: this is the function νEU (ν).

Fig. 2: Paris: exposure cumulative rate, all are social walkers
but randomly dispatched on 10 hours (red), social walkers
but concentrated on 5 hours (dashed red), all random walkers
(blue) as function of the average outdoor excursion (in fraction
of 10h)

.

The figure 3 shows the benefit when even only one user
adopt the random walk. The red curve shows the cumulated
exposure rate when a single social walker varies its excursion
duration, but the other walkers are social and their average
excursion time is 1 hour: this is the function νEG(0.1), this
is just a linear function. The green curve is when the single
user is a random walker: this is the function νEUG(0.1).
The random walker get some little more benefit compared
with the situation when all walkers are random. In dashed
when the other social walkers concentrates in five hours: these
are respectively function νEG(0.2) in red and ν

2EUG(0.2) in
green. The 1/2 factors comes from the fact that the random
walker has only a probability 1/2 to select its excursion
time during the 5 hours of the social walkers. Notice that
the cumulative exposure rate is even smaller for the random
walker.

The table I tries to summarize some important results, each

Fig. 3: Paris: exposure cumulative rate, in red, for a single
walker in function of its excursion duration, when all other
walkers are social walkers during 1 hour, in green when the
single walker is random. In dashed when the social walkers
select their slot on an interval of 5 hours

.

column gives the equivalent exposure time of 1 hour of three
investigated modes: (i) all walkers are social, (ii) all walkers
are random, (iii) one walker is random, the other are social.
the first columns shows how much time the mode all social
walker will provide an equivalent exposure cumulative rate. It
is of course 1 hour for mode (i), since it is the same mode.
It is 38 mn for mode (ii): to get an equivalent exposure if all
walker are random during 1 hour, the social walkers should
together limit their excursion to 38 mn. In mode (iii), to get the
same exposure of one hour of a single random walker among
all other social walker, each social walker should limit their
excursion to 35 mn.

Conversely (last column, first line) to reach the exposure
time of each social walker, the random walker could extend
his/her excursion time to 2h14mn.

If (second column, last line) to get the exposure of a random
walker walking 1 hour a social walker walking with other
social walkers, will get the same exposure to virus before 24
mn.

The times in parentheses are the equivalent times when the
social walkers are concentrated over 5h instead of 10 hours.
For example (first column, first line) if the social walkers are
concentrated on 5 hours, they will get the same exposure in 45
mn instead of 1 hour if the social walkers time slots are well
distributed over 10 hours. One of these concentrated social
walker will get in 17 mn the exposure of a random walker,
or in 15 mn if the other walkers are non concentrated walkers
(second column, second and third lines).

A. Manhattan, New York

We have extended the analysis to other cities. First example:
Manhattan in New York City. Manhattan has 1.6 million
inhabitants [5]. Its street cumulative length is 508 miles [4],
thus a maximum of 1016 miles of pedestrian path, assuming
that each street has two pedestrian path, which is not necessary



columns: all social one variable all random one variable
equivalent walkers social other walkers random other
times 1 hour social 1 hour social
1 hour 1h 1h 1h30mn 2h14mn
all social (0h45mn) (0h38mn) (2h53mn)
1 hour 38mn 27mn 1h 1h07mn
all random (28mn) (17mn) (1h18mn)
1 hour random 35mn 24mn 56mn 1h
other social (26mn) (15mn) (1h10mn)

TABLE I: Paris: per column, the equivalent exposure times
for respectively 1 hour of all social walkers, of all random
walkers, of one random walker, the other being social walkers.
In parentheses when the social walkers are concentrated on 5
hours

the case for every street. We stress that the street cumulative
length should include all streets of New York City, which
is much larger than Manhattan, Notice that the cumulative
length is shorter than in Paris. Maybe it is the reason why the
parks and river banks are still allowed. The walker density
has been sampled via eight random walks, with starting
points uniformly selected over Manahattan map. However the
analysis over Paris may not appliable, since New York does
not follow the Hausmannian property of uniform linear density
of habitants. Some district may have less habitant than other
districts, e.g the business districts of lower Manhattan. The
histogram is given in Figure 4. Figure 5 shows the exposure
rate when all walkers are social or are all random. Figure 6
shows the expos

Fig. 4: Histogram of Pedestrian densities in Manhattan

B. Rome

We have added Rome in our analysis. There 2.8 million
inhabitant in Rome central. Unfortunately it has been very
difficult to find credible data about the street cumulative length.
Anyhow we have taken the data of Madrid [7] which, for an
equivalent population, shows a total street length of 3,000 km,
which is probably 6,000 km of pedestrian path. Given this
large amount, the uniformization is expected to be the most
efficient on the exposure time. The pedestrian histogram (see
figure 7, has been established over eight independent random
walk. Anyhow it should be noted that the districts show large

Fig. 5: Manhattan: exposure cumulative rate, all are social
walkers but randomly dispatched on 10 hours (red), social
walkers but concentrated on 5 hours (dashed red), all random
walkers (blue) as function of the average outdoor excursion
(in fraction of 10h)

.

Fig. 6: Manhattan: exposure cumulative rate, in red, for a
single walker in function of its excursion duration, when all
other walkers are social walkers during 1 hour, in green when
the single walker is random. In dashed when the social walkers
select their slot on an interval of 5 hours

.

variation in population density and street density, which would
need a more careful study. The comparative effect of social
and random walks are given in figure 8, figure 9 and table III.

C. Paris under Zipf 1 hypothesis

As we stated in the beginning of our sampled histograms,
we expect that the actual density distribution during lock-
down is much steeper than before lock-down, since many areas
have lost their natural attiring properties. In the following we
investigate the hypothesis that the histogram is now of Zipf of
coefficient 1, instead of coefficient around 0.75. The figure 10
shows the theoretical histogram. It should be noticed that in
this case 5% of the streets attract more than 50% of pedestrians
(e.g. river banks, parks, spectacular avenues). The consequence



columns: all social one variable all random one variable
equivalent walkers social other walkers random other
times 1 hour social 1 hour social
1 hour 1h 1h 1h28mn 2h14mn
all social (0h45mn) (0h39mn) (2h50mn)
1 hour 39mn 29mn 1h 1h08mn
all random (29mn) (19mn) (1h22mn)
1 hour random 36mn 25mn 55mn 1h
other social (27mn) (16mn) (1h12mn)

TABLE II: Manhattan: per column, the equivalent exposure
times for respectively 1 hour of all social walkers, of all
random walkers, of one random walker, the other being
social walkers. In parentheses when the social walkers are
concentrated on 5 hours

Fig. 7: Histogram of Pedestrian densities in Rome

on exposure rate versus random walks is even more strong, see
figures 11 and 12, summarized in table IV, where 1 hour of
random walk give an exposure rate lower than 10mn social
walk. Or conversely, to get the equivalent of 1 hour of social
walk, the random walker could walk more than 6 hour in
average.

IV. CONCLUSION

We have introduced the Ariadne String application to fight
Covid exposure during outdoor excursions. We have shown
that even a basic random walk significantly reduces the
exposure. In particular 1 hour of random walk provides an

columns: all social one variable all random one variable
equivalent walkers social other walkers random other
times 1 hour social 1 hour social
1 hour 1h 1h 1h40mn 2h17mn
all social (0h44mn) (0h37mn) (3h19mn)
1 hour 34mn 22mn 1h 1h05mn
all random (25mn) (13mn) (1h13mn)
1 hour random 32mn 20mn 57mn 1h
other social (24mn) (12mn) (1h07mn)

TABLE III: Rome: per column, the equivalent exposure times
for respectively 1 hour of all social walkers, of all random
walkers, of one random walker, the other being social walkers.
In parentheses when the social walkers are concentrated on 5
hours

Fig. 8: Rome: exposure cumulative rate, all are social walkers
but randomly dispatched on 10 hours (red), social walkers
but concentrated on 5 hours (dashed red), all random walkers
(blue) as function of the average outdoor excursion (in fraction
of 10h)

.

Fig. 9: Rome: exposure cumulative rate, in red, for a single
walker in function of its excursion duration, when all other
walkers are social walkers during 1 hour, in green when the
single walker is random. In dashed when the social walkers
select their slot on an interval of 5 hours

.

the exposure rate smaller than 20 mn of social walk. We have
modeled the performance under the sampling of social walk
inthree different cities: Paris, Manhattan, Rome, providing
similar results. We have extrapolated these result during lock-
down under a steeper Zipf distribution of coefficient 1, with
even more spectacular result. The application Ariadne Covid
is simple to set up and could be made available in most cities
in the World.
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Fig. 10: Histogram of Pedestrian densities in Paris Zipf 1
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Fig. 12: Paris Zipf 1: exposure cumulative rate, in red, for a
single walker in function of its excursion duration, when all
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columns: all social one variable all random one variable
equivalent walkers social other walkers random other
times 1 hour social 1 hour social
1 hour 1h 1h 1h59mn 5h33mn
all social (0h52mn) (0h50mn) (6h36mn)
1 hour 22mn 16mn 1h 1h30mn
all random (18mn) (13mn) (1h47mn)
1 hour random 16mn 10mn 48mn 1h
other social (13mn) (09mn) (1h11mn)

TABLE IV: Paris Zipf 1: per column, the equivalent exposure
times for respectively 1 hour of all social walkers, of all
random walkers, of one random walker, the other being
social walkers. In parentheses when the social walkers are
concentrated on 5 hours


