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Abstract

In this paper, we propose a multivariate Hawkes framework for modelling and pre-
dicting cyber-attacks frequency. The inference is based on a public dataset containing
features of data-breaches targeting the US industry. As a main output of this paper,
we demonstrate the ability of Hawkes models to capture self-excitation and interac-
tions of data-breaches depending on their type and targets. In this setting we detail
prediction results providing the full joint distribution of future cyber attacks times
of occurrence. In addition we show that a non-instantaneous excitation in the multi-
variate Hawkes model, which is not the classical framework of the exponential kernel,
better fits with our data. In an insurance framework, this study allows to determine
quantiles for number of attacks, useful for an internal model, as well as the frequency
component for a data breach guarantee.
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1 Introduction

With the rise of digital economy, cyber risk has become a major concern for all customer
segments. Most research programs on cyber risk focus mainly on cyber security and phys-
ical means, in view of developing protection against hacking and data-breaches. Although
the development of such strategies is fundamental, no protection is perfect and insurers
are intended to play a crucial role in providing financial protection. This explains the
expansion of cyber insurance contracts.

In the meantime, few works exist on the consequences of cyber attacks from an insur-
ance point of view, and the scientific literature on pricing and reserving of cyber insurance
contracts is not very vast. Topics recently addressed in cyber-insurance are reviewed in
Biener et al. [BEW15], Eling and Schnell [ES16], or Marotta et al. [MMN+17]. Most of the
work on cyber insurance comes from the field of computer science, or from the economic
science. For instance, in the field of computer science, Fahrenwaldt et al. [FWW18] study
the topology of infected networks, and Rios et al. [RICVR+19] gather expert judgments
using an Adversarial Risk Analysis. Noel et al. [NJWS10] and Homer et al. [HZO+13]
consider a modeling through attack graphs to measure the security risk of networks (in
[NJWS10]) or to propose an aggregating vulnerability metrics for enterprise networks (in
[HZO+13]). Johnson et al. [JBG11] provide analytical models of security games to com-
pute adjusting incentives in order to improve network security. In the field of economic
science, one may mention the contributions of Böhme and his co-authors, such as [BK06],
[BS+10], [RBC+16]. Saini et al. [SARH11] use the utility theory to compute an insurance
premium for cyber risk insurance, while a gametheoric approach is proposed by Wang et
al. [Wan19], who investigate a mix between optimal investments in information security
and cyber insurance innovation.
Herath and Herath [HH11], Eling and Loperfido [EL17] and Farkas et al. [FLT] studied
statistical properties and developed more established insurance modeling methods illus-
trated on the Privacy Rights Clearinghouse (PRC) database. This database has also been
studied by Maillart et al. [MS10] to quantify the distribution and time evolution of cyber
risks, and by Edwards et al. [EHF16] who developed Bayesian Generalized Linear Models
to investigate trends in data breaches. This public dataset is considered as a benchmark
for cyber event analysis.

This paper puts this dataset at the cornerstone of the evaluation approach, using
statistical techniques to model dynamic dependence and evolving events and providing
an operational tool for insurance companies to quantify cyber risk. It takes into account
the evolution of the information, while also quantifying the uncertainty of predictions.
This is all the more important given that the threat of cyber risk is rapidly growing and
evolving, making it one of the most important social and economic risks.
The modelling of cyber attacks frequency requires to take account of complex dependence
effects since the majority of systems have the same flaws and are interconnected. Some
works have been done in this direction, as it is the case in [PXXH17] in the cyber security
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field. In the insurance framework one can cite [BK06] and [HH11] for a model using
copulas; another possible approach is to use network contagion models, as in [XH19]. Due
to the presence of accumulation phenomena and contagion, the use of Hawkes processes to
understand the frequency of the claims will be proposed. Baldwin et al. [BGI+17] claim
that Hawkes processes provides the adequate modelling of cyber attacks into information
systems because they capture both shocks and persistence after shocks that may form
attack contagion. These processes, through their self-exciting property, are adapted to
model aftershocks of cyber attacks.

In this paper we propose to use Hawkes processes, motivated by applications in the
field of insurance, including pricing and Solvency Capital Requirement calculation. Hawkes
processes have been introduced in [Haw71], they have the peculiarity to model excitation
effects. Historically there was a first boom in their application in seismology, since then
they have been widely used in many different fields, among which finance, neurology, pop-
ulation dynamics or social network modelling. Amongst the recent papers one can cite,
for instance, Boumezoued [Bou16] for population dynamics modeling, [ELL11], [BMM15]
and [Hai16] in finance, [EGG10] in credit risk, [ST10], [JD13] and [BMS16] in insurance,
and [RLMX17] in the field of Social Media. Such processes have been recently used in
the cyber security field, for instance by [BGI+17] who studied the self and mutually excit-
ing properties of the threats to 10 important IP services, using industry standard SANS
data or by [PXXH17] who focused on extreme cyber attacks rates. Up to our knowledge,
Hawkes processes have not been already used to model cyber-attacks in the insurance
framework. This paper proposes to study the application of these processes on the public
Privacy Rights Clearinghouse database, that makes a census of data breaches happening
in the United-States.

In addition to the fact that computer systems are interconnected between companies
and that attacks may be driven by common sources, two statistical arguments motivate
our choice to use Hawkes processes. The first one is the rejection of the Poissonian hy-
pothesis. Indeed, a Kolmogorov-Smirnov test for the suitability of the inter-arrival times
to an exponential distribution leads to a clear rejection with a p-value close to zero. The
second one is the detection of autocorrelation in the number of attacks. Indeed, drawing
the number of attacks in a month t+ 1 as a function of the number of attacks in a month
t, by type of attacks, leads to a correlation coefficient of 65%; this is depicted in Figure 1.
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Figure 1: Regression of the number of one-month attacks on the previous one - by type of
attacks - R2 = 0.6548

To reproduce autocorrelation between inter-arrival times, two natural choices are the
Cox processes and the Hawkes processes (see e.g. Daley [DVJ07] for a survey on point
processes). In Cox processes (also known as doubly stochastic Poisson processes), the
autocorrelation is captured through the time-dependent intensity that is itself a stochas-
tic process. However, the appropriate specification of the stochastic intensity dynamics
remains challenging. Therefore, we resort to the class of Hawkes self-exciting processes
which benefit from an interpretable and rather parsimonious parametric representation.
In addition to autocorrelation, the Hawkes processes allow to take into account excitation
effects, by making arrival rate of events depends on the past events. This seems to make
sense in the context of cyber risk, for example, a software flaw discovered will probably
generate many attacks in a short time. Another example is the contagion of a virus on
other computers, for instance the ransomware Wannacry attack in 2017, that led to a con-
tagion of more than 300 000 computers over more than 150 countries.

In this paper, we propose a stochastic modeling to analyse and predict the arrivals
of cyber events. The study is carried out on the PRC database. We specify and infer
multivariate Hawkes processes with specific kernel choices to model the dynamics of data
breaches times, depending on their characteristics (type, target, location). This modelling
framework allows for a causal analysis of the autocorrelation between inter-arrival times
according to each data breach feature, and provides forecasts of the full joint distribution
of the future times of attacks. This is a first step in the actuarial quantification of cyber
risk, more especially on its frequency component. Nevertheless, it is almost impossible to
know from the PRC database which part of the variation along time of the reported claims
is caused by an evolution of the risk, and which part is caused by an instability in the
way the data are collected. Indeed, to fully capture the frequency component, one should
also have information about the exposure. However, capturing this component remains
challenging since one should track the number of entities by sector exposed to cyber risk
over time, along with ensuring the exhaustiveness of the claims reporting process within
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the PRC dataset. That is why the exposure quantification will not be addressed in this
work. Concerning the severity component, the PRC dataset provides a proxy in terms of
the number of records breached for each event. This variable is expected to be strongly
correlated with the real loss of the event. Nevertheless, the standard formulas used to
deduce a loss from the number of breached records are questionable, such as Jacobs formula
[Jac14] proposed in 2014 (using data gathered by Ponemon Institute for the publication of
the 2013 and 2014 Cost of Data Breach), which has been recently updated by Farkas et al.
[FLT]. Again, a better assessment of the severity risk would require information about the
characteristics of the type of breach and of the breached entity, and that are not available
on the PRC database.

The remainder of this paper is as follows. In Section 2, we describe the data breach
dataset from the Privacy Rights Clearinghouse and the classification of data breach features
as used in this study. Section 3 describes the multivariate Hawkes modelling framework,
the kernel specifications considered as well as the likelihood. The main inference and
prediction results are detailed in Section 4, while our supporting results on the closed-form
expectation of the multivariate Hawkes model are given in Appendix B.

2 Dataset

The analysis is based on the dataset from the Privacy Rights Clearinghouse (PRC) that is
described below, as well as the different classes of data breach that will be considered.

2.1 Description

The dataset from the Privacy Rights Clearinghouse (PRC)1 contains 8871 data breaches
which have been made public since 2005. Our study focuses on the period 2010-2019, to
avoid too much heterogeneity in the type of sources reporting the cyber breaches to the
PRC dataset. Indeed, although data breach notification laws have been enacted at different
dates in different states, many of them were enacted before 2010, therefore we decided to
study the database from this date. For each breach, the following information is available:

• Name of the covered entity

• Type of the covered entity

• Localization of the breached entity

• Breach submission date

• Type of breach

• Number of individuals affected

• Localization of the breached information
1see https://www.privacyrights.org/data-breaches
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2.1 Description

• Source of information (US Government Agencies, Non-profit organizations, Media...)

In Table 1, we present the classification of the types of breaches within the PRC (column
"Origin"), as well as our preliminary aggregation as used in this paper (column "Aggre-
gation"), which will be further discussed in Section 4. The main types of breaches and
entities recorded in the dataset are depicted in Figure 2 and Figure 3.

Aggregation Origin Description
HACK HACK Hacked by outside party or infected by malware

OTHER CARD
Fraud involving debit and credit cards that is not accomplished
via hacking

OTHER INSD
Insider (someone with legitimate access intentionally breaches in-
formation, such as an employee, contractor or customer)

THEFT/LOSS PHYS
Includes paper documents that are lost, discarded or stolen (non
electronic)

THEFT/LOSS PORT
Lost, discarded or stolen laptop, PDA, smartphone, memory stick,
CDs, hard drive, data tape, etc

THEFT/LOSS STAT
Stationary computer loss (lost, inappropriately accessed, discarded
or stolen computer or server not designed for mobility)

DISC DISC
Unintended disclosure, for example: sensitive information posted
publicly, mishandled or sent to the wrong party

UNKNBREACH Unknown

Table 1: Type of breaches - Origin refers to the PRC classification - Aggregation refers to
our classification

0.8 % CARD (0.8%)

21.1 %

DISC

32.8 %

HACK

6.7 %

INSD 21.8 %

PHYS

8.8 %

PORT

1.7 %

STAT

6.3 %
UNKNBREACH

Figure 2: PRC types of breaches

Figure 2 shows three main categories that contain around 75.7% of the data. One can also
remark the high level of unintended disclosure (21.1%) and non electronic data (21.8%).
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2.1 Description

6.9 %

BSF
11.6 %

BSO

6.9 %

BSR

5.5 %

EDU

6.1 %

GOV

58.6 %

MED

1.1 %

NGO

3.2 %
UNKNORGA

Figure 3: PRC types of organizations breached

The Healthcare industry seems to experience far more breaches than others, even than the
Businesses, despite they have a lower exposure in terms of number of entities. It may be
explained by the fact that personal health information is often more valuable on the black
market than other data as it is the case for credit card credentials. The second industry
mainly targeted is the Businesses. The PRC classification as well as our own aggregation
are depicted in Table 2.

Aggregation Origin Description
BUSINESSES BSF Businesses-Financial and Insurance Services
BUSINESSES BSO Businesses - Other
BUSINESSES BSR Businesses-Retail/Merchant - Including Online Retail
OTHERORGA EDU Educational Institutions
OTHERORGA GOV Government & Military
OTHERORGA ONG Nonprofits

MED MED Healthcare, Medical Providers & Medical Insurance Services
UNKNORGA Unknown

Table 2: Type of organization breached - Origin refers to the PRC classification - Aggre-
gation refers to our classification

In Appendix A, the table with the number of breaches reported in each state shows
a clear heterogeneity. While California counts more than 15% of the total data available,
many states as Alabama or Arkansas are under 1%. This fact could be linked with the age
of the notification law in each state as well as the exposure in terms of number of entities
at risk.
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2.2 Aggregation

2.2 Aggregation

In order to get larger groups for the following study, we decided to group the attack types
according to their similarities, see Table 1. The types PHYS, PORT and STAT are
gathered in a new category named Theft/Loss. In the same way we grouped CARD and
INSD in a new category named Other. These categories represent respectively 32.3%
and 7.5% of the database.
Concerning the organization types, with the same arguments, we grouped BSF, BSO and
BSR in a category named BUSINESSES. NGO, EDU and GOV are put in a Oth-
erOrga category. It leads to a representation of 25.5% and 12.8% of the total database;
these are detailed in Table 2.
Finally, because of the high heterogeneity of the number of breaches reported in each
state, we made a main group named OtherStates (71.1%) and kept the three biggest
ones, namely, California (15.7%), Texas (6.9%) and New-York (6.3%).
This granularity which has been derived at this stage of the analysis will be further dis-
cussed and aggregated in Section 4.

3 Multivariate Hawkes model

A multivariate Hawkes framework is proposed to model the clustering and autocorrelation
of times of cyber attacks in the different group. In this section we present the model and
the kernel specifications and we compute the likelihood.

3.1 Model specification

To fix the idea, we recall briefly the definition and main properties of a Hawkes process. A
standard (one-dimensional) Hawkes process (Nt)t≥0 is a self-exciting point process defined
by its intensity function (λt)t≥0 characterized by a baseline intensity (µt)t≥0 plus a self-
exciting part

∑
Tn<t

φ(t − Tn) where Tn is the jump time number n, and φ is a function
which governs the clustering density of (Nt)t≥0, also called the excitation function or ker-
nel of the Hawkes process. Recall that the intensity (λt)t≥0 represents the "instantaneous
probability" to have a jump at time t, given all the past. This basically means that there
is a baseline rate (µt)t≥0 to have a spontaneous jump at t but that also all the previous
jumps influence the apparition of a jump at t. The existence (using Picard iteration) and
the construction (using a thinning procedure) of such processes can be found in Brémaud
and Massoulié [BM96], [BM02]. One could also find in Daley et al. [DVJ07] the main
definitions, constructions and models related to point processes in general and Hawkes
processes in particular.

In what follows, a multivariate Hawkes process is consider to capture the clustering
and the autocorrelation between inter-arrival times, according to each data breach feature.
We consider d groups of data breaches; these groups can be defined by crossing the several
covariate dimensions as described in Section 2. For example, a given group can relate to
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3.1 Model specification

data breaches of:

• the same type (e.g. THEFT/LOSS)

• towards same entities (e.g. MED)

• in same location (e.g. California)

We consider a time origin at zero being set as the beginning of the first year of the historical
period. From this time, data breaches occur in each group i ∈ {1, ..., d} at random times
denoted (T

(i)
n )n≥1. This sequence defines a counting process (N

(i)
t )t≥0 as

N
(i)
t =

∑
n≥1

1
T

(i)
n ≤t

.

Therefore, N (i)
t is the number of data breaches which occurred for group i in the time

interval [0, t]. The intensity process of (N
(i)
t )t≥0 is denoted by (λ

(i)
t )t≥0.

We propose a Hawkes process to model the self-excitation in each group as well the exci-
tation between groups. It is specified as follows:

• For each i ∈ {1, ..., d}, the base intensity is a deterministic, continuous and non-
negative map t 7→ µ

(i)
t ,

• For each (i, j) ∈ {1, ..., d}2, self and mutually-exciting maps t 7→ φi,j(t) (commonly
called kernels) are introduced and also assumed to be deterministic, continuous and
non-negative,

• For each i ∈ {1, ..., d}, the intensity process of (N
(i)
t )t≥0 is specified as follows:

λ
(i)
t = µ

(i)
t +

d∑
j=1

∑
T

(j)
n <t

φi,j(t− T (j)
n ) = µ

(i)
t +

d∑
j=1

∫
[0,t[

φi,j(t− s)dN (j)
s . (1)

In this model, the maps φi,i quantify the self excitation in the group i, whereas for i 6= j,
the map φi,j quantifies the contagion in group i caused by a data breach in group j.
Note here that each intensity process λ(i) is adapted to the canonical filtration associated
with the whole set of processes (N (j))j∈{1,...,d}; in this way the behavior of a given group
may (generally) depend on that of the others.

The framework of interest in this paper is made of the two following kernels specifications:

φi,j(t) = αi,j exp (−βi,jt) .

φi,j(t) = αi,jt exp (−βi,jt) .
(2)

Examples of such kernels are provided in Figure 4. The first one models an instantaneous
excitation when an event occurs, it then decreases exponentially toward zero. It is the most
widely used in the literature as it allows the intensity to be Markovian in the univariate
case, as well as in the multivariate setting under some restrictions, see the next remark.
The second one models a progressive excitation, that reaches its highest level after a time
1/βi,j , after this, the impact decreases toward zero.
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3.2 Likelihood

Figure 4: Evolution of kernels through time

Remark 1. Although other forms of kernels can be considered (see e.g. [Bou16] for the
computation of Hawkes distribution for general kernel assumptions), we restrict here our
attention to these cases; extension to other kernels encompassing more parameters and
related optimal selection is left for further research. Note that this framework is still rich
enough. Indeed, the Hawkes process intensity is not Markov with the specification φi,j(t) =

αi,jt exp (−βi,jt). Moreover, for the exponential specification φi,j(t) = αi,j exp (−βi,jt) with
parameters βi,j depending on the interacting groups i and j, the vector (λ(1), ..., λ(d)) of the
Hawkes intensity processes is not Markov; it is only the case when for any i all the βi,j are
constant equal to some βi, that is when the memory of impacts from a group j on a group
i only depends on group i. These general frameworks will lead us to consider an extended
process with additional well chosen components to recover a higher dimensional dynamics
and tractable formulas, see Appendix B. Finally, recall that the multivariate Hawkes process
(N (1), ..., N (d)) is not Markov in both parametrizations.

3.2 Likelihood

The aim of this section is to detail the likelihood of the multivariate Hawkes model. This
likelihood is known as for any counting process with stochastic intensity, and can be found
in related references such as [Oza79]; we still provide its computation here for sake of
completeness. Note that we implement a ‘brute force’ multi-dimensional optimization
for maximum likelihood estimation (using the ‘Nelder-Mead’ algorithm from the ‘optim’
function in R). There exists alternatives to this approach, for example using a stochastic
descent algorithm, see [Jai15] and [BMM15] for a general discussion on inference strategies
in a high dimensional framework in the context of financial applications.
Let us consider that the processes are observed on a given interval [0, τ ].
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3.2 Likelihood

Proposition 1. The log-likelihood of a multidimensional Hawkes process
(
N (i)

)
1≤i≤d

with baseline intensity
(
µ(i)
)

1≤i≤d and kernels
(
φi,j(t) = αi,j exp (−βi,jt)

)
1≤i,j≤d is

logL = −
d∑
i=1

∫ τ

0
(µ(i)
s +

d∑
j=1

∫ s

0
αi,j exp (−βi,j(s− u)) dN (j)

u )ds

+
d∑
i=1

mi∑
n=1

log

µ(i)

t
(i)
n

+
d∑
j=1

∫ t
(i)
n

0
αi,j exp

(
−βi,j(t(i)n − s)

)
dN (j)

s

 (3)

where (t
(k)
n )1≤n≤mk

are the mk times of event observed for each group k ∈ {1, ..., d}.

Proof of Proposition 1 . (i) For ease of presentation, let us start with the single group
case (d = 1); we omit the group index for simplicity of notation. Note that calibrating
such model on each single group amounts to specify φi,j ≡ 0 for i 6= j in Equation (1). We
introduce the notation Hn = {Tn = tn, ..., T1 = t1} the information on the first n times of
event, and add the conventions H0 = ∅ and T0 = 0. Having observed the times (tn)1≤n≤m,
the likelihood can be written as (by abuse of notation we keep the Tn):

L = P(∀1 ≤ n ≤ m,Tn = tn, and Tm+1 > τ),

= P(Tm+1 > τ | Hm)
m∏
n=1

P(Tn = tn | Hn−1),

= exp

(
−
∫ τ

Tm

λsds

) m∏
n=1

exp

(
−
∫ Tn

Tn−1

λsds

)
λTn ,

= exp

(
−
∫ τ

0
λsds

) m∏
n=1

λTn .

Then the log-likelihood can be written as

logL = −
∫ τ

0
λsds+

m∑
n=1

log λTn = −
∫ τ

0
λsds+

∫ τ

0
log λsdNs. (4)

This is the standard log-likelihood for any counting process (Ns)s≥0 with intensity process
(λs)s≥0. It now remains to further specify it in the context of the model introduced in
Equation (1), as

logL = −
∫ τ

0
µsds−

∫ τ

0

∑
Tn<s

φ(s− Tn)ds+

m∑
n=1

log

(
µTn +

n−1∑
k=1

φ(Tn − Tk)

)
. (5)

If we further specify the self-exciting map as φ(t) = α exp (−βt), with non-negative α and
β in the present context, we obtain

logL(µ, α, β) = −
∫ τ

0
µsds− α

∫ τ

0

∑
Tn<s

exp (−β(s− Tn)) ds

+
m∑
n=1

log

(
µTn + α

n−1∑
k=1

exp (−β(Tn − Tk))

)
.

(6)
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(ii) In the multivariate setting, the parameters for all groups are gathered into a vector
M(t) = (µ

(1)
t , ..., µ

(d)
t ), possibly time-dependent, and two d× d matrices A = (αi,j)1≤i,j′≤d

and B = (βi,j)1≤i,j≤d. The multivariate intensity is fully specified in Equation (1), and
using the same reasoning as above, we can derive the associated log-likelihood based on
observation ((t

(i)
n )1≤n≤mi)1≤i≤d

logL(M(.), A,B) = −
d∑
i=1

∫ τ

0
λ(i)
s ds+

d∑
i=1

mi∑
n=1

log λ
(i)

t
(i)
n

= −
d∑
i=1

∫ τ

0

µ(i)
s +

d∑
j=1

∫ s

0
φi,j(s− u)dN (j)

u

 ds

+

d∑
i=1

mi∑
n=1

log

µ(i)

t
(i)
n

+

d∑
j=1

∫ t
(i)
n

0
φi,j(t

(i)
n − s)dN (j)

s


(7)

When specifying the self and mutually-exciting maps φi,j(t) = αi,j exp (−βi,jt), the final
log-likelihood is given by Equation (3).

Remark 2. In this form the number of parameters to be estimated is 2d2, in addition to
the number of parameters of the functions

(
µ(i)
)

1≤i≤d which will be specified in Section 4.

Remark 3. Due to the complexity of the log-likelihood, we resort in this paper to a simplex-
type optimization procedure in the form of the Nelder-Mead algorithm. Furthermore, we
provide in our paper the inference of the memory parameters βi,j in Equation (1), in
addition to the self-excitation matrix (αi,j). The fact that the βi,j are often considered as
fixed parameters is discussed in e.g. [BMM15].

4 Inference and prediction

We decided to use the periods 2011-2015 and 2011-2016 for parameter inference, in order
to predict the number of attacks for 2016 and 2017 respectively. The one-year horizon
taken here is motivated by applications in internal models for insurance companies, aiming
to quantify the 99.5% most adverse one-year loss related to cyber risk insurance covers.
Note that the exclusion of the years 2018 and 2019 from the analysis is motivated by the
fact that the database appears to be incomplete for these two years, since 2019 is not fully
developed, and maybe due to some delays in reporting for year 2018.

4.1 Segmentation

The aim of our study is to calibrate a multivariate Hawkes process on the several groups
obtained by crossing the covariates: Type of breach & Type of the covered entity &
State. These covariates are those discussed in Section 2 and Tables 1, 2 and in Appendix
Table A. In particular, we use the aggregated covariates as discussed in Section 2.2. In
order to have sufficiently represented groups we kept the largest ones and removed the
others in a OTHER group. We also put the group MED & OTHER & OTHER
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4.1 Segmentation

in the OTHER group because it was to irregular over the period of interest. This is
summarized in Table 3.2

Group Number of breaches
OTHER (1) 2046

MED & DISC & OTHER (2) 497
BUSINESSES & HACK & OTHER (3) 386

MED & HACK & OTHER (4) 472
MED & THEFT/LOSS & CALIFORNIA (5) 214

MED & THEFT/LOSS & OTHER (6) 943

Table 3: Studied groups

Figure 5 shows the frequency of attacks over the calibration period (2011-2016). First, the
different trends strengthen our idea that this segmentation could indeed make sense. These
trends will be taken into account through a dedicated linear specification in the baseline
intensity. Furthermore, the clustering behaviour of the data breach occurrences appear,
alternating high and low activity periods, see in particular MED & DISC & OTHER
(2) and MED & HACK & OTHER (4).

2The OtherState and OtherOrga groups are simply called OTHER for the following results.
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4.2 Models studied

Figure 5: Numbers of attacks function of the time (in days) for each of the 6 groups

4.2 Models studied

Maximum likelihood inference has been performed for the three following kernels:

Kernel 1: φi,j(t) = αi,j exp(−βit)

Kernel 2: φi,j(t) = αi,j exp(−βi,jt)

Kernel 3: φi,j(t) = αi,jt exp(−βit)

(8)

14/35



4.3 Inference

In order to take into account possible trends in the dynamics, as depicted in Figure 5, a
linear baseline intensity (µ

(i)
s )s≥0 has been specified as:

µ(i)
s = µ

(i)
0 + γis

with µ(i)
0 ≥ 0, γi ∈ R for i ∈ {1, ..., d}. Note that in case of a negative trend, the parameters

are constrained such that the baseline intensity remains positive at the end of the one-year
forecasting period, that is for each i ∈ {1, ..., d}:

µ
(i)
0 + γi(τ + 1) > 0. (9)

This leads, in total, to a number of 54 parameters for kernels 1 and 3, and 84 parameters
for kernel 2. Section 4.4 will test a Lasso method to reduce the dimension.
Recall that the first two kernels (exponential case) cause an instantaneous jump of the
intensity when an event occur and then the impact decreases exponentially toward zero
(the decrease speed is different for each pair (i, j) in the second case). The third kernel
reaches its highest level after a time 1/βi and then the impact decreases toward zero.

4.3 Inference

The likelihood obtained through the inference process is provided in Table 4.

Kernel 1 Kernel 2 Kernel 3
Period 2011-2015 6513.19 6171.78 6152.92
Period 2011-2016 7639.44 7516.43 7484.55

Table 4: Opposite of the log-likelihood for each kernel.

Among the three kernels tested, see Equation (10), it appears that the use of kernel 2 with
more parameters provides a better likelihood estimate compared to kernel 1, as expected.
However, a key result is that kernel 3 with non-instantaneous excitation provides a better
fit than kernel 2, with less parameters. Before detailing the parameter estimates and their
interpretation, we present in the following the adequacy test performed.

Adequacy test. We use a statistical test of goodness of fit to evaluate the quality of
adjustment of the model. One classical test in the theory of point processes uses the
following result, which follows from Theorem 4.1 of Garcia and Kurtz [GK08]. Note first
that this requires the intensity to remain positive, which is ensured by Equation (9).
Remark also that Theorem 4.1 in [GK08] holds for general counting processes, beyond the
class of Hawkes processes.

Proposition 2. Let us define for any i ∈ {1, ..., d} and k ≥ 1,

τ
(i)
k =

∫ T
(i)
k

0
λ

(i)
t dt.

Then the (τ
(i)
k )k≥1 are the jump times of an homogeneous Poisson process of intensity 1.

15/35



4.3 Inference

This result provides a way to test the adequacy of the Hawkes processes: if the underlying
process is indeed a Hawkes process with this intensity, the times

θ
(i)
k = τ

(i)
k − τ

(i)
k−1, k ≥ 1

are independent and distributed according to an exponential distribution with parameter
1. We can then assess the adequacy for each group i ∈ {1, ..., d} of the time series (θ

(i)
k )k≥1

to the exponential distribution with a standard Kolmogorov-Smirnov test. This test is
based on comparing the distance between the empirical cumulative distribution and that
of a reference specified distribution (here exponential) with known parameters (here 1).
The adequacy tests for the different kernels are summarized in Table 5. The cases where
the null hypothesis (adequacy) is not rejected at confidence level 5 % are highlighted in
bold.

Kernel 1 Kernel 2 Kernel 3
OTHER (1) 0.0503 0.0865 0.9060

MED & DISC & OTHER (2) 0.5546 0.1300 0.5173
BUSINESSES & HACK & OTHER (3) 0.5558 0.5966 0.3363

MED & HACK & OTHER (4) 0.0024 0.0361 0.0370
MED & THEFT/LOSS & California (5) 0.1146 0.5669 0.4246
MED & THEFT/LOSS & OTHER (6) 0.0733 0.6341 0.5379

Table 5: Adequacy test

From these tests, it appears that the adequacy is satisfactory except for group MED &
HACK & OTHER (4), whatever the kernel considered.
Given the quality of the adequacy and of the likelihood presented by kernel 3 (φi,j(t) =

αi,jt exp(−βit)), we focus on this kernel for the parameter interpretation which follows.
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4.3 Inference

Parameter estimates - Kernel 3 The parameter estimates for kernel 3 are detailed in
Tables 6 and 7; they are interpreted in the following.

µ
(i)
0 βi γi

OTHER (1) 0.87 5.39 -2.53e-04
MED & DISC & OTHER (2) 0.02 6.88 9.52e-05

BUSINESSES & HACK & OTHER (3) 0.12 7.31 -3.56e-06
MED & HACK & OTHER (4) 0.02 5.75 9.65e-05

MED & THEFT/LOSS & CALIFORNIA (5) 0.05 5.96 -7.26e-06
MED & THEFT/LOSS & OTHER (6) 0.36 5.84 -1.07e-04

Table 6: Parameters (µ
(i)
0 )1≤i≤6, (βi)1≤i≤6 and (γi)1≤i≤6

1 2 3 4 5 6
1 6.04 6.06 4.36 3.51 2.54 2.95
2 1.48 6.28 1.82 4.70 3.31 0.83
3 1.45 1.34 3.17 1.84 0.14 1.15
4 0.31 2.83 1.74 8.37 0.32 0.12
5 0.38 0.62 0.12 1.19 7.80 0.99
6 2.03 2.57 3.15 1.63 0.83 6.70

Table 7: Parameters (αi,j)1≤i,j≤6

To further analyse the parameters, we also compute in Table 8 the maximum value Γi,j

of the influence of an event of group j on the intensity of the group i (for 1 ≤ i, j ≤ d).
This maximum influence is reached after a certain time, as specified before, up to the value
Γi,j :=

αi,j

βi
e−1.

Finally, the ratio (
Γi,j

µ
(i)
0

)1≤i,j≤6 between the maximum excitation and the baseline intensity

is provided in Table 9. This ratio helps to understand the relative importance of the
excitation phenomenon compared to the baseline dynamics.

1 2 3 4 5 6

1 0.41 0.41 0.30 0.24 0.17 0.20
2 0.08 0.34 0.10 0.25 0.18 0.04
3 0.07 0.07 0.16 0.09 0.01 0.06
4 0.02 0.18 0.11 0.53 0.02 0.01
5 0.02 0.04 0.01 0.07 0.48 0.06
6 0.13 0.16 0.20 0.10 0.05 0.42

Table 8: Maximum excitations (Γi,j)1≤i,j≤6
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4.3 Inference

1 2 3 4 5 6

1 0.47 0.47 0.3 0.28 0.19 0.23
2 4 17 5 12.5 9 2
3 0.58 0.58 1.33 0.75 0.08 0.5
4 1 9 5.5 26.5 1 0.5
5 0.4 0.8 0.2 1.4 9.6 1.2
6 0.36 0.44 0.56 0.28 0.14 1.17

Table 9: Ratios between the maximum excitation and the baseline intensity (
Γi,j

µ
(i)
0

)1≤i,j≤6.

The largest values are highlighted in bold.

Interpretation A possible interpretation is the following.
The baseline intensity µ0 is highest for groups 1 (OTHER) and 6 (MED & THEFT/LOSS
& OTHER), which simply reflects the fact that they are more represented. This link is
not always verified, for example, groups 2 (MED & DISC & OTHER) and 4 (MED &

HACK & OTHER) seem to owe their number of attacks more to excitation phenomena
than group 3 (Businesses & HACK & OTHER) because they are more represented
but do not have a higher base rate (µ(2)

0 < µ
(3)
0 and µ(4)

0 < µ
(3)
0 ).

Concerning the drifts, the model seems to have captured the trends visible in Figure 5,
they are all decreasing (γ < 0) except for segments 2 and 4. Segments 3 and 5 (MED &

THEFT/LOSS & CALIFORNIA) have very low trend parameters, which also corre-
spond to the histograms.
Table 9 represents the maximum value of excitation Γi,j , relatively to the basic intensity
µ

(i)
0 . For 1 ≤ i, j ≤ d, the coefficient Γi,j =

αi,j

βi
e−1 represents the maximum value of the

influence of an event in group j, on the intensity of the group i, and µ(i)
0 is the constant

component of the baseline intensity of group i. Table 9 shows a strong self-excitation of
groups 2 and 4, which corresponds to the remark made in the paragraph on baseline in-
tensity, this is also the case for group 5 (Γi,i >> µ

(i)
0 for i = 2, 4 and 5). The OTHER

group is the least self-excited (Γ1.1 < µ
(1)
0 ). The different types of attacks for the medical

sector seem to excite each other, attacks of type HACK and DISC have a clear impact on
the intensity of the other, they also trigger attacks of type THEFT/LOSS. On the other
hand, attacks THEFT/LOSS do not seem to have a significant impact on the other two.
Concerning the coefficients (βi)1≤i≤6 they are all of the same order of magnitude except
for the group BUSINESSES & HACK & OTHER which is higher; this means that the
excitation phenomenon is less strong, and vanishes quickly for this group. More specif-
ically, the (βi)1≤i≤6 parameters for this kernel 3 indicate that the maximal excitation is
globally reached after approximately 4 or 5 hours ( 1

βi
for βi varying from 5.4 to 7.3) .

From an actuarial perspective, the model parameter estimates allow first to identify
sub-groups of entities and related insurance covers (groups 2 and 4 mainly, and 5 to a
lesser extent) which still present a strong self-excitation despite that the joint dynamics
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4.4 Penalized likelihood

with the other groups is captured. This means that for actuarial applications (pricing,
reserving) the recourse to self-exciting models as Hawkes processes can not be avoided to
appropriately quantify the frequency risk of these groups.
In addition, we have seen that the different types of attacks in the medical sector interact
with each other. This involves that an actuarial assessment possibly focusing on a specific
guarantee (like theft/loss) will gain if other types of data losses are also involved in the
modelling, even if not covered by the insurance contract; this is for example the case of
unintended disclosure which has to be modeled since it is a strong explanatory driver to
understand the pattern of the theft/loss risk.
These insights are even more important for actuaries when they derive capital require-
ments related to cyber risk uncertainty. Indeed, the identification of the self-exciting and
mutually-exciting behaviors helps to refine the full distribution of the risk, again even
if only a few set of entity types and covers (attack types) are of interest among those
modelled.

4.4 Penalized likelihood

A first motivation in calibrating Hawkes processes is the natural interpretation given by
the parameters. However the number of parameters and therefore the complexity, increases
rapidly with the dimension of the Hawkes process. One way to reduce complexity consists
in penalizing the likelihood with the norm of the vector of parameters. This penalization
should shrink the potential values taken by the parameters. In our case we decided to
penalize the (αi,j)1≤i,j≤d parameters with the L1-norm3 (Lasso method). Indeed, this
choice should highlight the main interactions between the groups and provide parameter
estimates with lower variance (at the price of an increase in the bias). One could have
chosen instead a L2-norm penalization (Ridge method), that also shrinks the coefficients
of less contributing variables towards zero, but without setting any of them exactly to zero.
We therefore want to minimize the penalized log-likelihood

− logL(M(.), A,B)penalized = − logL(M(.), A,B) + ν
∑

1≤i,j≤d
|αi,j |

were ν ≥ 0 is the penalization coefficient, and L(M(.), A,B) the likelihood of the Hawkes
process. Different values of the coefficient ν will be tested, in order to observe how the
estimated parameters react, and how the predictive capacity evolves. Let us recall that
increasing the value of ν will increase the bias and decrease the variance of the predictions.
In our experiment, we observe that the β parameters compensate the penalty constraint
on the α parameters, therefore no parameters are forced to zero. This flexibility would be
deleted if we would have extended the penalty to the β parameters as well; in such a case
we expect we would have obtained the classical vanishing results of some coefficients, at
the price of an expected decrease in the prediction capacity.

3Given (d, p) ∈ N∗×N∗ and a matrix A = (ai,j)1≤i,j≤d ∈ Rd, we define the Lp-norm ||.||p of this matrix
by : ||A||p :=

(∑
1≤i,j≤d |ai,j |p

)
1/p
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4.5 Predictions

The following penalization parameters have been tested, for the three kernels considered
(see Section 4.2) : ν ∈ {0, 100, 600, 900, 3000, 6000}.

Penalty coefficient ν 0 100 600 900 3000 6000
Kernel 1 (2011-2015) 6513.19 6375.83 6990.89 7385.11 13261.36 15799.48
Kernel 1 (2011-2016) 7639.44 7755.28 8421.69 8874.91 15143.42 17833.19
Kernel 2 (2011-2015) 6171.78 6278.31 6519.87 6673.23 8340.74 9563.34
Kernel 2 (2011-2016) 7516.43 7647.73 7959.91 8142.27 9835.47 11152.66
Kernel 3 (2011-2015) 6152.92 6528.24 6998.68 7407.18 10914.03 16016.69
Kernel 3 (2011-2016) 7484.55 7888.62 8253.16 8914.18 35829.76 78405.08

Table 10: Values of the opposites of the log-likelihood functions for each penalty coefficient
- the upper line corresponds to the ν coefficient.

Table 10 shows that likelihood values are not too damaged up to a penalization coefficient
of 900. Recall that kernel 3 has a better likelihood (with no penalization) than kernel 2, this
indicates that our data is better represented with a latent excitation than an instantaneous
one. Moreover, kernel 3 has a better likelihood than kernel 2 even if it is a more sparing
model (54 parameters versus 84 parameters).
The analysis of the penalization in terms of prediction will be assessed in the next section.

4.5 Predictions

4.5.1 Computation of the mean predicted number of attacks

In order to compare the different calibrations, we study the gap between the expectation
of the calibrated process and the real number of attacks. In Appendix B, we detail the
computation for the expectation of a multivariate Hawkes process, for the three types of
kernels considered in Equation (10). Recall that we are concerned by the non-stationary
framework as we have chosen a temporal drift for our baseline intensity. It extends previous
results of [Bou16] for which computations are done for non-stationary univariate Hawkes
processes with a wide class of kernels. We thus compute the average expected number
of events on a given period E[N

(i)
t | Ft0 ], t0 < t, for the calibrated set of parameters.

The numerical results are given in the first columns of Table 11, for different values ν of
the Lasso penalty coefficient. It is compared with the real number of attacks of the PRC
database in the last column.

4.5.2 Results

Table 11 below shows that an overestimated number of attacks on one segment could be
"compensated" by an underestimated number on another segment. To provide a more
detailed estimation of the errors in prediction, segment by segment, Table 12 computes
the sum (over the six segments) of the absolute differences between the expected number
of attacks predicted and the real number.
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4.6 Predictions of the whole distribution of the number of attacks

Penalty coefficients ν 0 100 600 900 3000 6000 Real number
Kernel 1 (2016) 476.0 537.2 708.9 780.1 1782.0 1944.5 809
Kernel 1 (2017) 721.4 433.6 587.7 628.2 1387.0 1408.5 655
Kernel 2 (2016) 588.4 549.0 620.8 637.3 896.1 1190.7 809
Kernel 2 (2017) 592.4 548.4 534.5 530.7 689.2 967.8 655
Kernel 3 (2016) 634.1 597.0 583.7 649.9 1311.2 2368.1 809
Kernel 3 (2017) 671.1 665.3 514.8 722.1 3823.9 7057.4 655

Table 11: Sum of the mean predicted number of attacks over each segment

Penalty coefficients ν 0 100 600 900 3000 6000
Kernel 1 (2016) 337.7 280.7 277.8 283.6 973.0 1135.5
Kernel 1 (2017) 170.3 249.5 240.4 261.7 732.0 792.8
Kernel 2 (2016) 259.5 282.2 202.7 180.4 256.8 430.4
Kernel 2 (2017) 127.3 160.9 159.5 141.7 148.1 346.5
Kernel 3 (2016) 201.8 285.1 262.1 283.2 502.2 1559.1
Kernel 3 (2017) 165.7 183.3 254.3 172.7 3168.9 6402.4

Table 12: Sum of the absolute differences between the expected number of attacks predicted
(in 2016 and 2017) and the real number, over the six segments.

Tables 11 and 12 show that a penalty can improve the predictive capacities of the model,
to a certain extent, this is the case for example for kernels 1 and 2 for the year 2016.
Kernel 2 seems to be better improved by a penalization, which is in line with the fact that
it is the less parsimonious (84 parameters). We observe in our experiment that as a large
penalty coefficient makes the model closer to a Poisson process (without auto excitation),
it is compensated with a larger baseline intensity µ, which explains the worsening of the
prediction when ν becomes too large. Kernel 2 is less sensible to this degradation since
the βi,j can also compensate a too strong penalization on the αi,j . It also appears that
the classical trade-off train/test is difficult here, since the best predictions of 2017 are not
made by the best models of 2016.
The model with kernel 3 (φi,j(t) = αi,jt exp(−βit)) and no penalization seems to be a good
compromise in terms of predictions over the two years. This model appears to be the most
reliable since it is also the one with the best likelihood.

4.6 Predictions of the whole distribution of the number of attacks

We use the so-called thinning algorithm in order to simulate trajectories of Hawkes pro-
cesses that are projections of a Hawkes process with past occurrences corresponding to the
historical data. A detailed discussion on the thinning procedure for Hawkes processes is
given in Section 4 of [Bou16]. The histograms of predictions based on 10 000 simulations
are depicted in Figures 6 and 7. These distributions could be used to determine a 99.5%
percentile at a one-year horizon in the context of a Solvency II internal model.
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4.6 Predictions of the whole distribution of the number of attacks

The distributions seem to capture the main trends, excepted for two cases in 2016 and
one case in 2017. Besides, we note a tendency for the model to underestimate the number
of attacks, this a feature of exponential kernels (that decrease very fast) that has already
been pointed out by Bouchaud et al. [HBB13] in a financial framework for modeling order
books. The projection for group OTHER (group 1) is particularly bad, due to the lack
of structure of this "catch-all" group.

Finally, the model with kernel 3 seems to capture a significant part of the dynamics,
with a reasonable number of parameters. Due to the heterogeneity of the PRC dataset, it
is impossible to work globally on the whole dataset, that we have split in different groups.
The choice of the different groups, that should be the more homogeneous as possible, is
determinant in the prediction accuracy, as illustrated by the group OTHER that performs
very badly. The advantage of our approach is that this joint mutually exciting model fo-
cuses on the whole joint distribution of numbers of attacks for each group, which is more
accurate - but also more complex - than modeling marginal distributions, group per group.
It thus allows to globally analyse the arrival of events, given some characteristics (type of
the breached entity, type of breach, localization). A counterpart of this joint model is that
a lower fitting accuracy for a given group may propagate to other groups.
Besides, part of the discrepancy observed in Figures 6 and 7 is also due to the variation of
the underlying exposure, that inevitably impacts the number of attacks and the accuracy
of the predictions. Although it is very difficult to assess the exposure for such a public
dataset, an insurer could enrich this joint mutually exciting model using its own data on
exposure, that could then be integrated within the baseline intensity of the Hawkes pro-
cesses (for example taking a baseline intensity proportional to the exposure).
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4.6 Predictions of the whole distribution of the number of attacks

Figure 6: Distribution of the number of attacks predicted for 2016 with kernel 3 - In red
the real number, in blue the 0.5% and 99.5% quantiles of the predicted distribution
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Figure 7: Distribution of the number of attacks predicted for 2017 with kernel 3 - In red
the real number, in blue the 0.5% and 99.5% quantiles of the predicted distribution

5 Conclusion

This paper proposes a joint mutually exciting model to analyse and predict the arrivals
of cyber events. It is achieved through multivariate Hawkes processes, that capture the
clustering and autocorrelation of times of cyber events, depending on some characteristics.
The analysis is conducted on the public dataset of Privacy Rights Clearinghouse, on which
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different Hawkes kernels are calibrated. A kernel with a non-instantaneous excitation pro-
vides a better fit, compared to the standard exponential kernel. With such parsimonious
parametric specifications, the model achieves reasonable forecasts which have been per-
formed over a one-year horizon. Besides, the methodology can be easily extended to other
types of cyber data.
This is a first step towards using advanced stochastic processes for the computation of a
solvency capital for cyber-insurance or in the field of cyber risk covers pricing. An insur-
ance pricing methodology requires the estimation of the frequency and severity of claims,
while our methodology only focuses on the arrivals of cyber events.
First, our model should be completed with an exposure analysis in order to assess the pure
frequency component of the risk. Unfortunately, since the PRC database is fed by various
sources of information, the exposure - that is the number of entities exposed to risk within
the PRC database - is difficult to handle. Therefore it is almost impossible to know from
such data which part of the variation along time of the reported claims is caused by an
evolution of the risk, and which part is caused by an instability in the way the data are
collected. On the contrary, an insurance portfolio has a better knowledge of its exposi-
tion. But even for an insurance company with a cyber portfolio, the frequency would be
poorly estimated if only based on internal historical data, since the number of reported
claims would be too small to perform an accurate estimation. That is why analyzing public
databases like PRC is important to improve the evaluation of the risk.
Second, for the severity component, the PRC dataset does not report directly the financial
loss resulting from a data breach event, but still a severity indication is given through the
volume of data breached. A projected financial loss can be then estimated from the number
of records, accordingly to previous approaches such as in [EL17] or more recently in [FLT].
Let us note that Romanosky [Rom16] also studied the cost of data breaches using a private
database gathering cyber events and associated losses. Again, an insurance company has
a better knowledge of the effective losses of cyber events, but on a smaller dataset. To
conclude, combining insurance portfolio data with external information - including public
databases like PRC - seems to be essential to improve the evaluation of the risk.
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A Repartition of attacks by state (PRC)

Var1 Freq
1 Alabama 70
2 Alaska 22
3 Arizona 129
4 Arkansas 52
5 Beijing 1
6 Berlin 1
7 British Columbia 3
8 Buckinghamshire 2
9 California 1117
10 Cheshire 1
11 Colorado 122
12 Connecticut 109
13 Delaware 16
14 District Of Columbia 104
15 Dublin 1
16 Florida 386
17 Georgia 207
18 Grand Bahama 1
19 Guangdong 1
20 Hawaii 19
21 Idaho 18
22 Illinois 291
23 Indiana 170
24 Iowa 56
25 Kansas 49
26 Kentucky 95
27 London 2
28 Louisiana 50
29 Maine 25
30 Maryland 331
31 Massachusetts 200
32 Michigan 122
33 Minnesota 133

Var1 Freq
34 Mississippi 29
35 Missouri 131
36 Montana 25
37 Nebraska 33
38 Nevada 46
39 New Hampshire 30
40 New Jersey 123
41 New Mexico 42
42 New York 451
43 Noord Holland 1
44 North Carolina 146
45 North Dakota 10
46 Ohio 193
47 Oklahoma 54
48 Ontario 7
49 Oregon 101
50 Pennsylvania 217
51 Puerto Rico 31
52 Quebec 3
53 Rhode Island 31
54 South Carolina 61
55 South Dakota 11
56 Tennessee 130
57 Texas 489
58 Tokyo 1
59 UNKNSTATE 302
60 Utah 48
61 Vermont 27
62 Virginia 148
63 Washington 169
64 West Virginia 17
65 Wisconsin 84
66 Wyoming 12



B Computation of the expectation of the multivariate non-
stationary Hawkes process

In this section, we derive closed-form formulas for the expectation of the Hawkes process
under the three kernel specifications as given in Equation (10). The proof relies on deriving
the dynamics of the underlying age-pyramid, as developed by [Bou16] to compute the dis-
tribution of non-stationary Hawkes processes for general kernel in the univariate case; we
extend here the scope of application of such techniques to the multivariate Hawkes model
for the kernels considered.

In the population representation, events are interpreted as arrivals or births of in-
dividuals in a population, while the Hawkes process measures the evolution of the total
population size over time. Considering for example the univariate case (d = 1), immigrants
arrive (with age zero) in the population according to a Poisson process with rate µt, then
each immigrant with age a gives birth with rate φ(a); more generally, every individual with
age a in the population gives birth with rate φ(a).
We introduce the random point measure Z(i)

t (da), i ∈ {1, .., d} defined as:

Z
(i)
t (da) =

∫
(0,t]

δt−s(da)dN (i)
s =

N
(i)
t∑

n=1

δ
t−T (i)

n
(da).

This measure allows to keep track of all ages in the population and can be used to integrate
a function f , to do this we use the notation:

〈Z(i)
t , f〉 =

∫
R+

f(a)Z
(i)
t (da) =

∫
(0,t]

f(t− s)dN (i)
s .

For instance it allows us to represent the Hawkes process itself with N (i)
t = 〈Z(i)

t , 1〉 or the
intensity of the process (N

(i)
t )t≥0 with:

λ
(i)
t = µ

(i)
t +

d∑
j=1

〈Z(j)
t− , φi,j〉.

The computation of the expectation will make use of the following result, see Lemma 1 in
[Bou16]:

Proposition 3. For any differentiable function f : R+ → R with derivative f ′:

〈Z(j)
t , f〉 = f(0)〈Z(j)

t , 1〉+

∫ t

0
〈Z(j)

s , f ′〉ds, for any j ∈ {1, ..., d}.

In this dynamics, the first term refers to the pure jump part of arrivals of individuals with
age 0, whereas the second term of transport type illustrates the aging phenomenon: all
ages are translated along the time axis.
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B.1 Expectation with kernels 1 and 2 (exponential case)

In the following, we provide closed-form calculations for the expectation of the multivariate
Hawkes process for the three kernel specifications studied in this paper:

Kernel 1: φi,j(t) = αi,j exp(−βit)

Kernel 2: φi,j(t) = αi,j exp(−βi,jt)

Kernel 3: φi,j(t) = αi,jt exp(−βit)

(10)

Kernels 1 and 2 correspond to the exponential case and are studied in Section B.1, whereas
kernel 3 is tackled separately in Section B.2.

B.1 Expectation with kernels 1 and 2 (exponential case)

Proposition 4. Let us consider a d-variate Hawkes process (N
(1)
t )t≥0, ..., (N

(d)
t )t≥0 with

exponential kernel, and let us denote (λ
(i)
t )t≥0 the intensity process of the process (N

(i)
t )t≥0:

λ
(i)
t = µ

(i)
t +

d∑
j=1

∫
[0,t[

φi,j(t− s)dN (j)
s = µ

(i)
t +

d∑
j=1

∑
T

(j)
n <t

αi,j exp(−βi,j(t− T (j)
n ))

with µ(i) : R+ −→ R+, (αi,j)1≤i,j≤d ∈ Rd×d+ , (βi,j)1≤i,j≤d ∈ Rd×d+ .

We define the vector Xt and its expectation:

Xt :=
(
〈Z(1)

t , 1〉, ..., 〈Z(d)
t , 1〉, 〈Z(1)

t , φ1,1〉, ..., 〈Z(d)
t , φ1,d〉, ..., 〈Z

(1)
t , φd,1〉, ..., 〈Z

(d)
t , φd,d〉

)
G(t) := E [Xt] =

(
g0,1(t), ..., g0,d(t), g1,1(t), ..., g1,d(t), ..., gd,1(t), ..., gd,d(t)

)
Then the dynamics of Xt is Markovian and G(t) can be expressed, for t0 < t, as:

G(t) = G(t0) exp(A(t− t0)) +

∫ t

t0

exp(A(t− s))B(s)ds

B(t) is a vector with size d(d+ 1) defined below:

• for each 1 ≤ i ≤ d, [B(t)]i = µ
(i)
t

• for each d + 1 ≤ i ≤ d2 + d such that i = ad + b with integers a and b such that
1 ≤ a ≤ d and 1 ≤ b ≤ d, [B(t)]i = αa,bµ

(b)
t

A is a matrix with size d(d+ 1)× d(d+ 1) defined as follows:

• For 1 ≤ m ≤ d: [A]m,n = 1 with md+ 1 ≤ n ≤ md+ d.

• For d + 1 ≤ m ≤ d2 + d such that m = ad + b, with integers a and b such that
1 ≤ a ≤ d and 1 ≤ b ≤ d:

– If a 6= b,

∗ [A]m,m = −βa,b
∗ [A]m,n = αa,b for any bd+ 1 ≤ n ≤ bd+ d

– If a = b,
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∗ [A]m,m = αa,a − βa,a
∗ [A]m,n = αa,a for any bd+ 1 ≤ n ≤ bd+ d and n 6= m

Note that non-specified components are zero.

Proof of Proposition 4 Let us prove in a first step that the dynamics of (Xt)t≥0 is
Markovian. In particular let us determine the dynamics of 〈Z(j)

t , φi,j〉 with 1 ≤ i, j ≤ d,
keeping in mind that φi,j represents the influence of (N

(j)
t )t≥0 on the intensity of (N

(i)
t )t≥0;

by using Proposition 3,

〈Z(j)
t , φi,j〉 = αi,jN

(j)
t +

∫ t

0
〈Z(j)

s , φ′i,j〉ds

= αi,jN
(j)
t − βi,j

∫ t

0
〈Z(j)

s , φi,j〉ds

By differentiation we obtain:

d〈Z(j)
t , φi,j〉 = αi,jdN

(j)
t − βi,j〈Z

(j)
t , φi,j〉dt (11)

Therefore the dynamics of (Xt)t≥0 is Markovian.

Let us find in a second step the form of G. Let us define gi,j(t) = E
[
〈Z(j)

t , φi,j〉
]
and

let us take the expectation in (11) using the fact that E[dN
(j)
t ] = E[λ

(j)
t ]dt:

dE
[
〈Z(j)

t , φi,j〉
]

= αi,jE
[
λ

(j)
t

]
dt− βi,jE

[
〈Z(j)

t , φi,j〉
]
dt

= αi,jµ
(j)
t dt+ αi,j

d∑
k=1

E
[
〈Z(k)

t− , φj,k〉
]
dt− βi,jgi,j(t)dt

By using the fact that Lebesgue measure charges no point, we obtain:

g′i,j(t) = αi,jµ
(j)
t + αi,j

d∑
k=1

gj,k(t)− βi,jgi,j(t).

Now let us study the expectation of N (k)
t = 〈Z(k)

t , 1〉 for 1 ≤ k ≤ d:

dE
[
〈Z(k)

t , 1〉
]

= E
[
λ

(k)
t

]
dt = µ

(k)
t dt+

d∑
l=1

E
[
〈Z(l)

t−, φk,l〉
]
dt

Let us set g0,k(t) = E
[
〈Z(k)

t , 1〉
]
, then:

g′0,k(t) = µ
(k)
t +

d∑
l=1

gk,l(t).

Therefore, the system of differential equations can be conveniently rewritten as:

G′(t) = AG(t) +B(t),

where A and B(t) are specified in Proposition 4; this finally proves that G is of the form:

G(t) = G(t0) exp(A(t− t0)) +

∫ t

t0

exp(A(t− s))B(s)ds.

Remark 4. The proof to obtain expectations conditional on information up to any time is
similar.
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B.2 Expectation with kernel 3

The next proposition provides the computation for a d-variate Hawkes process with kernel
φi,j(a) = αi,ja exp(−βi,ja), which is little bit more general than kernel 3 that corresponds
to βi,j = βi for all j.

Proposition 5. Let us consider a d-variate Hawkes process with kernel φi,j(a) = αi,ja exp(−βi,ja).
Let us still denote by (λ

(i)
t )t≥0 the intensity process of the process (N

(i)
t )t≥0, i ∈ {1, ..., d}:

λ
(i)
t = µ

(i)
t +

d∑
j=1

∫
[0,t[

φi,j(t− s)dN (j)
s = µ

(i)
t +

d∑
j=1

∑
T

(j)
n <t

αi,j(t− T (j)
n ) exp(−βi,j(t− T (j)

n ))

with µ(i) : R+ −→ R+, (αi,j)1≤i,j≤d ∈ Rd×d+ , (βi,j)1≤i,j≤d ∈ Rd×d+ .

Now let us consider the following vector Yt and its expectation Ht:

Yt :=
(

(〈Z(i)
t , 1〉)1≤i≤d, (〈Z

(j)
t , φi,j)1≤i,j≤d, (〈Z

(j)
t , φ

(e)
i,j )1≤i,j≤d

)
H(t) := E [Yt]

with same ordering as for X in Proposition 4, and using the notation φ(e)
i,j (a) = αi,j exp(−βi,ja)

for the exponential kernel. Then the dynamics of Yt is Markovian and in particular H(t)

can be expressed for t > t0 as:

H(t) = H(t0) exp(C(t− t0)) +

∫ t

t0

exp(C(t− s))D(s)ds.

D(t) is a vector with size d(2d+ 1) defined below:

• for each 1 ≤ i ≤ d, [D(t)]i = µ
(i)
t

• for each d2 + d+ 1 ≤ i ≤ 2d2 + d such that i = d2 + ad+ b with integers a and b such
that 1 ≤ a ≤ d and 1 ≤ b ≤ d, [D(t)]i = αa,bµ

(b)
t .

C is a matrix with size d(2d+ 1)× d(2d+ 1) defined as follows:

• For 1 ≤ m ≤ d: [C]m,n = 1 with md+ 1 ≤ n ≤ md+ d

• For d + 1 ≤ m ≤ d2 + d such that m = ad + b, with integers a and b such that
1 ≤ a ≤ d and 1 ≤ b ≤ d:

– [C]m,m = −βa,b
– [C]m,m+d2 = 1

• For d2 + d+ 1 ≤ m ≤ 2d2 + d such that m = ad+ b, with integers a and b such that
1 ≤ a ≤ d and 1 ≤ b ≤ d:

– [C]m,m = −βa,b
– [C]m,n = αa,b with bd+ 1 ≤ n ≤ bd+ d

Note that non-specified components are zero.
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Proof of Proposition 5. Let us first notice that φ′i,j(a) = φ
(e)
i,j (a)− βi,jφi,j(a) where we

redefine the exponential kernel as:

φ
(e)
i,j (a) = αi,j exp(−βi,ja).

The dynamics of (〈Z(i)
t , 1〉)1≤i≤d is the same as in the proof for the exponential case and

we get

g′0,k(t) = µ
(k)
t +

d∑
l=1

gk,l(t), (12)

where we set g0,k(t) = E
[
〈Z(k)

t , 1〉
]
and gi,j(t) = E

[
〈Z(j)

t , φi,j〉
]
.

Let us now study the dynamics of 〈Z(j)
t , φi,j〉 for 1 ≤ i, j ≤ d :

d〈Z(j)
t , φi,j〉 = φi,j(0)dN

(j)
t + 〈Z(j)

t , φ′i,j〉dt,

= 〈Z(j)
t , φ

(e)
i,j 〉dt− βi,j〈Z

(j)
t , φi,j〉dt.

By taking expectation we then get:

g′i,j(t) = g
(e)
i,j (t)− βi,jgi,j(t), (13)

where we set g(e)
i,j (t) = E

[
〈Z(j)

t , φ
(e)
i,j 〉
]
. Finally, let us study the dynamics of 〈Z(j)

t , φ
(e)
i,j 〉:

d〈Z(j)
t , φ

(e)
i,j 〉 = αi,jdN

(j)
t − βi,j〈Z

(j)
t , φ

(e)
i,j 〉dt.

By taking expectation we get:

dE
[
〈Z(j)

t , φ
(e)
i,j 〉
]

= αi,jE
[
λ

(j)
t

]
dt− βi,jE

[
〈Z(j)

t , φ
(e)
i,j 〉
]
dt

= αi,jµ
(j)
t dt+ αi,j

d∑
k=1

E
[
〈Z(k)

t− , φj,k〉
]
dt− βi,jg(e)

i,j (t)dt

leading to the differential equation:

g
(e)
i,j
′(t) = αi,jµ

(j)
t + αi,j

d∑
k=1

gj,k(t)− βi,jg
(e)
i,j (t) (14)

From Equations (12), (13) and (14), the ordinary differential equation for H(t) = E [Yt]

can therefore be rewritten as

H ′(t) = CH(t) +D(t),

where C and D(t) are specified in Proposition 2, which finally proves that H can be
computed as:

H(t) = H(t0) exp(C(t− t0)) +

∫ t

t0

exp(C(t− s))D(s)ds.
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